

Quick start

Porting Linux to XSCALE SBC Platform
PAGE 2

Contents

1. BUILDING DEVELOPMENT ENVIRONMENT.. 4

1.1. DEVELOPMENT ENVIRONMENT ... 4
1.2. FILE LIST ON CDROM .. 4

2. SYSTEM SETTING... 6

2.1. SETTING CONSOLE .. 6

3. BOOT LINUX .. 8

3.1. USING THE ETHERNET ... 11
3.2. USING THE AUDIO ... 12
3.3. USING THE DISPLAY .. 12
3.4. SRAM... 13

4. CAN BUS AND PC104 BUS APPLICATION ... 14

5. THE I8K MODULE SDK.. 17

Porting Linux to XSCALE SBC Platform
PAGE 3

Figures and Tables

FIGURE 1. DEVELOPMENT ENVIRONMENT... 4
FIGURE 2. SETTING UP COM PORT PARAMETER... 6
FIGURE 3. SETTING UP MINICOM.. 7
FIGURE 4. CAN WIRING CONNECTION .. 14
FIGURE 5. CANSEND.. 15
FIGURE 6. CANMON... 15
FIGURE 7. STRUCTURE OF LIBI8K.A ... 17

Porting Linux to XSCALE SBC Platform
PAGE 4

1. Building Development Environment

Before you start, please check the NuWa package to ensure all components
are present. The NuWa 470 contains:

 A NuWa 470 platform
 5V DC power supply
 DVD-ROM containing original sources with Nuwa cross toolchain and

documentation

1.1. Development Environment

First of all, you should have a development environment appears as in the
diagram below:

Figure 1. Development Environment

1.2. File list on CDROM

Now we explain each directory on CD ROM very simply.
 /app Application Software
 /compiler Cross compiler for target board
 /kernel Linux kernel for target board
 /rootfs Root file system for target board

Host PC

Router or Switch

XSCALE

Nuwa

Target Platform

ROM

RAM

Peripheral

Net

Chip

RS232

Porting Linux to XSCALE SBC Platform
PAGE 5

 /rpm RPM for target board
 /u-boot Boot loader for target board
 /tools Tools software for PC
 /drivers/ts Touch screen driver for X Windows

Porting Linux to XSCALE SBC Platform
PAGE 6

2. System Setting

2.1. Setting Console

Connect a serial cable between your PC and the NuWa serial port. Start a
terminal emulator on the PC and set it to 115200 baud, 8 bit, no parity and
no flow control.

Figure 2. Setting up com port parameter

If you use Desktop Linux to download file to target, you have to know
minicom usage first. Desktop Linux has minicom program for serial
communication. It is used for command prompt of uboot or shell prompt of
embedded linux.

Set up the values before using minicom program.

Select “Serial port setup” item.

Push “A” key for setting “Serial Device”, then write serial port which is connected

to target board. (If using COM1, write /dev/ttyS0, if COM2, write /dev/ttyS1.)

Porting Linux to XSCALE SBC Platform
PAGE 7

Figure 3. Setting up minicom

Porting Linux to XSCALE SBC Platform
PAGE 8

3. Boot Linux

On every board RESET or power up, do not press any key on keyboard. You should

see the following message on your terminal emulator:

U-Boot 1.1.1 (Dec 8 2004 - 17:38:28) <------------------------ Boot

Loader Start

U-Boot code: A3080000 -> A3099988 BSS: -> A309DF88

RAM Configuration:

Bank #0: a0000000 64 MB

Bank #1: a4000000 0 kB

Bank #2: a8000000 0 kB

Bank #3: ac000000 0 kB

Flash: 32 MB

*** Warning - bad CRC, using default environment

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

Booting image at 00040000 ...

