ECAT-2091S

EtherCAT Single Axis Stepper Motor Controller/ Driver

User Manual

(Version 1.3.0)

WARRANTY

All products manufactured by ICP DAS are warranted against defective materials for a period of one year from the date of delivery to the original purchaser.

WARNING

ICP DAS assumes no liability for damages consequent to the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

COPYRIGHT

Copyright © 2017 by ICP DAS. All rights are reserved.

TRADEMARK

Names are used for identification only and may be registered trademarks of their respective companies.

CONTACT US

If you have any questions, please feel free to contact us via email at: service@icpdas.com service.icpdas@gmail.com

Revision

Revision	Date	Description	Author
1.10	03.07.2018	Initial version	M.K.
1.1.1	13.05.2020	Updated specification	M.K.
1.1.2	13.05.2020	Modify scope of delivery	M.K.
1.2.0	16.09.2020	Acceleration/deceleration unit	M.K.
		and type	
		Error Table	
		Vendor Specific Register	
		Modified motor voltage range	
1.2.1	25.01.2021	Updated the "Open collector	M.K.
		wiring diagram"	
		Acceleration/deceleration unit:	
		Added "current to target"	
		Update V-T graph	
		Updated Error Table	
		Added "Target overrun"	
		Added dynamic change of the	
		relative position example	
1.3.0	20.11.2023	Hardware modified, added	Eric Chen
		following features:	
		 Alias rotary switch 	
		Firmware updare via FoE	
		• Firmware version 2.0	
		Added " Initialization error "	
		Added " Station Alias "	

Contents

1	Prod	duct Over	view	3
	1.1		oduction	
	1.2	Tec	hnical Data	4
	1.3	Din	nensions	6
2	Scor	oe of Deli	very	7
3	Wir	ing	·	8
	3.1	_	Definition	
	3.2	Alia	s Rotary Swtich	9
	3.3	Cor	nnection Interfaces	9
	3.4	Dig	ital Input and Output Wiring	. 12
	3.5	Ste	pper Motor Wiring	. 14
		3.5.1 Fo	ur Lead Motor	. 14
		3.5.2 Eig	ht Lead Motor	. 15
		_	coder Connection	
4	Basi	cs Comm	unication	. 18
	4.1	Eth	erCAT Cabling	. 18
	4.2	Eth	erCAT State Machine	. 18
	4.3	Syn	chronization Modes	. 20
		4.3.1 Fre	ee Run Mode	. 20
		4.3.2 Dis	stributed Clocks (DC Mode)	. 21
5	Proj	ect Integi	ration	. 24
	5.1	ESI	File	. 24
		5.1.1 lm	port of ESI File	. 24
	5.2	Dev	vice Setup and Configuration	. 24
		5.2.1 Sca	anning of the EtherCAT Device	. 25
		5.2.2 Eth	nerCAT Slave Process Data Settings	. 27
		5.2.3 Ba	sic Stepper Driver Configuration	. 28
	5.3	Firr	nware Update	. 30
6	Posi	tion Cont	rol Setting	. 31
	6.1	Pos	itioning Interface Types	. 31
	6.2	Pos	itioning Interface	. 31
		6.2.1 Ac	celeration/Deceleration Unit Definition	. 41
		6.2.1.1	Acceleration time from Vmin to Vmax	. 41
		6.2.1.2	Acceleration time from Vmin to Vtarget	. 43
		6.2.1.3	Acceleration [128*μStep/sec ²]	. 45
		6.2.1.4	Acceleration time from Vcurrent to Vtarget	. 46
		6.2.2 Ac	celeration/Deceleration Type	. 47
		6.2.2.1	Start-Stop Phase Type	. 48
		6.2.2.2	Standard Acceleration/Deceleration	. 49
	6.3	Pos	itioning Interface Compact	. 50
	6.4	Pos	ition Control	. 54

7	Velocity Control Setting 57			
8	CoE Inter	face	60	
	8.1	General Description	60	
	8.2	Save Configuration Data to Memory	61	
	8.3	Driver Tuning	64	
9	Object D	escription and Parameterization	66	
	9.1	Standard Objects	66	
	9.2	RxPDO Mapping Objects	67	
	9.3	TxPDO Mapping Objects	70	
	9.4	Sync Manager Objects	74	
	9.5	Input Data	78	
	9.6	Output Data	82	
	9.7	Configuration Data	86	
	9.8	Driver Tuning Functions	92	
	9.9	Information and Diagnostic Data	93	
	9.10	Configuration Parameters Storage	95	
	9.11	Station alias Configuration	96	
10	Error Table97			
11	Vendor Specific Register Definitions98			

1 Product Overview

1.1 Introduction

The ECAT-2091S stepper motor controller is a cost-effective, two-phase bipolar stepper driver. A motor voltage range between 6 and 46V DC and a peak motor coil current of 1.5A/phase without cooling is being supported. When operating in a properly ventilated environment (cooling fan) the ECAT-2091S can drive the axis at a current level of up to 2.0A/phase. The maximum running motor current, microstep resolution and other motion parameters are software selectable.

The ECAT-2091S is a standard EtherCAT slave and an EtherCAT master is required to operate the device. The ECAT-2091S supports three operation modes: Free-Run, SM synchron and Distributed Clock (DC).

Two-phase bipolar stepper motors can be directly connected to the ECAT-2091S device. The device is designed to operate in a open loop. Configuration and motion control has to be done by the EtherCAT master and the application program. The coil current and step control done by a stepper motor driver IC. An integrated ramp generator automatically calculates the acceleration and deceleration distance. In position mode the controller drives the motor to the target position and in velocity mode accelerates the motor to the target velocity. A minimum set of configuration data consists of acceleration, deceleration and maximum motion velocity. After receiving the target

position the motor driver starts controlling the motion movement. All motion parameters can be changed on the fly.

The ECAT-2091S has a 32 bit high frequency encoder counter which counts the input signal of an external incremental encoder. The encoder can for example be used for homing purposes and for consistency checks.

High resolution of up to 256 microsteps per full step is supported for a ensuring smooth and precise motor operation.

Two digital input channels are provided. The digital inputs can be set to act as a simple DI, as a left and right hardware limit switch which automatically stops the motor when activated, or a latch trigger for latching the current motor and encoder position.

1.2 Technical Data

Features:

- 1 x stepper motor (2-phase bipolar stepper motor)
- Drive capability up to 1.5A/phase coil current (with proper cooling and airflow up to 2.0A)
- Supported motor voltage range: 6 to 46V_{DC}
- 1 x 5V power supply for encoder. Limitation: the output current should not exceed 150mA
- 1 x Encoder interfaces (A, B, Z), differential
- 2x Digital input: Reference switch input, latch input
- 1x Digital output
- Highest resolution: 256 microsteps per full step
- Automatic current reduction to reduce heat when motor is not moving
- Driver protection:
 - Over-temperature
 - Under voltage
 - Short circuit
- Optically isolated I/O
- LED indicators for I/O, EtherCAT and motion status
- EtherCAT:
 - 2 x RJ-45 bus interface
 - Distance between stations up to 100 m (100BASE-TX)
 - Support daisy chain connection
 - EtherCAT conformance test tool verified
 - Supports Free-Run, SM synchron and Distributed Clock (DC) operation modes
 - Supports CoE and FoE
- Removable terminal block connector
- Two 16-position rotary switch for station alias addressing

tem Specification		
Motor Outputs		
Number of outputs	1x stepper motor, 2 phases	
Output current	peak 1.5A/phase	
•	(with proper airflow up to 2.0A/phase)	
Motor voltage range	6 to 46V _{DC}	
Current controller frequency	24.5 kHz	
Maximum step frequency	8.388 MHz	
Microsteps per step	256, 128, 64, 32, 16, 8, 4, 2	
Encoder		
Number of encoder inputs	1x encoder counter (A, B, Z), differential	
Maximum encoder pulse frequency	4 MHz	
Power supply	5V (Restriction: the output current should not	
	exceed 150mA)	
Digital Inputs		
Number of digital inputs	2x limit position	
Wet contact	 ON voltage level: +19 to 30V_{DC} 	
	OFF voltage level: +11V _{DC} MAX	
Photo-Isolation	3750 V _{DC}	
Digital Output		
Number of digital outputs	1	
Output type	Open collector	
Load voltage	+5 to 30 V _{DC}	
Max. load current	100mA	
Isolation voltage	3750 V _{DC}	
LED Indicators		
Diagnostic LED	Power, EtherCAT status, Digital IO, driving,	
	temperature warning, over-temperature error,	
	phase A and B under-voltage	
Communication Interface		
Connector	2 x RJ-45	
Protocol	EtherCAT	
Distance between stations	Max. 100 m (100BASE-TX)	
Data transfer medium	Ethernet/EtherCAT Cable (Min. CAT 5), Shielded	
Power		
Input voltage range	20 V _{DC} ~ 30V _{DC}	
EMS Protection		
ESD (IEC 61000-4-2)	4 KV Contact for each channel	
EFT (IEC 61000-4-4)	Signal: 1 KV Class A; Power: 1 KV Class A	
Surge (IEC 61000-4-5)	1 KV Class A	
Mechanism		
Installation	DIN-Rail	
Dimensions (LxWxH) [mm]	110mm x 90mm x 33mm (without connectors)	
Case material Metal		
Environment		
Operating temperature	-25°C ~ 40°C	
Storage temperature -30°C ~ 80°C		
Relative humidity	10 ~ 90%, No condensation	

Table 1: Technical data

1.3 Dimensions

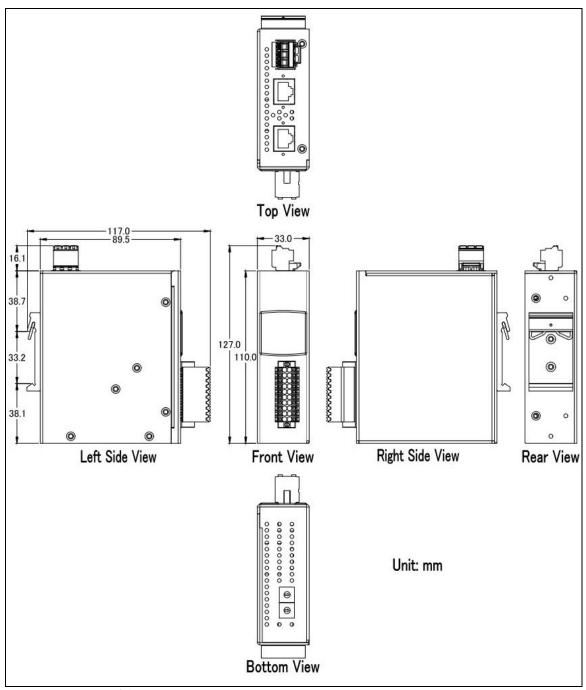


Figure 1: Dimensions of the ECAT-2091S

2 Scope of Delivery

The shipping package includes the following items:

- 1 x ECAT-2091S
- 2 x Wall mount
- 1 x 20-pin plug-in connector
- 1 x 3-pin plug in connector (for power supply)
- 1 x Quick Start manual

Figure 2: ECAT-2091S module and Quick Start manual

Note:

If any of these items are missing or damaged, please contact your local distributor. Please keep the original retail box with all retail packaging (Styrofoam, inner boxes, fasteners, etc.) in case you need to return the product.

More information about the ECAT-2091S is available on the product website. Enter the product name in the search function of the main ICPDAS website to access the product website:

Step 1: Go to the ICPDAS main website http://www.icpdas.com

Step 2: Enter "ECAT-2091S" in the search editor to access the ECAT-2091S website

The User Manual, Quick-Start, EtherCAT Slave Information (ESI) file and FAQ can be downloaded from the website.

Technical support:

service@icpdas.com

3 Wiring

3.1 LED Definition

The ECAT-2091S provides on the front side several diagnostic LEDs marked as 0 to 15. Furthermore there are three LEDs to show the EtherCAT network status. The exact meaning of each LED is described in the following tables:

Figure 3: ECAT-2091S LEDs

EtherCAT LED	Color	State	Description
RUN	red		This LED indicates the operation state of
			the EtherCAT slave:
		Off	Device is in INIT state
		Flashing	Device is in PREOP state
		Single flash	Device is in SAFEOP state
			Outputs remain in safe state
		On	Device is in OP state
IN	green		Indicates the communication status of
			the EtherCAT port IN
		Off	No connection
		Flashing	Link and activity (e.g. data exchange with
			the master)
		On	Link without any activity

EtherCAT LED	Color	State	Description
OUT	green		Indicates the communication status of
			the EtherCAT port OUT. Further EtherCAT
			slave can be connected to the port OUT
		Off	No EtherCAT slaves are connected to port
			OUT
		Flashing	Link and activity (e.g. data exchange
			connected slaves)
		On	Link without any activity

Table 2: EtherCAT status indicator

Control LED	Color	Description
*	red	- Power indicator
* * * * * * * (first row)	green	- LED 0: Digital input channel 1 (LL)
01234567		- LED 1: Digital input channel 2 (RL)
		- LED 2: Digital output channel 1 (DO 0)
* * * * * * * (second row)	green	- LED 8: Driving output
8 9 10 11 12 13 14 15		- LED 9: Motion error
		- LED 10: EEPROM access error
		- LED 11: Over temperature error
		- LED 12: Short to ground error
		- LED 13: Over temperature/open load warning
		-

Table 3: Diagnostic LEDs

3.2 Alias Rotary Swtich

The Alias knob is divided into two part, the upper knob marked with "x1" is LSB, the lower knob marked with "x16" is MSB, and the range is $0x00^{\circ}0xFF$.

3.3 Connection Interfaces

Figure 4: ECAT-2091S side view with power supply and EtherCAT connection

Name	Signal	Description
F.G	Frame ground	
GND	Power supply: Ground 0V (from negative power contact)	Feeding for ECAT-2091S
+Vs	Power supply: +24 V _{DC} (from positive power contact)	
IN	EtherCAT signal input	Incoming EtherCAT cable
OUT	EtherCAT signal output	Outgoing EtherCAT cable

Table 4: ECAT-2091S power supply and EtherCAT interfaces

Figure 5: ECAT-2091S front view with motor and encoder in- and outputs

Name	Signal	Signal Description	
OA1	Output	Motor winding A1	
OA2	Output	Motor winding A2	Motor
OB1	Output	Motor winding B1	WIOLOI
OB2	Output	Motor winding B2	
RL	Input	Right limit switch for motor	DI, limit switch or latch trigger
LL	Input	Left limit switch for motor	for motor
GDO0	Output	General purpose digital output channel 0	
DI.COM	Input	Common DI supply: 0V or +10 to +24V _{DC} (0V for current sinking)	For DI: LL and RL
+VS	Input	+24 V _{DC} (same circuit as +Vs in Table 6) For GDO0	
GND	Input	OV (same circuit as GND in Table 6)	

Table 5: Connection interfaces for the motor current outputs, digital inputs and output

Name	Signal	Signal Description	
A+	Input	Encoder input A+	
A-	Input	Encoder input A-	Encodor
B+	Input	Encoder input B+	Encoder
B-	Input	Encoder input B-	

Name	Signal	Signal Description	
C+	Input	Encoder input C+	
C-	Input	Encoder input C-	
+5V	Output	Power supply to encoder	Power supply to encoder The output current should not exceed 150mA Only one encoder should be connected
+VM	Input	+6 to 46V _{DC} (from positive power contact)	Power supply for motor CAUTION: Automatic start of stepper motor! Risk of death or serious injury for humans working in the machine. It can not ruled out that the stepper motor may perform unplanned movement during the ECAT-2091S setup and configuration
+VS	Input	+24 V _{DC} (same circuit as +Vs in Table 5)	For GDO0
GND	Input	0V (same circuit as GND in Table 5)	

Table 6: Connection interfaces for the encoder and motor power supply

3.4 Digital Input and Output Wiring

Digital Input			
Digital input channels		2	
Input type		Wet	
Mark on intend	ON voltage level	+19 to 30 V _{DC}	
Wet contact	OFF voltage level	+11 V _{DC} MAX	
Photo-isolation		3750 V _{DC}	

Digital Output			
Digital output channel	1		
Output type	Open collector		

Digital Output				
Load voltage	+5 to 30 V _{DC}			
Max. load current	100mA			
Isolation voltage	3750 V _{DC}			

Table 7: Digital input and output specifications

The diagram for right (RL) and left (LL) limit switch wiring is shown below (Figure 6). The digital input RL and LL can be used as a simple DI, a positive and negative limit switch and a position latch trigger. The DI channels can be set to simultaneously act as a limit switch and a position latch input.

