

I-9014

I-9014C

250 kS/s,16-bit,16/8-channel Voltage/Current Input Module

250 kS/s,16-bit,8-channel Current Input Module

■ Features

Input Type

I-9014: 16 single-ended/8 differential input channels

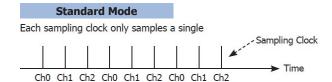
I-9014C: 8 differential input channels

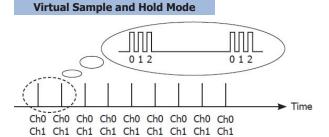
Input Range

I-9014: ±1.25 V, ±2.5 V, ±5 V, ±10 V, ±20 mA

I-9014C: ±20 mA

- 16-bit, 250 kHz ADC converter
- 4 K-samples FIFO buffer
- External trigger mode: post-trigger
- Internal/external trigger start
- Magic Scan

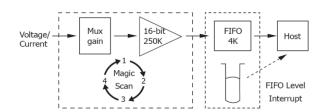



■ Introduction

The I-9014/I-9014C is a high performance Analog Input module. The I-9014 provides up to 16 single-ended or 8 differential input channels, while the I-9014C provides up to 8 differential input channels. Both modules feature 16-bit resolution, 250 kS/s sampling rate, and a 4 k sample FIFO buffer, as well as providing 2500 VDC isolation protection.

The I-9014/I-9014C module contains an impressive scan function called Magic Scan, which is able to improve many of the functions and meet the demands of high-end users. Magic Scan function can scan the individual input channels at different input range and when performing single channel scan, the sampling rate can be maintained at 250 kS/s.

The Magic Scan function on the I-9014/I-9014C module can be operated in two ways. The first is a standard scan and the other is a Virtual Sample and Hold function. The cost of almost all AI Cards is high if it includes a Sample and Hold function, but ICP DAS can now offer a low-cost alternative.


■ System Specifications

Ch2 Ch2 Ch2 Ch2 Ch2 Ch2 Ch2 Ch2

Model	I-9014	I-9014C
LED Display		
System LED Indicator	Yes	
Isolation		
Intra-module Isolation,	2500 VDC	
Field-to-Logic	2300 VDC	
Power		
Consumption	2.5 W Max.	
Mechanical		
Dimensions (W x L x H)	31 mm x 134 mm x 1	.44 mm
Environment		
Operating Temperature	-25 ~ +75 °C	
Storage Temperature	-40 ∼ +85 °C	
Humidity	10 ~ 90 % RH, Non-0	condensing

The I-9014/I-9014C module includes a 4 k sample onboard FIFO buffer for A/D conversion. The new FIFO technology uses a trigger interrupt signal, meaning that if the sampled count is higher than the pre-defined FIFO level, an interrupt signal will notify the host.

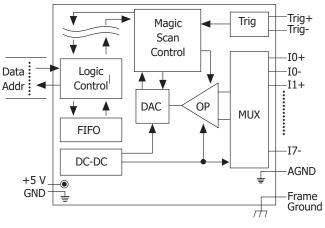
With the Magic Scan function and 4 k FIFO buffer, the I-9014/I-9014C can easily implement high-accuracy, high-speed and time-critical data acquisition applications.

■ I/O Specifications

Model		I-9014	I-9014C	
Analog 1	Input			
Channel	Single-ended	16	-	
Charmer	Differential	8		
Input	Voltage	± 1.25 V, ± 2.5 V, ± 5 V, ± 10 V	-	
Range	Current	-20 ~ +20 mA (I-9014 requires Optional		
E)		External 125 Ω Resistor)		
Resolutio	n	16-bit		
		Single Channel Pacer Mode: 250 kS/s		
Sample Rate		Single Channel Polling Mode: 45 kS/s 8 Channels Polling Mode: 25 kS/s		
FIFO Size		4 k words		
Accuracy		0.05 % of FSR		
Trigger Mode		Polling, Pacer (Magic Scan)		
Overvoltage protection		-45 ~ +60 VDC		
Input Impedance		20 K, 200 K, 20 M (Jumper Selectable)	125 Ω	

ICP DAS CO., LTD Website: http://www.icpdas.com Vol. 2022.05 1/2

■ Internal I/O Structure

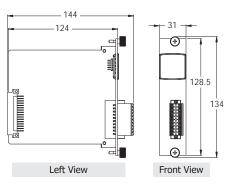

I-9014 Trig+ Trig Magic Trig-Scan Control -V0+ Data Logic -V0--V1+ Addr Control DAC OP MUX FIFO ·V7-DC-DC AGND +5 V_ GND GND Frame Ground J1 0 [0 00 0 001 \circ 10M 10K 10M 10M 100K S D

■ Pin Assignments

I-9014		Differen	tial	
Pin Assignment	T	erminal No		Pin Assignment
Trig+	01		11	Trig-
V0+	02		12	V0-
V1+	03		13	V1-
V2+	04		14	V2-
V3+	05		15	V3-
V4+	06		16	V4-
V5+	07		17	V5-
V6+	08		18	V6-
V7+	09		19	V7-
AGND	10		20	F.G.

I-9014		Single-end	led	
Pin Assignment	To	erminal No.		Pin Assignment
Trig+	01		11	Trig-
V0	02		12	V8
V1	03		13	V9
V2	04		14	V10
V3	05		15	V11
V4	06		16	V12
V5	07		17	V13
V6	08		18	V14
V7	09		19	V15
AGND	10		20	F.G.

I-9014C		Differen	tial	
Pin Assignment	Te	erminal No		Pin Assignment
Trig+	01		11	Trig-
I0+	02		12	IO-
I1+	03		13	I1-
I2+	04		14	I2-
I3+	05		15	I3-
I4+	06		16	I4-
I5+	07		17	I5-
V6+	08		18	I6-
I7+	09		19	I7-
AGND	10		20	F.G.


■ Wire Connections

I-9014C

	I-9014	
Input Type	Differential	Singled-ended
Voltage	mV/V	mV/V _V U U Vin AGND
Current	Tight State Vin+ Vin- V	Vin AGND

■ Dimensions (Units: mm)

■ Ordering Information

I-9014 CR 16-bit, 250 K sampling rate, 16/8-channel Analog Input Module (RoHS)	
I-9014C CR R 16-bit, 250 K sampling rate, 8-channel Analog Input Module (RoHS)	