 Image Name: name <------------ move kernel to SDRAM

 Image Type: ARM Linux Kernel Image (gzip compressed)

 Data Size: 640849 Bytes = 625.8 kB

 Load Address: a0008000

 Entry Point: a0008000

 Verifying Checksum ... OK

 Uncompressing Kernel Image ... OK

Starting kernel ... <--------------- Kernel Running

Linux version 2.4.20 (root@localhost.localdomain) (gcc version 3.3.1

(MontaVista

 3.3.1-3.0.10.0300532 2003-12-24)) #366 Wed Jan 19 16:20:07 CST 2005

CPU: XScale-PXA255 [69052d06] revision 6 (ARMv5TE)

Porting Linux to XSCALE SBC Platform
PAGE 9

CPU: D undefined 5 cache

CPU: I cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets

CPU: D cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets

Machine: ICPDAS SBC Platform

Ignoring unrecognised tag 0x00000000

Memory clock: 99.53MHz (*27)

Run Mode clock: 398.13MHz (*4)

Turbo Mode clock: 398.13MHz (*1.0, inactive)

On node 0 totalpages: 16384

zone(0): 16384 pages.

zone(1): 0 pages.

zone(2): 0 pages.

Kernel command line: root=/dev/mtdblock2 console=ttyS0,115200

Calibrating delay loop... 397.31 BogoMIPS

Memory: 64MB = 64MB total

Memory: 63312KB available (1200K code, 232K data, 44K init)

XScale Cache/TLB Locking Copyright(c) 2001 MontaVista Software, Inc.

Dentry cache hash table entries: 8192 (order: 4, 65536 bytes)

Inode cache hash table entries: 4096 (order: 3, 32768 bytes)

Mount-cache hash table entries: 1024 (order: 1, 8192 bytes)

Buffer-cache hash table entries: 4096 (order: 2, 16384 bytes)

Page-cache hash table entries: 16384 (order: 4, 65536 bytes)

POSIX conformance testing by UNIFIX

Linux NET4.0 for Linux 2.4

Based upon Swansea University Computer Society NET3.039

Initializing RT netlink socket

 Version ID = 0

LSP Revision 1

Starting kswapd

Disabling the Out Of Memory Killer

JFFS2 version 2.1. (C) 2001, 2002 Red Hat, Inc., designed by Axis

Communications

 AB.

Serial driver version 5.05c (2001-07-08) with MANY_PORTS enabled

ttyS00 at 0xf8100000 (irq = 15) is a XSCALE UART

ttyS01 at 0xf8200000 (irq = 14) is a XSCALE UART

ttyS02 at 0xf8700000 (irq = 13) is a XSCALE UART

ttyS03 at 0xf4200000 (irq = 112) is a 16450

Porting Linux to XSCALE SBC Platform
PAGE 10

ttyS04 at 0xf4300000 (irq = 113) is a 16450

ttyS05 at 0xf4400000 (irq = 114) is a 16450

ttyS06 at 0xf4500000 (irq = 115) is a 16450

ttyS07 at 0xf4600000 (irq = 116) is a 16450

ttyS08 at 0xf4700000 (irq = 117) is a 16450

ttyS09 at 0xf4800000 (irq = 118) is a 16450

ttyS10 at 0xf4900000 (irq = 119) is a 16450

SA1100 Real Time Clock driver v1.02

SA1100/PXA Watchdog Timer: timer margin 60 sec

eth0: DM9000 9000-a46 at 0xf1000300, 00:e0:60:00:00:a8, IRQ 108.

eth1: DM9000 9000-a46 at 0xf1100300, 00:e0:60:00:00:58, IRQ 109.

SCSI subsystem driver Revision: 1.00

ac97_codec: AC97 Audio codec, id: NSC72(National Semiconductor LM4548A)

Probing ICPDAS SYSTEM Flash at physical address 0x00000000 (32-bit

buswidth)

cfi_cmdset_0001: Erase suspend on write enabled

Using buffer write method

RedBoot partition parsing not available

cmdlinepart partition parsing not available

Probing ICPDAS DATA Flash at physical address 0x04000000 (16-bit buswidth)

cfi_cmdset_0001: Erase suspend on write enabled

Using buffer write method

Probing ICPDAS DATA SRAM at physical address 0x08000000 (32-bit

buswidth)

Using static partitions on ICPDAS SYSTEM Flash

Creating 3 MTD partitions on "ICPDAS SYSTEM Flash":