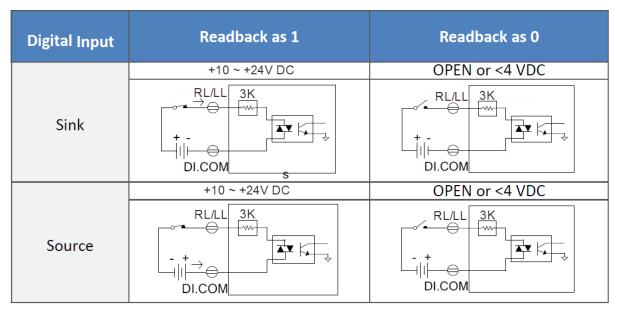


Figure 6: Digital inputs RL and LL

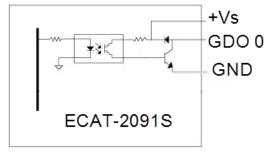


Figure 7: General purpose DO block diagram

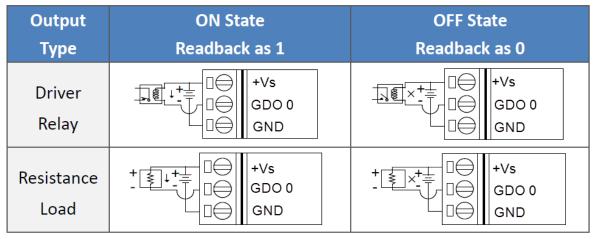


Figure 8: General purpose DO channel 0

3.5 Stepper Motor Wiring

3.5.1 Four Lead Motor

The Figure 9 below shows a example for a four lead two-phase motor connected to the ECAT-2091S.

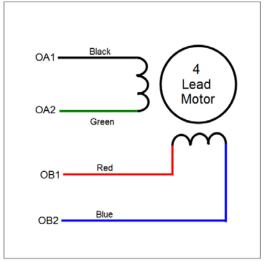


Figure 9: Four lead bipolar motor connected to the first axis output

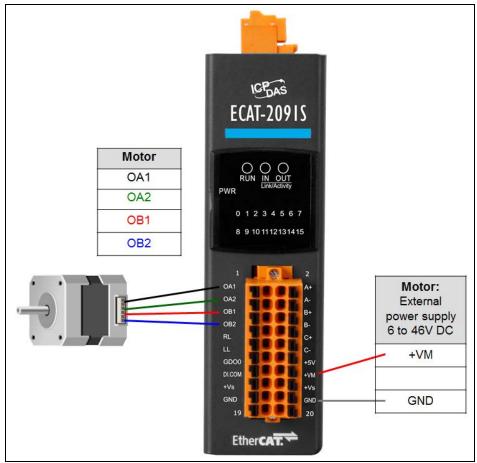
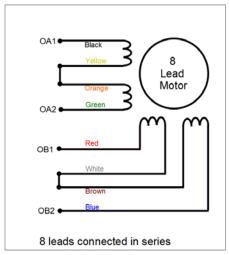


Figure 10: ECAT-2091S connected to a stepper motor

3.5.2 Eight Lead Motor

Eight lead motors can be connected in series or parallel. A series connected motor needs less current than one that is connected in parallel but it will not be able to run as fast.



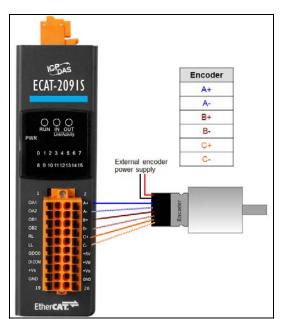


Figure 11: Eight lead bipolar motor connection (left: series, right: parallel)

3.5.3 Encoder Connection

Differential encoder:

The ECAT-2091S supports differential encoder by default.

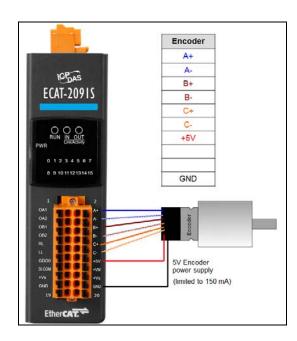



Figure 12: Differential encoder connection

Open collector type encoder:

For single-ended encoder connection refer to the table in Figure 13 which list the possible power supply values with the corresponding resistor sizes.

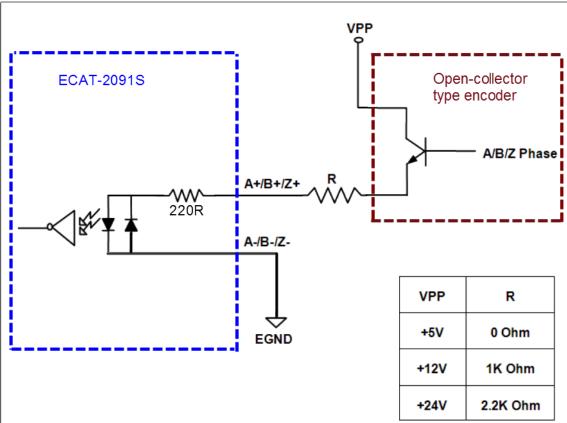


Figure 13: Open collector wiring diagram

4 Basics Communication

4.1 EtherCAT Cabling

The cable length between two EtherCAT devices must not exceed 100 m.

Cables and connectors

For connecting EtherCAT devices only Ethernet connections (cables + plugs) that meet the requirements of at least category 5 (CAT5) according to EN 50173 or ISO/IEC 11801 should be used. EtherCAT uses 4 wires for signal transfer.

The pin assignment is compatible with the Ethernet standard (ISO/IEC 8802-3).

4.2 EtherCAT State Machine

The state of the EtherCAT master and slave is controlled via the EtherCAT State Machine (ESM). The state determines which functions are accessible or executable in the EtherCAT slave. State changes are typically initiated by requests of the master and acknowledged by the slave after the successful initialization. In case of an internal error, the slave automatically changes to a lower state.

The ECAT-2091S supports four states:

- Init (state after Reset)
- Pre-Operational
- Safe-Operational
- Operational
- Bootstrap

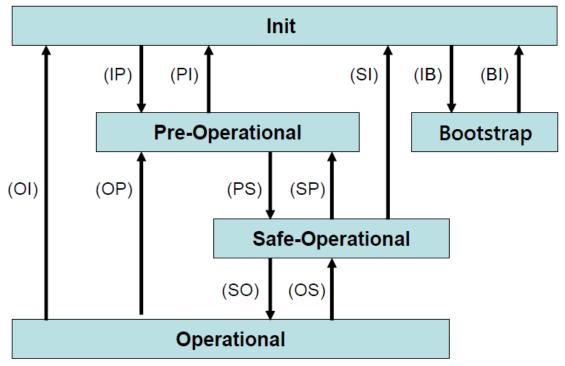


Figure 14: EtherCAT state machine

Init

After switch-on the EtherCAT slave is in the initial state. Only ESC register communication is possible, but no mailbox or process data communication. The slave initializes the service object data with default value or with values previously stored to the local memory. The EtherCAT master assigns the station address and configures the sync manager channels 0 and 1 for acyclic mailbox communication.

Pre-Operational (Pre-Op)

In Pre-Op state acyclic mailbox communication is possible, but not process data communication. In this state the EtherCAT master does the following configurations:

- Set the sync manager 2 and 3 of the ECAT-2091S for process data communication (from sync manager channel 2)
- The FMMU channels
- PDO mapping or the sync manager PDO assignment
- The user has the option to save motion control related configuration data (0x8000 0x8321) to a non-volatile memory.

Safe-Operational (Safe-Op)

In Safe-Op state both mailbox and process data communication are enabled, but the slave keeps its outputs in a safe state, while the input data are updated cyclically. The slave will ignore the output data sent by the master and just return the current input

data (e.g. digital input, encoder value, etc.)

Outputs in Safe-Op state

The sync manager watchdog expires when the master application does not provide new output process data within the configured watchdog time. In this case the slave will automatically go from operational state to ERROR-SAFEOP state and set all the outputs in a safe state. The ECAT-2091S will stop the stepper motor, regulate the motor current to the configured safe level and switch the digital output to safe output values. All safe output value can be configured.

Operational (Op)

Here both the process data object (PDO) and service data object (SDO) are fully enabled. Master sends cyclic output data and read input data. The ECAT-2091S supports two type of Op modes: Free Run mode and Distributed Clock (DC) mode.

Bootstrap (Boot)

In Boot state the function of firmware update is enabled. The master can download new firmware to the slave via the mailbox protocol File access over EtherCAT (FoE).

4.3 Synchronization Modes

ECAT-2091S devices support two different modes:

- Free Run: The master cycle time and slave cycle time are independent and not synchronized.
- Distributed Clock (DC): The master cycle time and slave cycle time are synchronized.

4.3.1 Free Run Mode

The slave operates autonomously based on its own cycle and is not synchronized with the EtherCAT cycle. The master cycle time and the slave cycle time are fully independent which means each slave device reads/writes its own process data according to its local time, independent of the master's cycle time.

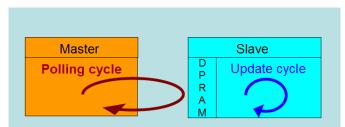


Figure 15: Master-slave cycle in Free Run mode

Read master output data from DPRAM

Process master output data and read slave status

Write slave status data to DPRAM

The following diagram shows the process timing of the slave in Free Run mode in detail:

Figure 16: Slave processing sequence in Free-run mode

Main loop start

The slave firmware checks in each cycle time the memory of the EtherCAT slave chip (ESC) whether new output data has been received from the master. Newly received data will be processed, the motion path will be calculated and sent to the motion chip and digital output will be set. In the next step motion and digital input status are being read from motion chip. In the final step the read status are being written to the DPRAM, so that the master can retrieve the data ESC DPRAM in the next cycle time.

Main loop start

4.3.2 Distributed Clocks (DC Mode)

DC clock synchronization enables all EtherCAT devices (master and slaves) to share the same EtherCAT system time. The EtherCAT slaves in the network can be synchronized to each other. This enables the master to simultaneously set the output (e.g. digital output, pulse output) or to synchronously read inputs (e.g. digital input, encoder counter) of different slaves in the EtherCAT network.

For system synchronization all slaves are synchronized to one reference clock. Normally the first EtherCAT slave closest to the master with Distributed Clocks capability becomes the clock base for the master as well as for other DC slaves.

The EtherCAT slave is synchronized with the SYNCO or SYNC1 event of the distributed clock system. After the EtherCAT network has been set into DC communication mode by the master, the ESC (EtherCAT slave chip) of each slave generates fixed time hardware interrupt which triggers the slave firmware to process the PDO data received by the master. The master cycle time and the ESC hardware interrupt time interval are fully synchronized to the first slave in the network that is used as a reference clock with the SYNCO signal.

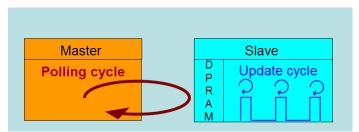


Figure 17: Master-slave cycle in DC mode

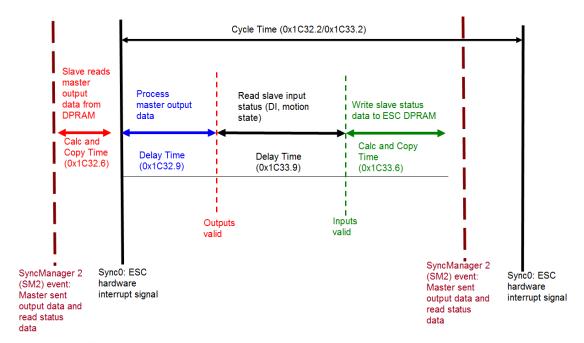


Figure 18: Internal slave processing sequence in DC mode

Once the slave receives process data (RxPDOs) from the master the SM2 event is triggered which causes the firmware to read the data from the ESC memory. The ESC interrupts the firmware at fixed time interval to process the data received from the master and write the status data to the ESC memory. Every time when the master fails to sent process data within the DC cycle time the internal sync error counter is being increase by three counts. This error counter is being decreased by one count for every successful DC cycle. Once the error counter reached the maximum count (default 4) a

sync error will be generated and the slave goes into Safe OP mode (Sync Error 0x1C32:20 TRUE). The maximum count value can be set by changing the default value of the "Sync Error Counter Limit" (0x10F1:02).

Figure 19: Sync error counter limit object

The setting of the sync manager for the output and input data is available at the TwinCAT "CoE online" tab.

Index	Name	Flags	Value
∃ 1C32:0	SM output parameter		> 32 <
1C32:01	Synchronization Type	RW	0x0002 (2)
1C32:02	Cycle Time	R0	0x00000000 (0)
1C32:04	Synchronization Types supported	R0	0x401F (16415)
1C32:05	Minimum Cycle Time	R0	0x001E8480 (2000000)
1C32:06	Calc and Copy Time	R0	0x0007A120 (500000)
1C32:08	Get Cycle Time	RW	0x0001 (1)
1C32:09	Delay Time	R0	0x000927C0 (600000)
1C32:0A	Sync0 Cycle Time	RW	0x005B8D80 (6000000)
1C32:0B	SM-Event Missed	R0	0x0000 (0)
1C32:0C	Cycle Time Too Small	R0	0x0000 (0)
1C32:20	Sync Error	R0	FALSE

Figure 20: SyncManager 2 parameters

SyncManager parameter description (time unit: nanosecond):

- Calc and Copy Time (0x1C32.6 / 0x1C33.6): Required time to copy the process data from the ESC to the local memory and calculate the output value.
- Delay Time (0x1C32.9 / 0x1C33.9): Delay from receiving the trigger to set the output or latch the input.
- Cycle Time (0x1C32.2 / 0x1C33.2): The current cycle time for the application. When using DC synchronization the value is read from register 0x9A0:0x9A3.
- 0x1C32.5 / 0x1C33.5 (Min Cycle Time): Minimum cycle time for the application. It is the total execution time of all slave application related operations.

Version 1.3.0

5 Project Integration

In this chapter the integration of the ECAT-2091S device into a TwinCAT controlled EtherCAT network is being described. In general the ECAT-2091S is a standard EtherCAT slave which can be controlled by any standard EtherCAT master (e.g. Acontis, CODESYS, etc.).

5.1 ESI File

A ESI file describes the properties and functions supported by the ECAT-2091S. By using the ESI file an easy and abstract integration of an EtherCAT device in a project tool is realized. With the help of the ESI file a detailed knowledge of EtherCAT is not required to configure the device. The TwinCAT EtherCAT master/System Manager needs the device description files in order to generate device configuration in online or offline mode.

5.1.1 Import of ESI File

Copy the XML description file "ECAT-2091S.xml" of the ECAT-2091S device into the TwinCAT system directory and restart the TwinCAT system. For TwinCat 3.1 copy the ESI file "ECAT-2091S.xml" in the following directory: C:\TwinCAT\3.1\Config\lo\EtherCAT

Software	Default directory path	
Beckhoff EtherCAT Configuration	C:\EtherCAT Configurator\EtherCAT	
Beckhoff TwinCAT 3.x	C:\TwinCAT\3.x\Config\Io\EtherCAT	
Beckhof TwinCAT 2.x	C:\TwinCAT\Io\EtherCAT	

Table 8: ESI file target directory

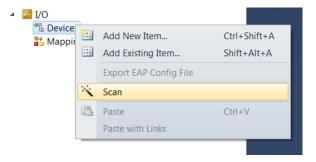
5.2 Device Setup and Configuration

In this manual only the online configuration of the slave module will be discussed. For offline configuration procedure please consult the TwinCAT user manual.