0x00000000-0x00040000 : "U-BOOT"

0x00040000-0x00140000 : "KERNEL"

0x00140000-0x02000000 : "JIFF2 RFS"

Registering ICPDAS DATA Flash as whole device

Registering ICPDAS DATA SRAM as whole device

usb.c: registered new driver usbdevfs

usb.c: registered new driver hub

hc_isp116x.c: USB starting

hc_isp116x.c: USB ISP116x at f4100000/0 IRQ 104 Rev. 10 ChipID: 6122

usb.c: new USB bus registered, assigned bus number 1

USB HC dev alloc 384 bytes

Product: USB ISP116x Root Hub

Porting Linux to XSCALE SBC Platform
PAGE 11

SerialNumber: 0

hub.c: USB hub found

hub.c: 2 ports detected

usbdcore: usbdcore 0.1 034 2002-06-12 20:00 (dbg="")

NET4: Linux TCP/IP 1.0 for NET4.0

IP Protocols: ICMP, UDP, TCP, IGMP

IP: routing cache hash table of 512 buckets, 4Kbytes

TCP: Hash tables configured (established 4096 bind 8192)

NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.

NetWinder Floating Point Emulator V0.95 (c) 1998-1999 Rebel.com

VFS: Mounted root (jffs2 filesystem) readonly. <---------- Mount Root file

system

Freeing init memory: 44K

INIT: version 2.78 booting

INIT: Entering runlevel: 3

PXA Linux Preview Kit

Kernel 2.4.20 on an armv5tel

Linux login: root <------------ type ‘root’

login[51]: root login on `ttyS0'

[root@Linux root]# <------------- Bash Running

3.1. Using the Ethernet

As you are rebooting, watch the console for error messages. Use the ping command

to test your connectivity. Try to ping the gateway machine IP address first. This will

test local connectivity on the LAN. If you cannot ping the gateway, you are not

going to be able to connect to the Internet. If you can ping the gateway, try pinging

a known host on the Internet. For example, ping www.yahoo.com will test both the

ability to do a DNS lookup from your name server as well as your ability to connect

to the Internet

Porting Linux to XSCALE SBC Platform
PAGE 12

3.2. Using the Audio

Change to folder /home/sound

Then you can play an mp3 file by specifying its name:

#./mp3player moon.mp3

4.3 Using the USB Host

In the bash shell, you should be able to plug a USB mouse into the USB slot on the

taget board and receive input. To verify that the device is working, you can examine

the input through the event interface device. First create the following character

device (if it does not already exist):

mknod /dev/input/event0 c 13 64

A program, evtest, is provided to read from this device file. Run it with the following

command:

evtest /dev/input/event0

As you use move the mouse (for instance), it should produce the following type of

output:

Event: time 946695141.507730, type 2 (Relative), code 0 (X), value –1

Event: time 946695141.507734, type 2 (Relative), code 1 (Y), value –1

...

3.3. Using the Display

Change to folder /home/fbv

Then you can display a picture file by specifying its name:

#./fbv 6.jpg

4.5 Using the PCMCIA & CF Card

You should be able to insert a CF IDE Card (FAT32 format) into the Compact Flash

slot on the taget board . Then you should type those command below

cardmgr

#mount –t vfat /dev/hda1 /mnt

Finally, you can see the files in the folder “/mnt”.

Porting Linux to XSCALE SBC Platform
PAGE 13

3.4. SRAM

We use the mke2fs command to create a standard EXT2 Linux filesystem and to

read and write access on the SRAM device .

#mke2fs /dev/mtdblock5

 mke2fs 1.19, 13-Jul-2000 for EXT2 FS 0.5b, 95/08/09

 Filesystem label=

 OS type: Linux

 Block size=1024 (log=0)

 Fragment size=1024 (log=0)

 128 inodes, 1024 blocks

 0 blocks (0.00%) reserved for the super user

 First data block=1

 1 block group

 8192 blocks per group, 8192 fragments per group

 128 inodes per group

 Writing inode tables: done

 Writing superblocks and filesystem accounting information: done

To add files and folders, first mount the file system as ext2.