CAUTION:	
Automatic start of stepper motor!	
 Risk of death or serious injury for humans working in the 	

machine.

- It can not ruled out that the stepper motor may perform unplanned movement during the ECAT-2091S setup and configuration
- Make sure that, even if the drive starts to move unintentionally, no danger can result for personnel or machinery. The measures you must take in this regard for your task are based on the risk assessment of the application.


The following conditions must be met before a configuration can be set up:

- The ECAT-2091S slave devices must be connected via EtherCAT cables to the EtherCAT master. In this manual TwinCAT 3.1 version is being used as the EtherCAT master and configuration tool
- The ECAT-2091S devices has to be connected to the power supply and ready for communication
- · Set the TwinCAT in CONFIG mode.

5.2.1 Scanning of the EtherCAT Device

After the TwinCAT has been set into CONFIG mode the online device search can be started.

Step 1: Right-click the "Devices" in the configuration tree to open the scan dialog. Click "Scan" to search the ECAT-2091S device.

Step 2: Select "OK"

Step 3: Select the Ethernet device (Ethernet chip) to which the ECAT-2091S is connected to. Confirm the selection with "OK".

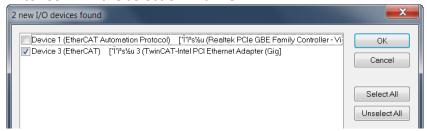


Figure 21:List of Ethernet chips detected on the EtherCAT master PC

Step 4: Start the scan process by clicking "Yes"

Step 5: Set the ECAT-2091S into Free-Run mode by clicking "Yes"

The ECAT-2091S is by default in the velocity mode. All the parameter used by the velocity control mode is being displayed in the tree view:

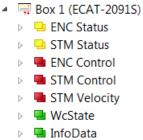


Figure 22: Default parameter selection for the velocity control mode

5.2.2 EtherCAT Slave Process Data Settings

The user has to select the process data which is being transferred between the EtherCAT master and slave during each cycle (Process Data Objects, PDOs). The process data exist of two parts:

- TxPDO: Data which is being read by the master (e.g. motion status)
- RxPDO: data or parameters which is being sent to the slave (e.g. target position of the stepper motor).

The process data image is determined by the application program and will be updated cyclically.

The ECAT-2091S basically support four types of motion modes:

- Velocity control
- Position control
- Position interface compact
- Position interface

By selecting one of the motion mode from the list box (Figure 23) all the relevant parameters are automatically assigned and mapped to the process data objects (TxPDO, RxPDO). If required, additional objects can be assigned to the process data by selecting the object listed under "PDO Assignment (0x1C12)" and "PDO Assignment (0x1C13)".

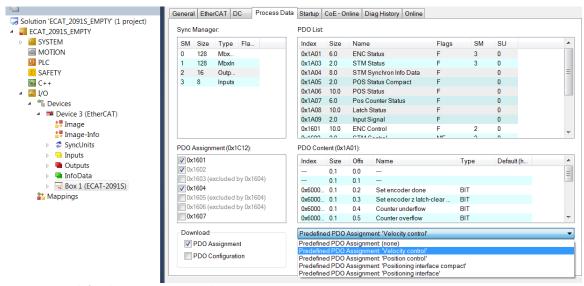


Figure 23: Predefined PDO assignment selection

Download the new PDO assignment to the Sync manager of the slave by clicking "Restart TwinCAT (Config Mode)" in the drop down menu.

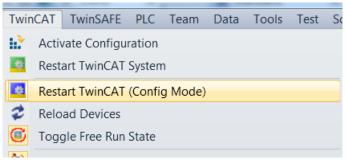
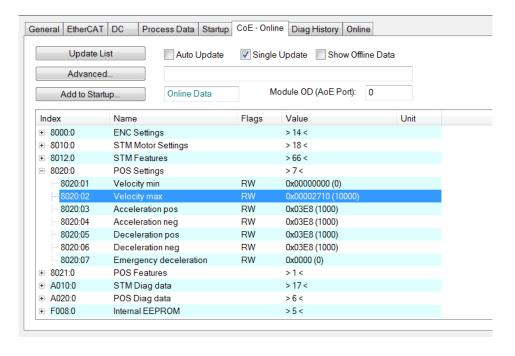
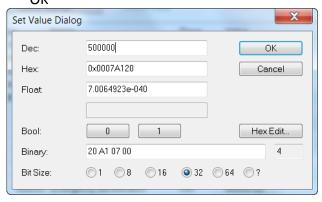


Figure 24: Download PDO assignment and restart TwinCAT

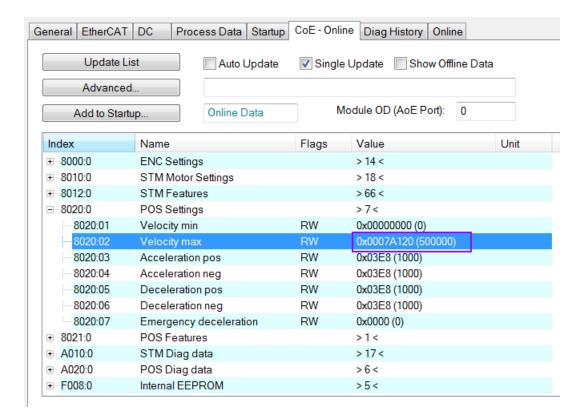
5.2.3 Basic Stepper Driver Configuration


Motion parameters which do only need to be configured once before the actual motion control starts are listed in the "CoE online" tab. These parameters have to be accessed via the CANopen over EtherCAT (CoE) protocol. The CoE protocol has a lower priority than the cyclic process data object (PDO) communication. Therefore CoE motion parameters will not be updated in every cycle but only when the master has spare time.

Motion relevant CoE parameter are


- Encoder setting (Index 8000)
- Stepper motor setting (Index 8010)
- Stepper motor features (Index 8012)
- POS setting (Index 8020)
- POS features (Index 8021)

Example of setting the maximum allowable speed for the motor:


Step 1: Go to POS Setting. Extend the index tree and double click "Velocity max" with the index 8020:02.

Step 2: Enter a new value for the maximum system velocity [steps/second] and click "OK"

Step 3: Once the value has been successfully sent to the slave it will be displayed in the CoE online parameter list:

This value needs only to be set once and therefore does not have to be sent in every cycle time.

All the relevant motion parameters have to be set first before the actual real time motion control starts. Once the parameters are set, the motors is basically ready for operation.

5.3 Firmware Update

This section describes the firmware update for ECAT-2091S (with version 2.0 or later) via FoE (File access over EtherCAT).

Set the state machine of module to Bootstrasp in CONFIG mode in TwinCAT software. After the state has been set into BOOT, click "Download" button in the "File Access over EtherCAT" groupbox, select the update file "ECAT-2091S_v2.x.efw", and then click "OK" to process update.

6 Position Control Setting

The position interface allows the user to set a target position and the motion controller automatically drives the motor to the specified position. The basic motion configuration data such as the acceleration and deceleration values and the maximum motion velocity have to be set before motion control execution can be started.

6.1 Positioning Interface Types

Two predefined PDO assignment types for the position interface are provided:

- Positioning interface
- Positioning interface compact

The predefined PDO assignment enables a simplified selection of the process data.

The "Positioning interface" type activates all the position control PDOs required to execute point to point motion. If communication speed and a small process data image are a criteria for the system setup then the "Positioning interface compact" type should be activated. Here most motion parameter values are not send at a fixed, deterministic cycle but set via CoE. In an application where the motion parameters (velocity, acceleration, deceleration etc.) only need to be set once in a while the "Positioning interface compact" type is the better option.

In the following the parameter settings for both positioning interface types will be discussed in details.

6.2 Positioning Interface

The sequence of executing and controlling a travel command in "Positioning interface" mode is shown in the following flow diagram (Figure 25). The diagram shows the sequence of parameter setting and status checking during the execution of a position command. The configuration parameter setting has to be done beforehand.

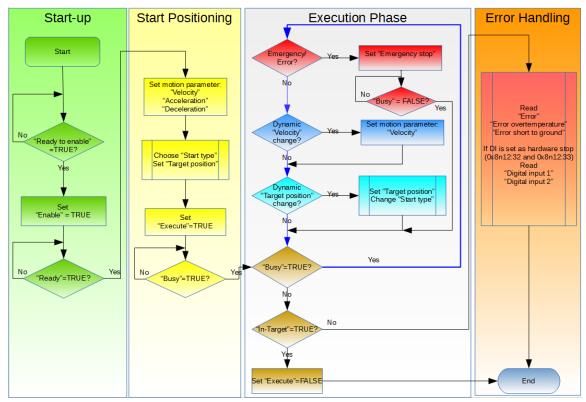
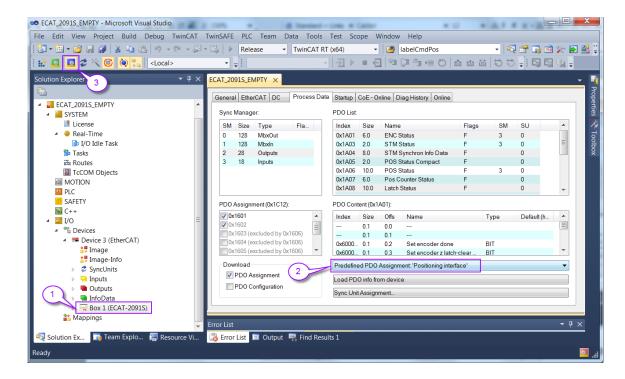
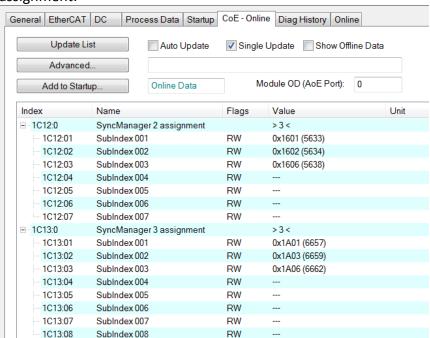


Figure 25: Flow diagram for position interface


Execution procedure:

Step 1: PDO assignment


Select the function "Positioning interface" in the lower part of the "Process data" tab. As a result, all necessary PDOs are automatically activated and the unnecessary PDOs are deactivated.

Procedure:

- 1. Select the "Process Data" tab of the ECAT-2091S
- 2. Select the "Predefined PDO Assignment: "Position interface" from the combo box
- **3.** Send the PDO assignment to the slave by clicking the "Reload I/O device" button

The SyncManager 2 and 3 in the "CoE-Online" tab displays the new PDO assignment:

Step 2: Set the motor torque:

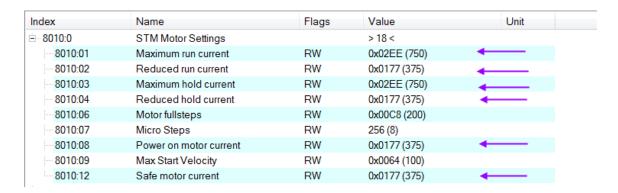
Be careful when setting the torque. Motor current fine tuning is required to lower motor temperature and reduce the current to save power.

Torque produced by the stepper motors is directly proportional to the current,

but the amount of heat generated is roughly proportional to the *square* of the current. If the motor is operated at 90% of rated current, 90% of the rated torque will be outputted. But the motor will produce approximately 81% as much heat compared to the maximum torque output. At 70% current, the torque is reduced to 70% and the heating to about 50%.

Attention:

If the motor current is set at or above 1.2A for increased periods of time the ECAT-2091S will heat up and emit increasing heat as the resistive power dissipation raises with the square of the motor current.


The motor run current can be set to a peak 2.0A output for short term operation, e.g. 100ms short time acceleration phase. For long term 2.0A peak output it is necessary that the ECAT-2091S is operating in a properly ventilated environment.

Four torque settings have to be done. The valid range for the motor current setting is 0 to 1500 mA (2000mA). The unit for the motor current parameters is milliamperes [mA].

- 1. The "Maximal run current" sets the motor driving current. This torque setting will be applied once the motion execution flag (0x7010:01 Enable) has been activated (Valid range: 0 to 2000mA)
- 2. "Reduce run current" output is triggered once the "Reduce torque" Boolean has been set to true (0x7010:03 Reduced torque). (Valid range: 0 to 1500mA)
- 3. The "Maximal hold current" sets the motor standstill current. This torque setting will be applied once the motion execution flag (0x7010:01 Enable) has been activated. (Valid range: 0 to 1500mA)
 - **ATTENTION**: Do not set the "Maximal hold current" value higher than 1200mA otherwise the device may reach over-temperature and will switch the current output to "Safe motor current".
- 4. "Reduce hold current" output is triggered once the "Reduce torque" Boolean has been set to true (0x7010:03 Reduced torque). (Valid range: 0 to 1500mA)
- 5. The purpose of the "Power on motor current" (0x7010:08) variable is to apply a torque to the driver directly after power on to prevent freewheeling. (Valid range: 0 to 1500mA)
- 6. In case the EtherCAT communication is interrupted, overheating of motion chip occurred or when the EtherCAT master sets the ECAT-2091S from OP mode into a non-OP mode while a motion command is being executed then the ECAT-2091S stops the motor and halts any further motion execution and uses the "Safe motor current" (0x7010:12) setting to prevent the motor from freewheeling in standstill. (Valid range: 0 to 1500mA)

ATTENTION: Do not set the "Safe motor current" value higher than

1000mA otherwise the device may irreparable be damaged due to overtemperature. It is suggested not to change the factory default setting.

Step 3: Set the number of micro-steps per full step (8010:07). The motor runs smoother and with less vibration with higher micro-steps value setting, but also requires a higher step pulse frequency to achieve maximum speed.

Step 4: Set the motion parameters for the system: max velocity, max acceleration, etc.

- **1.** Set the start velocity (unit: steps/second) (0x8010:09)
- 2. Set the velocity range of the system (unit: steps/second) (0x8020:01 and 0x8020:02). The maximal velocity "Velocity max" ensures that under no circumstances the motor velocity will exceed this maximal value. The minimal velocity "Velocity min" defines the lowest velocity of the system and is being applied when changing the velocity during driving.
- **3.** Set the "Acceleration unit" (0x8020:08) and "Acc-Dec parameter definition" (0x8020:09). The parameter definitions a described in section 6.2.1 and 6.2.2.
- 4. The "Emergency deceleration" (0x8020:07) determines how fast the motor decelerates to stop once the emergency stop flag has been raised (0x7020:02 Emergency stop)

Index	Name	Flags	Value	Unit
9010:0	STM Motor Settings		> 18 <	
8010:01	Maximum run current	RW	0x02EE (750)	
8010:02	Reduced run current	RW	0x0177 (375)	
8010:03	Maximum hold current	RW	0x02EE (750)	
8010:04	Reduced hold current	RW	0x0177 (375)	
8010:06	Motor fullsteps	RW	0x00C8 (200)	
8010:07	Micro Steps	RW	256 (8)	
8010:08	Power on motor current	RW	0x0177 (375)	
8010:09	Max Start Velocity	RW	0x0064 (100)	◆
8010:12	Safe motor current	RW	0x0177 (375)	
± 8012:0	STM Features		> 67 <	
≘ 8020:0	POS Settings		> 13 <	
8020:01	Velocity min	RW	0x00000000 (0)	•
8020:02	Velocity max	RW	0x00002710 (10000)	-
8020:03	Acceleration pos	RW	0x03E8 (1000)	
8020:04	Acceleration neg	RW	0x03E8 (1000)	
8020:05	Deceleration pos	RW	0x03E8 (1000)	
8020:06	Deceleration neg	RW	0x03E8 (1000)	
8020:07	Emergency deceleration	RW	0x0000 (0)	-
8020:08	Acceleration unit	RW	Acceleration time from Vmin to Vmax [ms] (0)	-
8020:09	Acc-Dec parameter definition	RW	Acceleration>Start phase & Deceleration>Stop Phase (0) 🚛
8020:0D	Hardlimit deceleration	RW	0x0000 (0)	
± 8021:0	POS Features		>1<	

Step 5: Motion execution procedure:

- STM Control
 Enable
 Reset
 Reduce torque
 Digital output1
 POS Control
 Execute
 Emergency stop
 Target position
 Velocity
 Start type
 Acceleration
- Deceleration

 1. Activate the Enable (0x7010:01)
- **2.** Set the motion parameters: acceleration and deceleration, the target velocity (steps/seconds) and target position (steps).
 - i. Set the target velocity (unit: steps/second)
 - **ii.** Set the "Acceleration" and "Deceleration" values. The unit and behavior of both parameters are determined by the SDO variables "Acceleration unit" (0x8020:08) and "Acc-Dec parameter definition" (0x8020:09) which are described in the next section 6.2.1 and 6.2.2.
 - **iii.** The "Start type" (0x7020:22) describes whether the target position is a relative or absolute position. In addition it is possible to set with the start type parameter whether a running motion command can be overwritten.

Name	Command	Description
ABSOLUTE	0x0001	The motor travels from the current position to
		the target position. The distance to travel
		depends on the distance difference between the
		current and target position
RELATIVE	0x0002	A specified position difference is added to the
		current position
ENDLESS_PLUS	0x0003	Endless travel in the positive direction of rotation
ENDLESS_MINUS	0x0004	Endless travel in the negative direction of
		rotation
ADDITIVE	0x0006	A specified position difference is added to the
		last target position
		Note:
		The RELATIVE and ADDITIVE type are similar
		when the last command was completed
		successfully. In this case both types will travel the
		same position because both start positions are
		the same.
		If an error occurred during the execution of the
		previous command (e.g. motor stall, emergency
		stop) then the current position is arbitrary. Now
		the RELATIVE type will use the current arbitrary
		position as the start position but the ADDITIVE
		type will use the last target position as the start
		position.
		By selecting the ADDITIVE type the user has the
		advantage that he can use the last target position
		for determining the next target position.
		Therefore no home search needs to be done in
4.0.0.1.1.T. 01.14.1.0.5	0.4004	case of an error.
ABSOLUTE_CHANGE	0x1001	Change of the target position on the fly: Dynamic
		change of the target position during a travel
DELATIVE CHANCE	0.4000	command to a new absolute position
RELATIVE_CHANGE	0x1002	Dynamic change of the target position during a
		travel command to a new relative position (the
		current changing position value is used here also)
		Attention
		Attention:
		Due to propagation delays it is not possible to determine exactly the actual position of the
		running motor. Reading the current position takes time and during this time the motor has
		already move to a new position. Therefore, there
		will be a difference between the desired target
		_
ADDITIVE CHANCE	0x1006	position and the actual target position. Dynamic change of the target position during a
ADDITIVE_CHANGE	OXIOOD	'
		travel command to a new additive position (the
		last target position is used here)

Table 9: Start type definition

iv. Set the target position (unit: steps). The target position can be a relative

- distance or a absolute position. The behavior of this parameter is being determined by the "Start type" setting.
- **3.** Start motion execution by setting the "Execute"-variable to true (0x7020:01).
- **4.** If an emergency stop (0x7020:02) has been activated during driving, then the "Emergency stop"-variable has to be set to false and "Execute" back to false before the next command can be executed
- **5.** Error: If an error occurred during driving (overheating, EtherCAT communication failed, Master sets slave from OP to none OP mode, etc.) the error flag is activated (0x6010:04 Error). In order to clear this flag the "Reset" variable has to be activated (0x7010:02 Reset) for one cycle time.

Remarks:

The velocity, acceleration and declaration parameters can be changed while the motion command is executing ("Execute"= FALSE and "Busy"= TRUE)

Example 1:

Dynamic change of the absolute target position

Time	POS Control Outputs	POS Status Inputs	Descriptions
t1	Execute = 1 Target position = 250000 Velocity = 10000 Start type = 0x0001 Acceleration = 1000 Deceleration = 1000	Busy = 1 Accelerate = 1 Deceleration = 0 In-Target = 0	Set the motion parameters: - Absolute position = 250000 - Acceleration unit and type has to be set via 0x8020:08 and (0x8020:09) Start executing the motion command by triggering the 'Execute' input (FALSE> TRUE) Acceleration phase
t2		Busy = 1 Accelerate = 0 Deceleration = 0 In-Target = 0	Target velocity has been reached
t3	Target position = 220000 Velocity = 8000 Start type = 0x1001 Acceleration = 500 Deceleration = 500	Busy = 1 Accelerate = 0 Deceleration = 1 In-Target = 0	Change target position, velocity and acc/dec on the fly
t4		Busy = 1 Accelerate = 0 Deceleration = 0 In-Target = 0	New target velocity has been reached
t5		Busy = 1 Accelerate = 0 Deceleration = 1	Start the deceleration phase to the target position

Time	POS Control Outputs	POS Status Inputs	Descriptions
		In-Target = 0	
T6	Execute = 0	Busy = 0	Target position has been
		Accelerate = 0	reached
		Deceleration = 0	Set Execute to false
		In-Target = 1	

Table 10: Change the target position on the fly

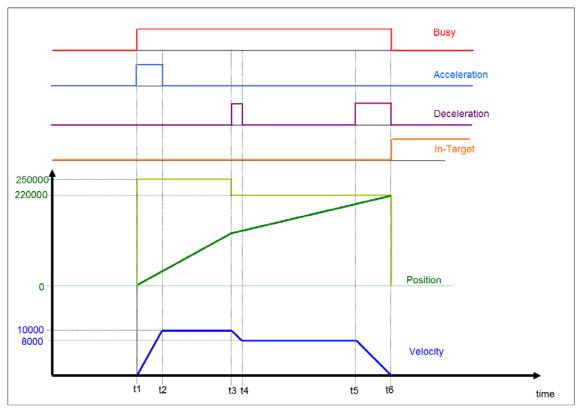


Figure 26: Output and input parameters on a time graph for changing the target position on the fly

Example 2:

Dynamic change of the relative position:

Time	POS Control Outputs	POS Status Inputs	Descriptions
t1	Execute = 1	Busy = 1	Set the motion parameters:
	Target position = 300000	Accelerate = 1	- Relative position =
	Velocity = 11000	Deceleration = 0	300000
	Start type = 0x0002	In-Target = 0	 Acceleration unit and
	Acceleration = 1000		type has to be set via
	Deceleration = 1000		0x8020:08 and 0x8020:09
			 Start executing the motion
			command by triggering the
			'Execute' input (FALSE> TRUE)
			Acceleration phase

Time	POS Control Outputs	POS Status Inputs	Descriptions
t2		Busy = 1 Accelerate = 0 Deceleration = 0 In-Target = 0	Target velocity has been reached
t3	Target position = 50000 Velocity = 7000 Start type = 0x1002 Acceleration = 500 Deceleration = 500	Busy = 1 Accelerate = 0 Deceleration = 1 In-Target = 0	Change the relative position, velocity and acc/dec on the fly
t4		Busy = 1 Accelerate = 0 Deceleration = 0 In-Target = 0	New target velocity has been reached
t5	Target position = 30000 Start type = 0x0000	Busy = 1 Accelerate = 0 Deceleration = 0 In-Target = 0	Procedure for changing relative position on the fly: • Set the 'Start type' to zero • Set the new relative distance to
t6	Start type = 0x1002	Busy = 1 Accelerate = 0 Deceleration = 0 In-Target = 0	travel (Target position) In the next EtherCAT cycle set 'Start type' back to 0x1002 After the 'Start type' has been set to back to 0x1002 the relative distance will be added to the current position. A new relative distance can be assigned even if the movement has ended. Once the new distance has been set ('Start type'=0; 'Start type'=0x1002) the motor accelerates from standstill to the new position.
t7		Busy = 1 Accelerate = 0 Deceleration = 1 In-Target = 0	Start the deceleration phase to the target position
t8	Execute = 0	Busy = 0 Accelerate = 0 Deceleration = 0 In-Target = 1	Target position has been reachedSet Execute to false

Table 11: Change the relative distance, velocity, acceleration, deceleration on the fly

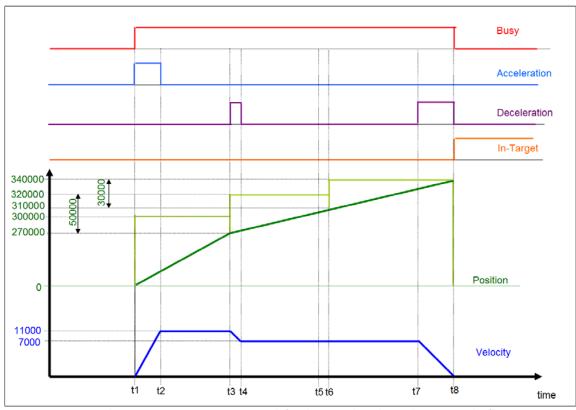


Figure 27: Output and input parameters on a time graph for changing the relative distance on the fly

6.2.1 Acceleration/Deceleration Unit Definition

The acceleration/deceleration unit has to be set via PDO (8020:08). The units are supported (Table 12):

Name	Value
Acceleration time from Vmin to Vmax [ms]	0
Acceleration time from Vmin to Vtarget [ms]	1
Acceleration [128*uStep/sec^2]	2
Acceleration time from Vcurrent to Vtarget [ms]	3

Table 12: DT0814EN02 object

The unit definitions are described in more details below.

6.2.1.1 Acceleration time from Vmin to Vmax

The acceleration/deceleration gradient is determined by the "Velocity min" (0x8020:01) and "Velocity max" (0x8020:02) parameters setting (Figure 28). The "Acceleration" (0x7020:23) and "Deceleration" (0x7020:24) parameters sets the time [ms] to accelerate

or decelerate the motor from "Velocity min" (0x8020:01) to "Velocity max" (0x8020:02).

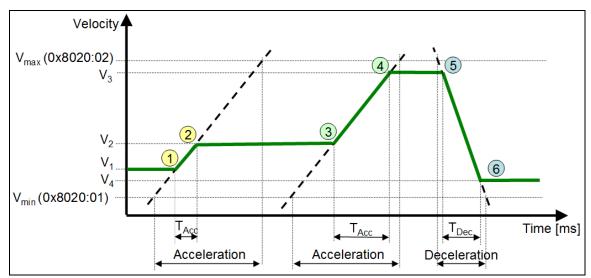


Figure 28: Acceleration unit - " Acceleration time [ms] from Vmin to Vmax '

Accelerate from the current V_1 to the target V_2 (0x7020:21):

- The parameter "Acceleration" (0x7020:23) sets the acceleration time [ms] to change the velocity from V_{min} (0x8020:01) to V_{max} (0x8020:02)
- T_{Acc} : The actual time [ms] to accelerate from the current V_1 to the target V_2 .
 - $T_{Acc} = (V_2 V_1)/Acc$ with: $Acc = (V_{max} - V_{min})/(Acceleration (0x7020:23))$
- $T_{DecStop}$: The actual time [ms] to decelerate to standstill (V_2 to V_{min}).
 - $T_{DecStop} = (V_2 V_{min})/Dec$ with: $Dec = (V_{max} - V_{min})/(Deceleration (0x7020:24))$

Accelerate from the current V_2 to the target V_3 (0x7020:21):

- The parameter "Acceleration" (0x7020:23) sets the acceleration time [ms] to change the velocity from V_{min} (0x8020:01) to V_{max} (0x8020:02)
- T_{Acc} : The actual time [ms] to accelerate from the current V_2 to the target V_3 .
 - $T_{Acc} = (V_3 V_2)/Acc$ with: $Acc = (V_{max} - V_{min})/(Acceleration (0x7020:23))$
- $T_{DecStop}$: The actual time [ms] to decelerate to standstill (V_3 to V_{min}).
 - T_{DecStop}= $(V_3 V_{min})$ /Dec with: Dec = $(V_{max} - V_{min})$ /(Deceleration (0x7020:24))

Decelerate from the current V_3 to the new target V_4 (0x7020:21):

- Depending on the deceleration type either the parameter "Acceleration" (0x7020:23) (type 0) or the parameter "Deceleration" (0x7020:24) (type 1) determines the time [ms] to reduce the speed from V_{max} to V_{min} .
- T_{Dec} : The actual time [ms] to decelerate from current velocity V_3 to the new target velocity V_4 .

6.2.1.2 Acceleration time from Vmin to Vtarget

The acceleration/deceleration gradient is determined by the "Velocity min" (0x8020:01) and target velocity (0x7020:21) as shown in Figure 29.

Important:

- This mode should not be used to change the velocity while the axis is moving as this may cause a target overshoot due to too low acceleration. This situation may occur when changing the velocity from a high value to a very low value while moving.
- After the "Execute" has been triggered do not change the "Velocity", "Acceleration" and "Deceleration" parameters.

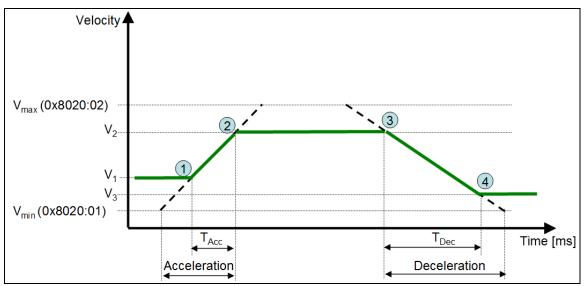


Figure 29: Acceleration unit - " Acceleration time [ms] from Vmin to Vtarget '

Accelerate from the current V_1 to the target V_2 (0x7020:21):

- "Acceleration" (0x7020:23): Acceleration time [ms] from V_{min} to V₂
- T_{Acc} : The actual time [ms] to accelerate from the current V_1 to the target V_2 .
 - T_{Acc}= $|V_2 V_1|$ /Acc with: Acc = $|V_2 - V_{min}|$ /(Acceleration (0x7020:23))
- T_{DecStop}: The actual time [ms] to decelerate to standstill ("V₂" to the target "V_{min}").
 - T_{DecStop}= $|V_2 V_1|$ /Dec with: Dec = $|V_2 - V_{min}|$ /(Deceleration (0x7020:24))

Decelerate from the current V_2 to the new target V_3 (0x7020:21):

- Depending on the deceleration type either the parameter "Acceleration" (0x7020:23) (type 0) or the parameter "Deceleration" (0x7020:24) (type 1) determines the time [ms] to reduce the speed from V_3 to V_{min} .
- T_{Dec}: The actual time [ms] to decelerate from current velocity V₂ to V₃.
 - T_{Dec}= $(V_2 V_3)/Dec$ with:
 - Type 0: Dec = $(V_3 V_{min})/(Acceleration (0x7020:23))$
 - Type 1: Dec = $(V_3 V_{min})/(Deceleration (0x7020:24))$
- $T_{DecStop}$: The actual time [ms] to decelerate to standstill (V_3 to V_{min}).
 - T_{DecStop}= |V₃- V_{min}|/Dec with:

Dec =
$$(V_3 - V_{min})/(Deceleration (0x7020:24))$$

Attention:

If the new target velocity V_3 is close to V_{min} the then the Dec acceleration is set to a very low number which causes a very long deceleration time. It is therefore not suggested to use this unit setting when target velocity V_3 is close to V_{min} .

6.2.1.3 Acceleration [128*μStep/sec²]

The acceleration/deceleration value are directly set via the Acceleration (0x7020:23) and the Deceleration (0x7020:24) parameters (Figure 30). The unit for both parameters are [$128* \mu \text{ Step/sec2}$].