#mount –t ext2 /dev/mtdblock5 /mnt

Porting Linux to XSCALE SBC Platform
PAGE 14

4. CAN Bus and PC104 Bus Application

The Nuwa Family support CAN (Controller Area Network) and PC104 Bus.
There is a sample environment appears as in the diagram below:

CAN-H

CAN-L

PISO-CAN200

Nuwa Series

Figure 4. Can wiring connection

First create the following character device (if it does not already exist):
mknod /dev/can c 120 0
To verify that the device is working, you can check the status of the can bus
with cat /proc/can.
The can driver provide 2 sample file operations. Cansend is the example is designed

to send out the CAN message and canmon is designed to receive the CAN message.

Porting Linux to XSCALE SBC Platform
PAGE 15

Figure 5. Cansend

Figure 6. Canmon

The NuWa-430 support pc104 bus. These sample can be to apply to the 8 bit
ISA card, the 16 bit ISA card, the 8 bit PC-104 card, and the 16 bit PC-104
card.

To reference the driver, you must have loadable module support enabled in
your kernel. If you have kernel running, and do a "make install" as above,
kernel should load the module on demand for you. To load the module
manually, without kernel, type "insmod kito.o". (On most systems, "insmod
kito" alone will do after you have done a "make install". Use the complete
path if "insmod kito" alone comes up with a "file not found" error.) To unload
the module manually, type "rmmod kito".
Here are a few things you may need to edit in "kito.h" for your specific

Porting Linux to XSCALE SBC Platform
PAGE 16

installation:

• "#define KITO_IRQ". Make sure this matches the IRQ Number on your
card. Make sure it doesn't conflict with other cards.

• "#define KITO_IOADDR" Make sure this matches the value set via
dip-switches on your card. Make sure it doesn't conflict with other
cards.

• "#define KITO_MEMADDR" Use this to define where in memory you
want the card to map in. 0x0000 is the most common default. The
driver will softset the card to the value specified here when the driver
is inserted via insmod or by kernel. Make sure this value doesn't
conflict with a memory block used by another device.

After you have compiled the driver and inserted it into the kernel as a
module, you are ready to run the utility applications in this package and talk
to your pc104.c from Linux. The library just is a sample application to show
the number on 7-Seg LED, but you'll have to write the applications yourself.

Porting Linux to XSCALE SBC Platform
PAGE 17

5. The I8K Module SDK

In this section, we will focus on examples for the description of and application of

the functions found in the Libi8k.a. The Libi8k.a functions can be clarified into 3

groups which are listed in Fig. 19.

Figure 7. structure of Libi8k.a

Functions (1) and (2) in the Libi8k.a are the same as with the DCON.DLL Driver
(including Uart.dll and I7000.dll) as used in the DCON modules
(I-7000/I-8000/I-87000 in serial communication). You can refer to the DCON.DLL
Driver manual which includes the functions on how to use DCON modules. The
DCON.DLL Driver has already been wrapped into the Libi8k.a. Functions (3) of the
Libi8k.a consist of the most important functions as they are specially designed for
I-8000 modules in the LinCon-8000 slots. They are different from functions (1) and (2)
because the communication of I-8000 modules in the LinCon-8000 slots are parallel
and not serial. Therefore ICPDAS rewrote I8000.c to Slot.c especially for I-8000

Porting Linux to XSCALE SBC Platform
PAGE 18

modules in the LinCon-8000 slots. Here we will introduce all the funcitions for slot.c
and they can be divided into eight parts for ease of use.
1. System Information Functions;
1. System Information Functions
2. Digital Input/Output Functions
3. Watch Dog Timer Functions
4. EEPROM Read/Write Functions
5. Analog Input Functions
6. Analog Output Functions
7. 3-axis Encoder Functions
8. 2-axis Stepper/Servo Functions

The functions in the Libi8k.a are specially designed for LinCon-8000. Users can easily
find the functions they need for their applications from the descriptions in Lincon
manualand in the demo programs developed by ICPDAS.