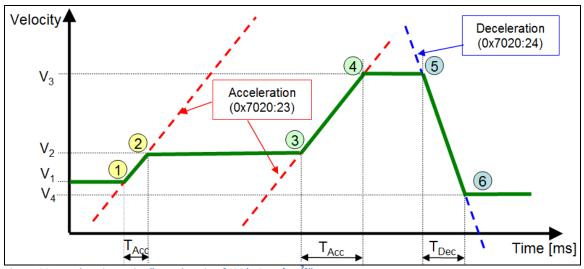


Figure 30: Acceleration unit - " Acceleration [128*µStep/sec²]'

Accelerate from the current "V₁" to the target "V₂" (0x7020:21):

- Acceleration (0x7020:23): Acceleration [128* μ Step/sec2] from "V₁" to target "V₂"
- $T_{Acc} = |V_2 V_1| / (Acceleration(0x7020:23) *128)$
- $T_{DecStop} = |V_2|/(Deceleration(0x7020:24) *128)$

Accelerate from " V_2 " to the target " V_3 " (0x7020:21):

Acceleration (0x7020:23): Acceleration [128* μ Step/sec2] from "V₂" to target "V₃"

- $T_{Acc} = |V_3 V_2| / (Acceleration(0x7020:23) *128)$
- $T_{DecStop} = |V_3| / (Deceleration(0x7020:24) *128)$

Decelerate from the current "V₃" to "V₄" (0x7020:21):

- Deceleration (0x7020:24): Deceleration [$128* \mu$ Step/sec2] from "V₃" to V₄.
- T_{Dec} = $(V_3 V_4)/(Acceleration (0x7020:23)*128)$
- $T_{DecStop} = |V_4|/(Deceleration(0x7020:24) *128)$

6.2.1.4 Acceleration time from Vcurrent to Vtarget

In this mode the parameters "Acceleration" (0x7020:23) and "Deceleration" (0x7020:24) sets the time [ms] to accelerate or decelerate to a new target velocity "Velocity" (0x7020:21). The steepness of the acceleration/deceleration gradient depends on the "Acceleration" (0x7020:23), "Deceleration" (0x7020:24) and the velocity difference between the current velocity and new target velocity "Velocity" (0x7020:21) as shown in Figure 32. This acceleration unit can only be used together with the acceleration type 0 "Acceleration-->Start phase & Deceleration-->Stop Phase" (Table 13).

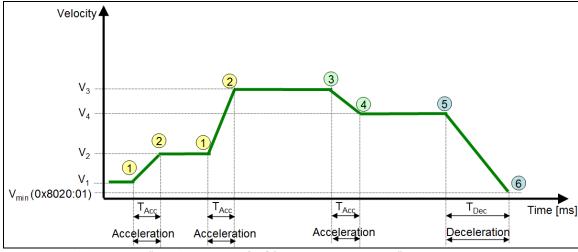


Figure 31: Acceleration unit - " Acceleration time [ms] from Vcurrent to Vtarget "

Accelerate from the current velocity V_{Current} to the new target velocity V_{Target} (0x7020)

- The "Acceleration" (0x7020:23) parameter represents the time T_{acc} [ms] to accelerates the axis from $V_{Current}$ to target V_{Target}
- T_{Acc} :
 - T_{Acc}= |V_{Target}- V_{Current}|/Acc
 - If the "Acceleration" value remains constant then the acceleration gradient changes with the difference between current and target velocity.
- T_{DecStop}:
 - T_{DecStop}= |V_{Target}- V_{min}|/Acc

Decelerate from the current velocity $V_{Current}$ to the new target velocity V_{Target} (0x7020)

- This mode only supports the acceleration type 0 (Table 13) therefore the acceleration time "Acceleration" (0x7020:23) is being used for deceleration to the new target velocity
- "Acceleration" (0x7020:23) = Deceleration time [ms] from $V_{Current}$ to V_{Target} (0x7020)
- T_{Acc}:
 - \blacksquare $T_{Acc} = |V_4 V_3| /Acc$
- T_{DecStop}:
 - $T_{DecStop} = |V_4 V_{min}| / Acc$

Decelerate from the current velocity $V_{Current}$ to the "Velocity min" (0x8020:01) V_{min} .

- The "Deceleration" (0x7020:24) parameter represents the deceleration time T_{Dec} [ms] from $V_{Current}$ to V_{min} (0x8020:01).
- T_{Dec}:
 - $T_{Dec} = (V_4 V_{min})/Dec$

6.2.2 Acceleration/Deceleration Type

The acceleration/deceleration type describes which parameters are being used for accelerating/decelerating the motor to the target velocity. Two types are defined (Table 13).

Туре	Name	Value
0	Acceleration>Start phase & Deceleration>Stop Phase	0
1	Acceleration>Acceleration & Deceleration> Deceleration	1

Table 13: DT0815EN01 object

Type 1 requires considerable firmware calculation and therefore to increase the ECAT-2091S response time it is strongly suggested to just use type 0.

The following section describes the properties of the acceleration/deceleration types.

6.2.2.1 Start-Stop Phase Type

The acceleration (0x7020:23) setting is being used for the acceleration phase (1-2, 5-6) and the deceleration (0x7020:24) value for the deceleration to stop phase (3-4, 7-8). When changing the direction of rotation the ECAT-2091S will first decelerate to stop using the deceleration (0x7020:24) value and then accelerate to the new target velocity by using the acceleration (0x7020:23) value.

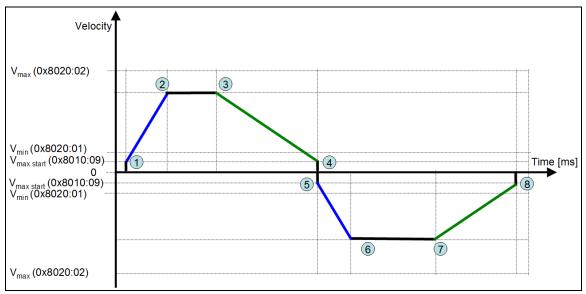


Figure 32: Acceleration - deceleration behavior for the start-stop phase

When changing the velocity on the fly the acceleration (0x7020:23) value determines the gradient of accelerate or decelerate curve for reaching the new target velocity (Figure 33).

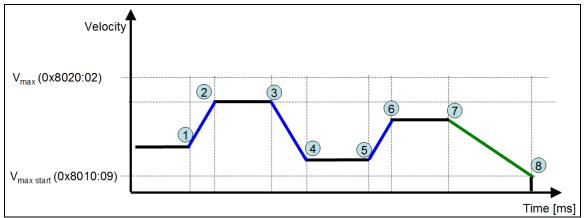


Figure 33: Change velocity on the fly for Start-Stop phase mode

The following description refers to Figure 33:

- The acceleration (0x7020:23) value sets the accelerating (1->2, 5->6) and the decelerating (3->4) property to reach the new velocity.
- The deceleration (0x7020:24) value determines the deceleration to stop section (7->8).

6.2.2.2 Standard Acceleration/Deceleration

Here the acceleration (0x7020:23) setting are always applied when the a acceleration takes place. This is the case when the motor is accelerated from stand still or when the target velocity is greater than the current driving velocity. The deceleration (0x7020:24) setting determines the gradient of the deceleration curve regardless whether the motor decelerates to stop or decelerates to a new velocity. The acceleration/deceleration for changing the velocity direction is shown in Figure 32.

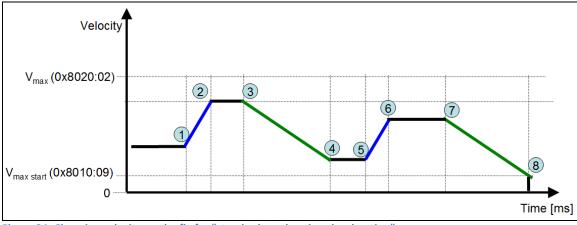


Figure 34: Changing velocity on the fly for "standard acceleration-deceleration"

Figure 34 shows the acceleration/deceleration curve for changing the velocity while the

motor is busy moving to the target position:

- The acceleration (0x7020:23) value sets the acceleration gradient (1->2, 5->6).
- The deceleration (0x7020:24) value sets the deceleration gradient (3->4, 7->8).

This acceleration type is not being supported by the acceleration unit "Vcurrent to Vtarget"

6.3 Positioning Interface Compact

In the following the procedure for executing a travel command in "Positioning interface compact" mode is being described.

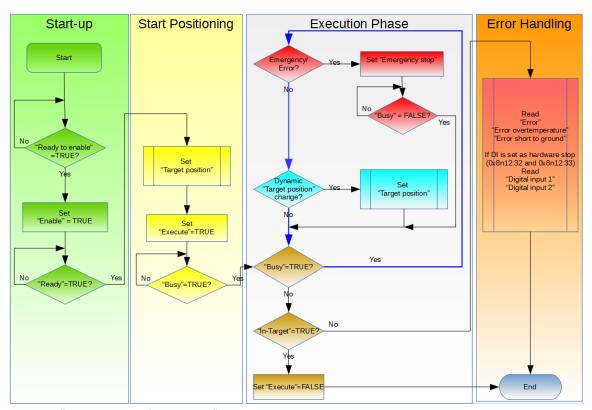
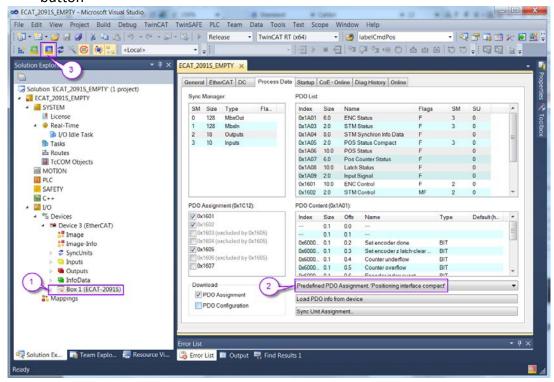
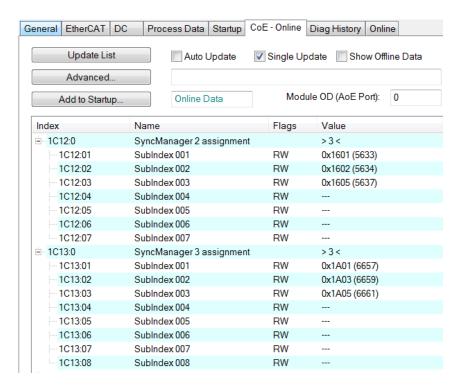


Figure 35: "Positioning interface compact" setting sequence


Operating procedure:

Step 1: PDO assignment


Select the function "Positioning interface compact" from the predefined PDO assignment selection box in the lower part of the "Process data" tab. This causes TwinCAT to automatically activated all necessary PDOs and deactivate the unnecessary ones.

Procedure:

- 1. Select the "Process Data" tab of the ECAT-2091S
- Select the "Predefined PDO Assignment: "Position interface compact" from the combo box
- Send the PDO assignment to the slave by clicking the "Reload I/O device" button

The SyncManager 2 and 3 in the "CoE-Online" tab displays the new PDO assignment:

Step 2: Set the motor torque (see "Positioning interface", chapter 6.2 Step 2:)

Step 3: Set the number of micro-steps per full step (8010:07). The motor runs smoother and with less vibration with higher micro-steps value setting.

Step 4: Set the motion parameters for the system: max velocity, max acceleration, etc.

- The velocity has to be set according the description of "Positioning interface" (chapter 6.2 Step 4:)
- 2. Set the "Acceleration unit" (0x8020:08) and "Acc-Dec parameter definition" (0x8020:09) which are described in chapter 6.2.1 and 6.2.2.
- 3. Set the acceleration and deceleration parameter values. Their units are determined by the "Acceleration unit" (0x8020:08). Values for both the positive and negative direction are required.
 - i. Acceleration pos (0x8020:03): Acceleration in the positive direction of rotation.
 - ii. Acceleration neg (0x8020:04): Acceleration in the negative direction of rotation
 - iii. Deceleration pos (0x8020:05): Deceleration in the positive direction of rotation
 - iv. Deceleration neg (0x8020:06): Deceleration in the negative direction of rotation
- 4. "Emergency deceleration" describes how fast the motor stops after the emergency stop flag has been set to TRUE (0x7020:02 Emergency stop)

Index	Name	Flags	Value	Unit
<u>-</u> 8010:0	STM Motor Settings		> 18 <	
8010:01	Maximum run current	RW	0x02EE (750)	
8010:02	Reduced run current	RW	0x0177 (375)	
8010:03	Maximum hold current	RW	0x02EE (750)	
8010:04	Reduced hold current	RW	0x0177 (375)	
8010:06	Motor fullsteps	RW	0x00C8 (200)	
8010:07	Micro Steps	RW	256 (8)	
8010:08	Power on motor current	RW	0x0177 (375)	
8010:09	Max Start Velocity	RW	0x0064 (100)	
8010:12	Safe motor current	RW	0x0177 (375)	
± 8012:0	STM Features		> 66 <	
≘ 8020:0	POS Settings		>7<	
8020:01	Velocity min	RW	0x00000000 (0)	←
8020:02	Velocity max	RW	0x00002710 (10000)	-
8020:03	Acceleration pos	RW	0x03E8 (1000)	←
8020:04	Acceleration neg	RW	0x03E8 (1000)	-
8020:05	Deceleration pos	RW	0x03E8 (1000)	←
8020:06	Deceleration neg	RW	0x03E8 (1000)	-
8020:07	Emergency deceleration	RW	0x0000 (0)	-

Step 5: Set the start type. The "Start type" (0x8021:01) describes whether the target position is a relative or absolute position. In addition the user can determine whether the target position can be changed on the fly. Consult Table 9 for the correct parameter value.

Index	Name	Flags	Value
E 8021:0	POS Features		>1<
8021:01	Start type	RW	Relative (2)
⊕ A010:0	STM Diag data		> 17 <
. A020:0	POS Diag data		> 6 <
F008:0	Internal EEPROM		>5<

Step 6: Motion execution procedure:

- STM Control
 Enable
 Reset
 Reduce torque
 Digital output1
 POS Control Compact
 Execute
 Emergency stop
 Target position
- 1. Activate the "Enable" (0x7010:01) flag
- 2. Set the target position (unit: steps) (0x7020:11). The target position distance is being defined by the "Start type" (0x8021:01) configuration.
- 3. Start motion execution by setting the "Execute"-variable to true (0x7020:01).
- 4. If an emergency stop (0x7020:02) has been activated during driving, then the "Emergency stop"-variable has to be set to false and "Execute" back to false before the next command can be executed
- Error: If an error occurred during driving (overheating, EtherCAT

communication failed, Master sets slave from OP to none OP mode, etc.) the error flag is activated (0x6010:04 Error). In order to clear this flag the "Reset" variable has to be activated (0x7010:02 - Reset) for one cycle time.

6.4 Position Control

Position control mode has to be selected if the application program needs to sent a new absolute target position in every communication cycle. The maximum velocity and the acceleration time have to be set at a high value in order for the driver to reach the new target position at the end of the cycle time. In this mode the application program basically calculates and control the velocity profile of the motor.

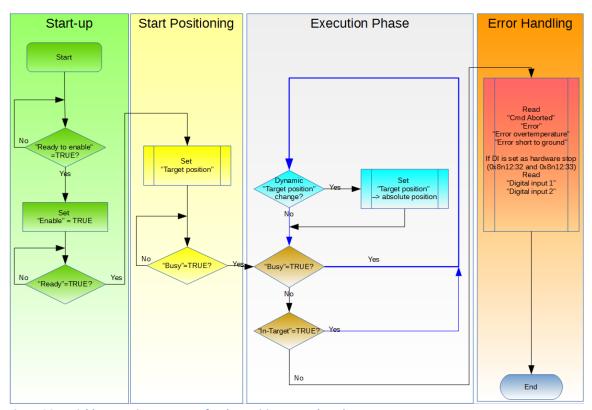
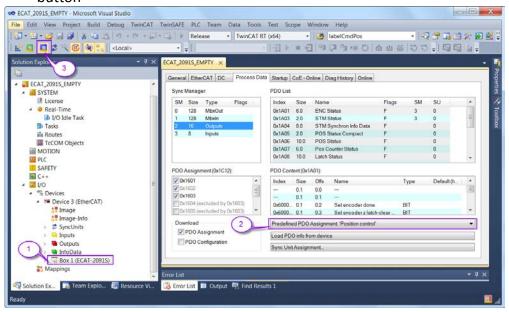


Figure 36: Variable execution sequence for the position control mode


Operating procedure:

Step 1: PDO assignment Select the function "Positioning control" predefined PDO assignment in the lower

part of the "Process data" tab. As a result, all necessary PDOs are automatically activated and the unnecessary PDOs are deactivated.

Procedure:

- 1. Select the "Process Data" tab of the ECAT-2091S
- Select the "Predefined PDO Assignment: "Position control" from the combo box
- Send the PDO assignment to the slave by clicking the "Reload I/O device" hutton

The SyncManager 2 and 3 in the "CoE-Online" tab displays the new PDO assignment:

Index	Name	Flags	Value
⊟ 1C12:0	SyncManager 2 assignment		>3<
1C12:01	SubIndex 001	RW	0x1601 (5633)
1C12:02	SubIndex 002	RW	0x1602 (5634)
1C12:03	SubIndex 003	RW	0x1603 (5635)
1C12:04	SubIndex 004	RW	
1C12:05	SubIndex 005	RW	
1C12:06	SubIndex 006	RW	
1C12:07	SubIndex 007	RW	
⊟ 1C13:0	SyncManager 3 assignment		>2<
1C13:01	SubIndex 001	RW	0x1A01 (6657)
1C13:02	SubIndex 002	RW	0x1A03 (6659)
1C13:03	SubIndex 003	RW	
1C13:04	SubIndex 004	RW	
1C13:05	SubIndex 005	RW	
1C13:06	SubIndex 006	RW	
1C13:07	SubIndex 007	RW	
1C13:08	SubIndex 008	RW	

- Step 2: Set the motor torque (see "Positioning interface", chapter 6.2 Step 2:)
- **Step 3:** Set the number of micro-steps per full step (8010:07). The motor runs smoother and with less vibration with higher micro-steps value setting.

Step 4: Set the motion parameters for the system: max velocity, max acceleration, etc.

- The velocity has to be set as described for the "Positioning interface" (chapter 6.2 Step 4:)
- 2. Set the "Acceleration unit" (0x8020:08) and "Acc-Dec parameter definition" (0x8020:09) which are described in chapter 6.2.1 and 6.2.2.
- 3. In addition the acceleration and deceleration values (unit: 0x8020:08) have to be set. The values for both the positive and negative directions are required.
 - i. Acceleration pos (0x8020:03)
 - ii. Acceleration neg (0x8020:04)
 - iii. Deceleration pos (0x8020:05)
 - iv. Deceleration neg (0x8020:06)

Index	Name	Flags	Value	Unit
<u>-</u> 8010:0	STM Motor Settings		> 18 <	
8010:01	Maximum run current	RW	0x02EE (750)	
8010:02	Reduced run current	RW	0x0177 (375)	
8010:03	Maximum hold current	RW	0x02EE (750)	
8010:04	Reduced hold current	RW	0x0177 (375)	
8010:06	Motor fullsteps	RW	0x00C8 (200)	
8010:07	Micro Steps	RW	256 (8)	
8010:08	Power on motor current	RW	0x0177 (375)	
8010:09	Max Start Velocity	RW	0x0064 (100)	-
8010:12	Safe motor current	RW	0x0177 (375)	
± 8012:0	STM Features		> 66 <	
≘ 8020:0	POS Settings		>7<	
8020:01	Velocity min	RW	0x00000000 (0)	←
8020:02	Velocity max	RW	0x00002710 (10000)	-
8020:03	Acceleration pos	RW	0x03E8 (1000)	←
8020:04	Acceleration neg	RW	0x03E8 (1000)	←
8020:05	Deceleration pos	RW	0x03E8 (1000)	◆
8020:06	Deceleration neg	RW	0x03E8 (1000)	-
8020:07	Emergency deceleration	RW	0x0000 (0)	

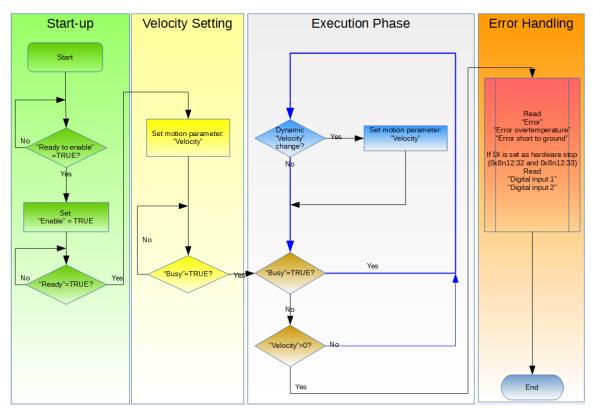
Step 5: Motion execution procedure:

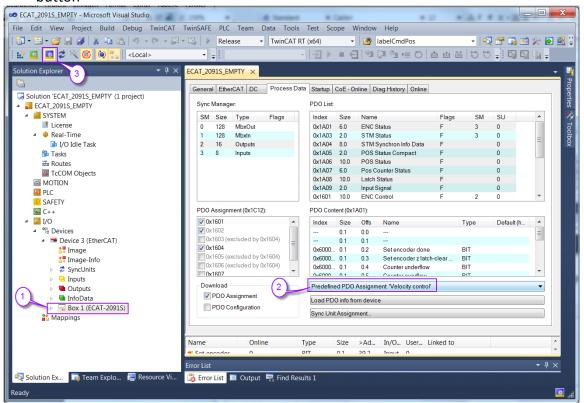
- STM Control
 Enable
 Reset
 Reduce torque
 Digital output1
 STM Position
 Position
- 1. Activate the "Enable" (0x7010:01) parameter
- 2. Set the absolute target position (unit: steps). The driver will output steps as soon as the actual and target position are not identical. Set the acceleration time and velocity (Step 4:) to a high value if in the application the motor needs to reach the target position at the end of each cycle.

3. Error: If an error occurred during driving (overheating, EtherCAT communication failed, Master sets slave from OP to none OP mode, etc.) the error flag is activated (0x6010:04 Error). In order to clear this flag the "Reset" variable has to be activated (0x7010:02 - Reset) for one cycle time.

7 Velocity Control Setting

In velocity control mode the motor accelerates to the target velocity and keeps running at this velocity until the user changes the velocity. When the user changes the velocity setting the controller will automatically accelerate/decelerate to the new value. In case of a rotation direction change the driver first slows the motor down to standstill before accelerating in the opposite direction. The motor will stop if the speed is set to zero. The acceleration and deceleration values have to be set via the configuration objects (0x8020).




Figure 37: Velocity control settings

Procedure for the velocity control operation:

Step 1: PDO assignment

Select the function "Velocity control" predefined PDO assignment selection list in the lower part of the "Process data" tab:

- 1. Select the "Process Data" tab of the ECAT-2091S
- 2. Select the "Predefined PDO Assignment: " Velocity control " from the combo box
- 3. Send the PDO assignment to the slave by clicking the "Reload I/O device" button

The SyncManager 2 and 3 in the "CoE-Online" tab displays the new PDO assignment:

Index	Name	Flags	Value
⊡ 1C12:0	SyncManager 2 assignment		>3<
1C12:01	SubIndex 001	RW	0x1601 (5633)
1C12:02	SubIndex 002	RW	0x1602 (5634)
1C12:03	SubIndex 003	RW	0x1604 (5636)
1C12:04	SubIndex 004	RW	
1C12:05	SubIndex 005	RW	
1C12:06	SubIndex 006	RW	
1C12:07	SubIndex 007	RW	
i= 1C13:0	SyncManager 3 assignment		>2<
1C13:01	SubIndex 001	RW	0x1A01 (6657)
1C13:02	SubIndex 002	RW	0x1A03 (6659)
1C13:03	SubIndex 003	RW	
1C13:04	SubIndex 004	RW	
1C13:05	SubIndex 005	RW	
1C13:06	SubIndex 006	RW	
1C13:07	SubIndex 007	RW	
1C13:08	SubIndex 008	RW	

- **Step 2:** Set the motor torque (see "Positioning interface", chapter 6.2 Step 2:)
- **Step 3:** Set the number of micro-steps per full step (8010:07). The motor runs smoother and with less vibration with higher micro-steps value setting.
- **Step 4:** Set the motion parameters. Follow the steps described for the position control (chapter 6.2 Step 4:)
- **Step 5:** Motion execution procedure:
 - STM Control
 - Enable
 - Reset
 - Reduce torque
 - Digital output1
 - STM Velocity
 - Velocity
 - 1. Activate the "Enable" (0x7010:01) parameter
 - 2. Set the velocity (unit: step/second). The driver will immediately accelerate the motor to the set speed and continuously run at this speed until a new speed has been received. The motor will stop if the speed is set to zero or the "Enable" (0x7010:01) flag has been put to FALSE or an error occurred.

8 CoE Interface

8.1 General Description

The CoE interface (CANopen over EtherCAT) is used for parameter management of EtherCAT devices. The CoE interface displays all the objects and parameters which are required for operating and diagnosing the ECAT-2091S device. Some parameters are fixed and can not be modified, they for example indicate the operating status of the device or the device properties. Motion related parameter need to be set before the actual motion control starts. These parameter setting are determined by the controlled stepper motor type and the setup of the motion application system.

CoE parameters has to be accessed via the CAN over EtherCAT protocol. The EtherCAT master accesses the local CoE lists of the slaves via CAN over EtherCAT. The user does not need to understand the CoE protocol when using the TwinCAT System Manager for CoE parameter configuration.

The CoE parameters describe a wide range of features such as manufacturer ID, device name, process data settings, calibration values for the stepper motor such as the current output, microsteps per full step, maximum velocity, etc..

The relevant ranges of the CoE list are:

- 0x1000: Stores fixed information of the device, including name, manufacturer, serial number etc.. In addition stores information about the current and available process data configurations.
 - 0x1600: RxPDO mapping
 - 0x1A00: TxPDO mapping
- 0x8000: Stores all the configuration data which are required for the stepper motor control.
- 0x6000: Input PDOs ("input" from the perspective of the EtherCAT master)
- 0x7000: Output PDOs ("output" from the perspective of the EtherCAT master)

The Figure 38 shows some of the CoE objects available for the ECAT-2091S device, ranging from 0x1000 to 0xF008. The parameters of the objects can be accessed by expanding the tree in the "CoE-Online" tab. The objects and their properties are described in chapter 0.

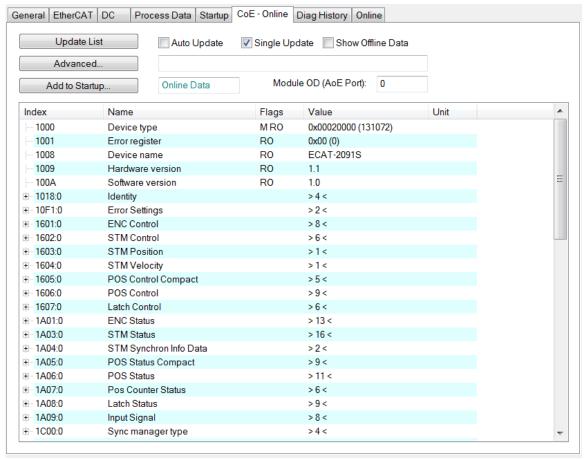
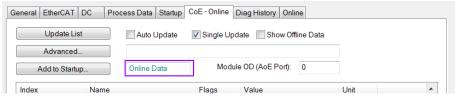
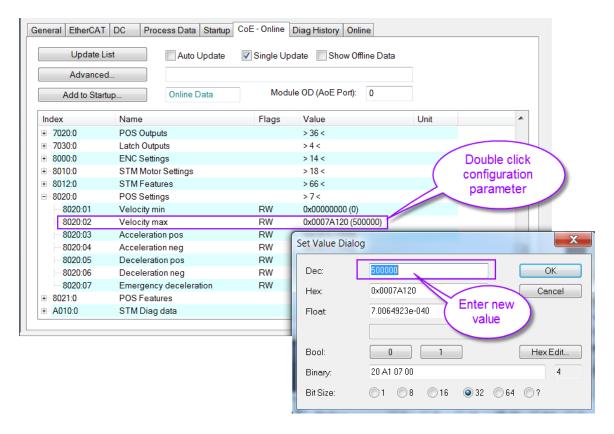


Figure 38: "CoE - Online " tab

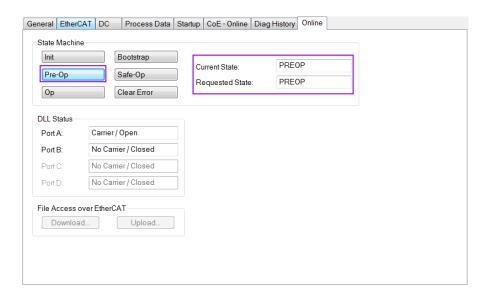
8.2 Save Configuration Data to Memory


In this section the procedure of saving motion configuration parameters to the device non-volatile memory is being discussed.

The CoE object range 0x8000 to 0x8021 contains all the motion related parameters which are configurable and storable. TwinCAT allows the user to set the configuration parameters via the System Manager (Figure 38) or from a TwinCAT PLC via ADS (TcEtherCAT.lib library).

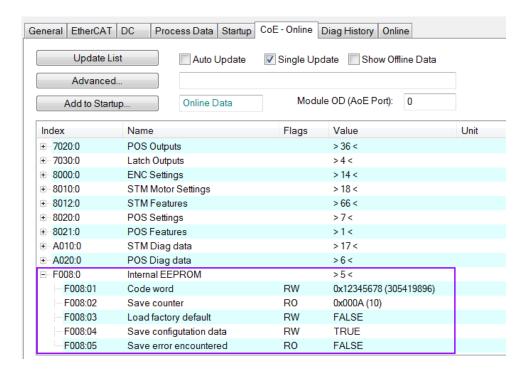

If slave CoE parameters are modified online, the ECAT-2091S device does not automatically store the data to a non-volatile memory. The data are lost if the device is switched off. The 0xF008 object provides functions to store the modified configuration data to the non-volatile memory of the device and the setting will be immediately available after a restart.

Procedure for storing configuration data to the local ECAT-2091S memory:

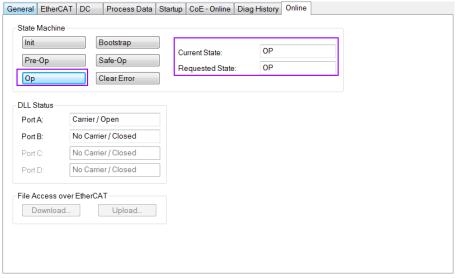

Step 1: Make sure the TwinCAT System Manager is connected to the ECAT-2091S and the "CoE-Online" tab is showing that the slave is online.

Step 2: Set all the necessary configuration objects (0x8000, 0x8010, 0x8012, 0x8021). Setting is being done by double clicking the configuration parameter and entering a new value in the popup window. In the following picture the maximum velocity of the motor is being set to 500000 steps/second.

Step 3: After all the configurations have been done set the slave into Pre-Op mode. Data can only be stored to the local device if it is in Pre-Op mode. On the "Online" tab click the "Pre-OP" button to put the slave into Pre-OP mode.



Step 4: The parameters of the 0xF008 object handles the save procedure.


- Scroll to the end of the "CoE-Online" list and expand the tree view of the 0xF008 object
- 2. Enter the value 0x12345678 for the "Code Word"
- 3. Set the "Save configuration data" from FALSE to TRUE in order to save the configuration data to the internal EEPROM. The parameter "Save error encountered" (F008:05) indicates whether an error occurred during the save process.
- 4. In order for the user configuration data to take effect after device restart set the "Load factory default" to FALSE. It is always possible to return to the factory default setting by setting this value back to TRUE.
- 5. The "Save Counter" (F008:02) shows how often configuration data has been stored to the local memory in the lifetime of the device.

 ATTENTION:

The local memory only supports a limited number of save operations. Depending on the memory version once the save operation exceeds 10000 cycles it can no longer be guaranteed that data are reliably saved or are still readable. Therefore the "Save configuration data" (F008:04) and the "Load factory default" (F008:03) should not be continuously set from the controlling application program.

Step 5: Set the ECAT-2091S back into OP mode.

8.3 Driver Tuning

The ECAT-2091S uses the motion control chip TMC5130A from Trinamic to do stepper motor control. The following TMC5130A modes are being supported by the ECAT-2091S:

- stealthChop™ No-noise, high-precision chopper algorithm for inaudible motion and inaudible standstill of the motor.
- spreadCycle™ High-precision chopper algorithm available as an alternative to the traditional constant off-time algorithm.
- dcStep™ Load dependent speed control. The motor moves as fast as possible and never loses a step.
- coolStep™ Load-adaptive current control which reduces energy consumption by as much as 75%.

By default the ECAT-2091S uses the spreadCycle[™] mode. This mode is simple to use and very precise as the chopper algorithm of the TMC5130A automatically determines the optimum length for the fast-decay phase. The spreadCycle will provide superior microstepping quality even with default settings.

If additional driver tuning is required for the spreadCycle mode or for the other modes listed above then

- consult the "TMC5130_datasheet.pdf" manual which can be downloaded from the Trinamic website. The "Quick Configuration Guide" chapter provides steps for tuning the driver. The Vendor Specific Register Definitions (chapter 11) shows through which Service Data Object (SDO) of the ECAT-2091S the motion chip register can be directly accessed.
- contact ICP DAS CO., LTD. (http://www.icpdas.com) to get additional information and support.

9 Object Description and Parameterization

9.1 Standard Objects

Index 1000 Device type

Index (hex)	Name	Description	Data type	Flags	Default
1000:0	Device type	Device type of the EtherCAT slave	UINT32	RO	0x00001389

Index 1008 Device name

Index (hex)	Name	Description	Data type	Flags	Default
1008:0	Device name	Device name of the EtherCAT slave	STRING	RO	ECAT-2091S

Index 1009 Hardware version

Index (hex)	Name	Description	Data type	Flags	Default
1009:0	Hardware	Hardware version of the EtherCAT	STRING	RO	2.0
	version	slave			(or greater)

Index 100A Software version

Index (hex)	Name	Description	Data type	Flags	Default
100A:0	Software	Software version of the EtherCAT	STRING	RO	2.0
	version	slave			(or greater)

Index 1018 Identity

Index (hex)	Name	Description	Data type	Flags	Default
1018:0	Identity		UINT8	RO	0x04
1018:01	1 Vendor ID Vendor ID of the EtherCAT slave		UINT32	RO	0x00494350
1018:02	Product	Product code of the EtherCAT slave	UINT32	RO	0x00209153
	code				
1018:03	Revision	Revision number of the EtherCAT	UINT32	RO	0x00010000
		slave			
1018:04	Serial	Serial number of the EtherCAT slave	UINT32	RO	0x00000000
	number	(not supported)			

Index 10F1 Error settings

Index (hex)	Name	Description	Data type	Flags	Default
10F1:0	Error		UINT8	RO	0x02
	settings				
10F1:01	Local error	Not implemented	UINT32	RW	0x00000001
	reaction				
10F1:02	Sync error	For DC mode only:	UINT16	RW	0x0004
	counter limit	The Sync Error Counter is			
		incremented with every missing Sync			
		Management Event by three and			
		decremented by one if an event is			

Index (hex)	Name	Description	Data type	Flags	Default
	received. If the Sync Error Counter				
		exceeds this limit the			
		system changes into the SAFEOP			
	state with the 'Synchronization Lost'				
		error. The Sync			
		Error Counter is reset when the error			
		was acknowledged.			

9.2 RxPDO Mapping Objects

Index 1601 ENC Control (RxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1601:0	ENC Control	Encoder control	UINT8	RO	0x08
1601:01	StatusGap1	empty (1 Bit)	UINT32	RO	0x00000001
1601:02	ControlSet encoder	Set encoder (1 Bit)	UINT32	RO	0x70000201
1601:03	ControlSet position counter	Set position counter (1 Bit)	UINT32	RO	0x70000301
1601:04	Control_Set encoder z latch-clear mode	Activate the encoder index latch-clear mode (1 Bit)	UINT32	RO	0x70000401
1601:05	ControlGap2	BYTE padding (4 Bit)	UINT32	RO	0x00000004
1601:06	Control_Encoder z latch-clear mode	Encoder index clear mode (8 Bit)	UINT32	RO	0x70000608
1601:07	ControlSet encoder value	Set encoder value (32-bit)	UINT32	RO	0x70001120
1601:08	ControlSet position counter value	Set position counter value (32-bit)	UINT32	RO	0x70001220

Index 1602 STM Control (RxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1602:0	STM Control	Stepper motor control	UINT8	RO	0x06
1602:01	ControlEnable	Enable (1 Bit)	UINT32	RO	0x70100101
1602:02	ControlReset	Reset	UINT32	RO	0x70100201

Index (hex)	Name	Description	Data type	Flags	Default
		(1 Bit)			
1602:03	ControlReduce torque	Reduce torque (1 Bit)	UINT32	RO	0x70100301
1602:04	ControlGap1	BYTE padding (5 Bit)	UINT32	RO	0x00000005
1602:05	ControlDigital output1	Digital output1 (1 Bit)	UINT32	RO	0x70100C01
1602:06	ControlGap2	BYTE padding (7 Bit)	UINT32	RO	0x00000007

Index 1603 STM Position (RxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1603:0	STM Position	Stepper motor position control	UINT8	RO	0x01
1603:01	ControlPosition	Position (32 Bit)	UINT32	RO	0x70101120

Index 16n4 STM Velocity (RxPDO-Map)

Index	Name	Description	Data type	Flags	Default	
(hex)						
1604:0	STM Velocity	Stepper motor	UINT8	RO	0x01	
		velocity control				
1604:01	ControlVelocity	Velocity	UINT32	RO	0x70102120	
		(32 Bit)				

Index 1605 POS Control Compact (RxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1605:0	POS Control Compact	Stepper motor compact control	UINT8	RO	0x05
1605:01	ControlExecute	Execute (1 Bit)	UINT32	RO	0x70200101
1605:02	ControlEmergency stop	Emergency stop (1 Bit)	UINT32	RO	0x70200201
1605:03	ControlGap1	BYTE padding (6 Bit)	UINT32	RO	0x00000006
1605:04	ControlGap2	WORD padding (8 Bit)	UINT32	RO	0x00000008
1605:05	ControlTarget position	Target position (32 Bit)	UINT32	RO	0x70201120

Index 1606 POS Control (RxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1606:0	POS Control	Position control	UINT8	RO	0x09
1606:01	ControlExecute	Execute (1 Bit)	UINT32	RO	0x70200101
1606:02	ControlEmergency stop	Emergency stop (1 Bit)	UINT32	RO	0x70200201
1606:03	ControlGap1	BYTE padding (6 Bit)	UINT32	RO	0x00000006
1606:04	ControlGap2	WORD padding (8 Bit)	UINT32	RO	0x00000008
1606:05	ControlTarget position	Target position (32 Bit)	UINT32	RO	0x70201120
1606:06	ControlVelocity	Max Velocity (32 Bit)	UINT32	RO	0x70202120
1606:07	ControlStart type	Start type (16 Bit)	UINT32	RO	0x70202210
1606:08	ControlAcceleration	Acceleration (16 Bit)	UINT32	RO	0x70202310
1606:09	ControlDeceleration	Deceleration (16 Bit)	UINT32	RO	0x70202410

Index 1607 Latch Control (RxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1607:0	Latch Control	Latch setting	UINT8	RO	0x06
1607:01	ControlEnable latch active edge	Enable Latch	UINT32	RO	0x70300101
	DI 1	extern on positive			
		edge DI 1			
		(1 Bit)			
1607:02	ControlEnable latch active edge	Enable Latch	UINT32	RO	0x70300201
	DI 2	extern on positive			
		edge DI 2			
		(1 Bit)			
1607:03	ControlEnable Latch inactive	Enable Latch	UINT32	RO	0x70300301
	edge DI 1	extern on negative			
		edge DI 1			
		(1 Bit)			
1607:04	ControlEnable Latch inactive	Enable Latch	UINT32	RO	0x70300401
	edge DI 2	extern on negative			
		edge DI 2			
		(1 Bit)			
1607:05	ControlGap1	BYTE padding	UINT32	RO	0x00000004
		(4 Bit)			
1607:06	ControlGap2	WORD padding	UINT32	RO	0x00000008
		(8 Bit)			

9.3 TxPDO Mapping Objects

Index 1A01 ENC Status (TxPDO-Map)

Index	Name	Description	Data type	Flags	Default
(hex)					
1A01:0	ENC Status	Encoder status	UINT8	RO	0x0D
1A01:01	StatusGap1	empty (1 Bit)	UINT32	RO	0x00000001
1A01:02	StatusGap2	empty (1 Bit)	UINT32	RO	0x00000001
1A01:03	StatusSet encoder done	Set position counter done (1 Bit)	UINT32	RO	0x60000301
1A01:04	StatusSet encoder z latch- clear mode done	Set z latch clear mode done(1 Bit)	UINT32	RO	0x60000401
1A01:05	StatusCounter underflow	Counter underflow (1 Bit)	UINT32	RO	0x60000501
1A01:06	StatusCounter overflow	Counter overflow (1 Bit)	UINT32	RO	0x60000601
1A01:07	StatusIndex	Encoder index event (1 Bit)	UINT32	RO	0x60000701
1A01:08	StatusGap3	BYTE padding (1 Bit)	UINT32	RO	0x00000001
1A01:09	StatusGap4	empty (5 Bit)	UINT32	RO	0x0000005
1A01:0A	StatusSync error	Sync error (1 Bit)	UINT32	RO	0x60000E01
1A01:0B	StatusGap5	empty (1 Bit)	UINT32	RO	0x0000001
1A01:0C	StatusTxPDO Toggle	TxPDO Toggle (1 Bit)	UINT32	RO	0x60001001
1A01:0D	StatusEncoder value	Encoder value (32-Bit)	UINT32	RO	0x60001120

Index 1A03 STM Status (TxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1A03:0	STM Status	Stepper motor status	UINT8	RO	0x10
1A03:01	StatusReady to enable	Ready to enable (1 Bit)	UINT32	RO	0x60100101
1A03:02	StatusReady	Ready (1 Bit)	UINT32	RO	0x60100201
1A03:03	StatusWarning	Warning (1 Bit)	UINT32	RO	0x60100301
1A03:04	StatusOvertemperatur	Pre-Warning overtemperature (1 Bit)	UINT32	RO	0x60100401
1A03:05	StatusWarning open load	Open load detected on phase A or B (1 Bit)	UINT32	RO	0x60100501

Index	Name	Description	Data type	Flags	Default
(hex)					
1A03:06	StatusError	Error	UINT32	RO	0x60100601
		(1 Bit)			
1A03:07	StatusError	Error overtemperature	UINT32	RO	0x60100701
	overtemperature	(1 Bit)			
1A03:08	StatusError short to	Error short to ground	UINT32	RO	0x60100801
	ground	(1 Bit)			
1A03:09	StatusMoving positive	Moving positive	UINT32	RO	0x60100901
		(1 Bit)			
1A03:0A	StatusMoving negative	Moving negative	UINT32	RO	0x60100A01
		(1 Bit)			
1A03:0B	StatusTorque reduced	Torque reduced	UINT32	RO	0x60100B01
		(1 Bit)			
1A03:0C	StatusDigital input 1	Digital input 1	UINT32	RO	0x60100C01
		(1 Bit)			
1A03:0D	StatusDigital input 2	Digital input 2	UINT32	RO	0x60100D01
		(1 Bit)			
1A03:0E	StatusSync error	Sync error	UINT32	RO	0x60100E01
		(1 Bit)			
1A03:0F	StatusMotor standstill	Motor is at standstill	UINT32	RO	0x60100F01
		(1 Bit)			
1A03:10	StatusTxPDO Toggle	TxPDO Toggle	UINT32	RO	0x60101001
		(1 Bit)			

Index 1A04 STM Synchron Info Data (TxPDO-Map)

Index (hex)	Name	Description		Data type	Flags	Default
1A04:0	STM Synchron Info Data			UINT8	RO	0x02
1A0401	StatusInfo data 1	Info data 1	(32 Bit)	UINT32	RO	0x60101120
1A04:02	StatusInfo data 2	Info data 2	(32 Bit)	UINT32	RO	0x60101220

Index 1A05 POS Status Compact (TxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1A05:0	POS Status Compact		UINT8	RO	0x0B
1A05:01	StatusBusy	Busy (1 Bit)	UINT32	RO	0x60200101
1A05:02	StatusIn-Target	In-Target (1 Bit)	UINT32	RO	0x60200201
1A05:03	StatusWarning	Warning (1 Bit)	UINT32	RO	0x60200301
1A05:04	StatusError	Error (1 Bit)	UINT32	RO	0x60200401
1A05:05	StatusGap1	Padding (1 Bit)	UINT32	RO	0x00000001
1A05:06	StatusAccelerate	Accelerate (1 Bit)	UINT32	RO	0x60200601

Index (hex)	Name	Description	Data type	Flags	Default
1A05:07	StatusDecelerate	Decelerate (1 Bit)	UINT32	RO	0x60200701
1A05:08	StatusSoftEmg	Software Emergency (1 Bit)	UINT32	RO	0x6n200801
1A05:09	StatusCmdRejected	Command rejected (1 Bit)	UINT32	RO	0x6n200901
1A05:0A	StatusCmdAborted	Command Aborted (1 Bit)	UINT32	RO	0x6n200A01
1A05:0B	StatusGap2	BYTE padding (6 Bit)	UINT32	RO	0x0000006

Index 1A06 POS Status (TxPDO-Map)

Index	Name	Description	Data type	Flags	Default
(hex)					
1A06:0	POS Status		UINT8	RO	0x0D
1A06:01	StatusBusy	Busy (1 Bit)	UINT32	RO	0x60200101
1A06:02	StatusIn-Target	In-Target (1 Bit)	UINT32	RO	0x60200201
1A06:03	StatusWarning	Warning (1 Bit)	UINT32	RO	0x60200301
1A06:04	StatusError	Error (1 Bit)	UINT32	RO	0x60200401
1A06:05	StatusGap1	Padding (1 Bit)	UINT32	RO	0x00000001
1A06:06	StatusAccelerate	Accelerate (1 Bit)	UINT32	RO	0x60200601
1A06:07	StatusDecelerate	Decelerate (1 Bit)	UINT32	RO	0x60200701
1A06:08	StatusSoftEmg	Software Emergency (1 Bit)	UINT32	RO	0x60200801
1A06:09	StatusCmdRejected	Command rejected (1 Bit)	UINT32	RO	0x60200901
1A06:0A	StatusCmdAborted	Command Aborted (1 Bit)	UINT32	RO	0x60200A01
1A06:0B	StatusGap2	BYTE padding (6 Bit)	UINT32	RO	0x00000006
1A06:0C	StatusActual motor position	Actual position (32 Bit)	UINT32	RO	0x60201120
1A06:0D	StatusActual motor velocity	Actual velocity (32 Bit)	UINT32	RO	0x60202120

Index 1A07 Pos Counter Status (TxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1A07:0	Pos Counter Status	Position counter status	UINT8	RO	0x02

Index (hex)	Name	Description	Data type	Flags	Default
1A0701	StatusSet position counter done	Set position counter done (1 Bit)	UINT32	RO	0x60202301
1A07:02	StatusSync error	Sync error (1 Bit)	UINT32	RO	0x60202401
1A07:03	StatusTxPDO Toggle	TxPDO Toggle (1 Bit)	UINT32	RO	0x60202501
1A07:04	StatusGap1	BYTE padding (5 Bit)	UINT32	RO	0x00000005
1A07:05	StatusGap2	WORD padding (8 Bit)	UINT32	RO	0x00000008
1A07:06	StatusPosition counter value	Position counter value (32-Bit)	UINT32	RO	0x60201120

Index 1A08 Latch Status (TxPDO-Map)

Index (hex)	Name	Description	Data type	Flags	Default
1A08:0	Latch Status		UINT8	RO	0x09
1A08:01	StatusLatch extern valid DI 1	Latch DI 1 extern valid (1 Bit)	UINT32	RO	0x60300101
1A08:02	StatusLatch extern valid DI 2	Latch DI 2 extern valid (1 Bit)	UINT32	RO	0x60300201
1A08:03	Status_Status of extern latch DI 1	Status of the ext. latch input DI 1 (1 Bit)	UINT32	RO	0x60300301
1A08:04	Status_Status of extern latch DI 2	Status of the ext. latch input DI 2 (1 Bit)	UINT32	RO	0x60300401
1A08:05	StatusGap1	BYTE padding (4 Bit)	UINT32	RO	0x00000004
1A08:06	StatusGap2	empty (7 Bit)	UINT32	RO	0x00000007
1A08:07	StatusTxPDO Toggle	TxPDO Toggle (1 Bit)	UINT32	RO	0x60301001
1A08:08	StatusEncoder latched value	Latched encoder value (32-Bit)	UINT32	RO	0x60301220
1A08:09	StatusPosition counter latched value	Latched position counter value (32-Bit)	UINT32	RO	0x60301320

Index 1A09 Input Signal (TxPDO-Map)

Index	Name	Description	Data type	Flags	Default
(hex)					
1A09:0	Input Signal		UINT8	RO	0x08
1A09:01	StatusLeft reference input	Left reference input	UINT32	RO	
		(1 Bit)			0x60101301

Index (hex)	Name	Description	Data type	Flags	Default
1A09:02	StatusRight reference input	Right reference input	UINT32	RO	
		(1 Bit)			0x60101401
1A09:03	StatusEncoder A channel	Encoder A channel	UINT32	RO	
	input	input			
		(1 Bit)			0x60101501
1A09:04	StatusEncoder B channel	Encoder B channel	UINT32	RO	
	input	input			
		(1 Bit)			0x60101601
1A09:05	StatusEncoder Z channel	Encoder Z channel	UINT32	RO	
	input	input			
		(1 Bit)			0x60101701
1A09:06	StatusDriver enable	Driver enabled signal	UINT32	RO	
		(1 Bit)			0x60101801
1A09:07	StatusGap1	BYTE padding	UINT32	RO	
		(2 Bit)			0x00000002
1A09:08	StatusGap2	WORD padding	UINT32	RO	
		(8 Bit)			0x00000008

9.4 Sync Manager Objects

Index 1C00 Sync manager type

Index (hex)	Name	Description	Data type	Flags	Default
1C00:0	Sync manager type	Using the sync managers	UINT8	RO	0x04
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04

Index 1C12 RxPDO assign

Index (hex)	Name	Description	Data type	Flags	Default*
1C12:0	RxPDO assign	SyncManager 2 assignment: PDO Assign Outputs	UINT8	RO	0x1C
1C12:01	SubIndex 001	Default assignment: Velocity control	UINT16	RW	0x1601
1C12:02	SubIndex 002	Default assignment: Velocity control	UINT16	RW	0x1602

Index (hex)	Name	Description	Data type	Flags	Default*
1C12:03	SubIndex 003	Default assignment: Velocity control	UINT16	RW	0x1604
1C12:04	SubIndex 004	Reserve space for additional RxPDO assignment	UINT16	RW	0x0000
1C12:05	SubIndex 005	Reserve space for additional RxPDO assignment	UINT16	RW	0x0000
1C12:06	SubIndex 006	Reserve space for additional RxPDO assignment	UINT16	RW	0x0000
1C12:07	SubIndex 007	Reserve space for additional RxPDO assignment	UINT16	RW	0x0000

^{*}Sub index 001 to 007 contains the index of the associated RxPDO mapping object

Index 1C13 TxPDO assign

Index (hex)	Name	Description	Data type	Flags	Default*
1C13:0	TxPDO assign	SyncManager 3 assignment: PDO Assign Inputs	UINT8	RO	0x20
1C13:01	SubIndex 001	default assignment: Velocity control	UINT16	RW	0x1A01
1C13:02	SubIndex 002	default assignment: Velocity control	UINT16	RW	0x1A03
1C13:03	SubIndex 003	Reserve space for additional TxPDO assignment	UINT16	RW	0x0000
1C13:04	SubIndex 004	Reserve space for additional TxPDO assignment	UINT16	RW	0x0000
1C13:05	SubIndex 005	Reserve space for additional TxPDO assignment	UINT16	RW	0x0000
1C13:06	SubIndex 006	Reserve space for additional TxPDO assignment	UINT16	RW	0x0000
1C13:07	SubIndex 007	Reserve space for additional TxPDO assignment	UINT16	RW	0x0000
1C13:08	SubIndex 008	Reserve space for additional TxPDO assignment	UINT16	RW	0x0000

^{*}Sub index 001 to 008 contains the index of the associated TxPDO mapping object

Index 1C32 Sync Manager (SM) output parameter

Index (hex)	Name	Description	Data type	Flags	Default
1C32:0	SM output parameter	Synchronization parameters for the outputs	UINT8	RO	0x20
1C32:01	Synchronization Type	Current synchronization mode: O: Free Run SM 2 event C: DC-Mode - Synchronous with SYNCO Event	UINT8	RO	0x0001

Index (hex)	Name	Description	Data type	Flags	Default
		3: DC-Mode - Synchronous with SYNC1 event			
1C32:02	Cycle Time	Cycle time (in ns): Free Run: Cycle time of the local timer Synchronous with SM 2 event: Master cycle time DC mode: SYNCO/SYNC1 Cycle Time	UINT8	RO	0x00000000
1C32:04	Synchronization Types supported	Supported synchronization modes: Bit 0 = 1: free run is supported Bit 1 = 1: Synchron with SM 2 event is supported Bit 2-3 = 01: DC mode is supported Bit 4-5 = 10: Output shift with SYNC1 event (only DC mode)	UINT8	RO	0x8007
1C32:05	Minimum Cycle Time	Minimum cycle time (in ns)		RO	0x00000000
1C32:06	Calc and Copy Time	Minimum time between SYNC0 and SYNC1 event (in ns, DC mode only)		RO	0x00000000
1C32:08	Get Cycle Time	0: Measurement of the local cycle time is stopped 1: Measurement of the local cycle time is started Set parameter to 1 in order to update the Cycle Time (1C32:02, 1C33:02) parameter with the maximum measured value		RW	0x0000
1C32:09	Delay Time	Time between SYNC1 event and output (in ns, DC mode only)		RO	0x00000000
1C32:0A	Sync0 Cycle Time			RW	0x00000000
1C32:0B	SM-Event Missed	Number of missed SM events in OPERATIONAL (DC mode only)		RO	0x0000
1C32:0C	Cycle Time Too Small	Cycle was not completed in time or the next cycle began too early		RO	0x0000
1C32:20	Sync Error	The synchronization was not correct in the last cycle (outputs were output too late; DC mode only)		RO	FALSE

Index 1C33 Sync Manager (SM) input parameter

Index (hex)	Name	Description	Data type	Flags	Default
1C33:0	SM input parameter	Synchronization parameters for the inputs	UINT8	RO	0x20
1C33:01	Synchronization Type	Current synchronization mode: O: Free Run Synchron with SM 3 Event (no outputs available) C: DC - Synchron with SYNC0 Event SYNC1 Event 34: Synchron with SM 2 Event (outputs available)	UINT8	RO	0x0022
1C33:02	Cycle Time	Cycle time (in ns): Free Run: Cycle time of the local timer Synchronous with SM 2 event: Master cycle time DC mode: SYNC0/SYNC1 Cycle Time	UINT8	RO	0x00000000
1C33:04	Synchronization Types supported	Supported synchronization modes: Bit 0 = 1: free run is supported Bit 1 = 1: Synchron with SM 2 event is supported Bit 2-3 = 01: DC mode is supported Bit 4-5 = 10: Output shift with SYNC1 event (only DC mode)	UINT8	RO	0x8007
1C33:05 1C33:06	Minimum Cycle Time Calc and Copy Time	Minimum cycle time (in ns) Time between reading of the		RO RO	0x00000000 0x00000000
_ 355.00	200,	inputs and availability of the Inputs data for the master (in ns, only DC mode)			
1C33:08	Get Cycle Time	O: Measurement of the local cycle time is stopped 1: Measurement of the local cycle time is started Set parameter to 1 in order to update the Cycle Time (1C32:02, 1C33:02) parameter with the maximum measured value		RW	0x0000
1C33:09	Delay Time	Time between SYNC1 event and reading of the inputs (in ns, only DC mode)		RO	0x00000000
1C33:0A	Sync0 Cycle Time			RW	0x00000000

Index (hex)	Name	Description	Data type	Flags	Default
1C33:0B	SM-Event Missed	Number of missed SM events in OPERATIONAL (DC mode only)	,,	RO	0x0000
1C33:0C	Cycle Time Too Small	Cycle was not completed in time or the next cycle began too early		RO	0x0000
1C33:20	Sync Error	The synchronization was not correct in the last cycle (outputs were output too late; DC mode only)		RO	FALSE

9.5 Input Data

Index 6000 ENC Inputs

Index (hex)	Name	Description	Data type	Flags	Default
6000:0	ENC Status	Encoder status inputs	UINT8	RO	0x11
6000:03	Set encoder done	The encoder value has been set	BOOLEAN	RO	FALSE
6000:04	Set encoder z latch-clear mode done	Indicates whether the encoder index latch-clear mode was set successfully	BOOLEAN	RO	FALSE
6000:05	Counter underflow	Counter underflow	BOOLEAN	RO	FALSE
6000:06	Counter overflow	Counter overflow	BOOLEAN	RO	FALSE
6000:07	Encoder index event	Encoder index event detected	BOOLEAN	RO	FALSE
6000:0E	Sync error	The Sync error bit is only required for DC mode. It indicates whether a synchronization error has occurred during the previous cycle	BOOLEAN	RO	FALSE
6000:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated	BOOLEAN	RO	FALSE
6000:11	Actual encoder value	The counter value	INT32	RO	0x00000000

Index 6010 STM Inputs

Index (hex)	Name	Description	Data type	Flags	Default
6010:0	STM Inputs	Stepper motor inputs	UINT8	RO	0x18
6010:01	Ready to enable	Driver stage is ready for enabling	BOOLEAN	RO	FALSE
6010:02	Ready	Driver stage is ready for operation	BOOLEAN	RO	FALSE
6010:03	Warning	A warning has occurred	BOOLEAN	RO	FALSE
6010:04	Warning over temperature	Over-temperature pre- warning	BOOLEAN	RO	FALSE
6010:05	Warning open load	Open load detected on phase A or phase B Occurs when connectors are not firmly plugged In motor stand still, open load cannot be measured, as the coils might eventually have zero current In order to safely detect an interrupted coil connection, read out the open load flags at low or nominal motor velocity operation, only.	BOOLEAN	RO	FALSE
6010:06 6010:07	Error Error over temperature	An error has occurred Over-temperature	BOOLEAN BOOLEAN	RO RO	FALSE FALSE
		error			
6010:08	Error short to ground	Short to ground phase A or phase B	BOOLEAN	RO	FALSE
6010:09	Moving positive	Motor turns in positive direction	BOOLEAN	RO	FALSE
6010:0A	Moving negative	Motor turns in negative direction	BOOLEAN	RO	FALSE
6010:0B	Torque reduced	Reduced torque is active	BOOLEAN	RO	FALSE
6010:0C	Digital input 1	Digital input 1	BOOLEAN	RO	FALSE
6010:0D	Digital input 2	Digital input 2	BOOLEAN	RO	FALSE
6010:0E	Sync error	The Sync error bit is only required for DC mode. It indicates whether a synchronization error has occurred during the previous cycle.	BOOLEAN	RO	FALSE
6010:0F	Motor standstill	Indicates the whether	BOOLEAN	RO	FALSE

Index (hex)	Name	Description	Data type	Flags	Default
		motor is in standstill (TRUE - standstill)			
6010:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	FALSE
6010:11	Info data 1	Synchronous information (selection via sub index 8012:11)	INT32	RO	0x00000000
6010:12	Info data 2	Synchronous information (selection via sub index 8012:19)	INT32	RO	0x00000000
6010:13	Left reference input	Signal of the left reference input	BOOLEAN	RO	FALSE
6010:14	Right reference input	Signal of the right reference input	BOOLEAN	RO	FALSE
6010:15	Encoder A channel input	Signal of the encoder A channel	BOOLEAN	RO	FALSE
6010:16	Encoder B channel input	Signal of the encoder B channel	BOOLEAN	RO	FALSE
6010:17	Encoder Z channel input	Signal of the encoder Z channel	BOOLEAN	RO	FALSE
6010:18	Driver disabled	Indicates whether the driver has been enabled	BOOLEAN	RO	FALSE

Index 6020 POS Inputs

Index (hex)	Name	Description	Data type	Flags	Default
6020:0	POS Inputs		UINT8	RO	0x25
6020:01	Busy	A travel command is active	BOOLEAN	RO	FALSE
6020:02	In-Target	Motor has arrived at target	BOOLEAN	RO	FALSE
6020:03	Warning	A warning has occurred	BOOLEAN	RO	FALSE
6020:04	Error	An error has occurred	BOOLEAN	RO	FALSE
6020:05	Calibrated_xx	Motor is calibrated (not supported)	BOOLEAN	RO	FALSE
6020:06	Accelerate	Motor is in the acceleration phase	BOOLEAN	RO	FALSE
6020:07	Decelerate	Motor is in the deceleration phase	BOOLEAN	RO	FALSE
6020:08	Soft Emg	Emergency stop has been triggered by software	BOOLEAN	RO	FALSE
6020:09	Cmd rejected	Motion command has	BOOLEAN	RO	FALSE

Index (hex)	Name	Description	Data type	Flags	Default
		been reject			
6020:0A	Cmd aborted	Motion command has been aborted	BOOLEAN	RO	FALSE
6020:11	Actual motor position	Current target position of the travel command generator	INT32	RO	0x00000000
6020:21	Actual motor velocity	Current velocity of the travel command generator	INT32	RO	0x00000000
6020:22	Actual drive time_xx	Travel command time information (see subindex 8021:11) (Not supported)	UINT32	RO	0x00000000
6020:23	Set position counter done	The position counter has been set	BOOLEAN	RO	FALSE
6020:24	Sync error	The Sync error bit is only required for DC mode. It indicates whether a synchronization error has occurred during the previous cycle	BOOLEAN	RO	FALSE
6020:25	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated.	BOOLEAN	RO	FALSE

Index 6030 Latch Inputs

Index (hex)	Name	Description	Data type	Flags	Default
6030:0	Latch Inputs		UINT8	RO	0x13
6030:01	Latch extern valid DI 1	The counter value was stored via the external latch DI 1	BOOLEAN	RO	FALSE
6030:02	Latch extern valid DI 2	The counter value was stored via the external latch DI 2	BOOLEAN	RO	FALSE
6030:03	Status of extern latch DI 1	Status of the ext. latch input DI 1	BOOLEAN	RO	FALSE
6030:04	Status of extern latch DI 2	Status of the ext. latch input DI 2	BOOLEAN	RO	FALSE
6030:10	TxPDO Toggle	The TxPDO toggle is toggled by the slave when the data of the associated TxPDO is updated	BOOLEAN	RO	FALSE
6030:12	Latched encoder value	Latched encoder value	INT32	RO	0x00000000

Index (hex)	Name	Description	Data type	Flags	Default
6030:13	Latched position counter value	Latched position counter value	INT32	RO	0x00000000

9.6 Output Data

Index 7000 ENC Outputs

Index	Name	Description	Data type	Flags	Default
(hex)					
7000:0	ENC Outputs		UINT8	RO	0x12
7000:02	Set encoder	Assigned value to encoder counter • By setting the bit from FALSE to TRUE the encoder value (7000:11) will be set	BOOLEAN	RO	FALSE
7000:03	Set position counter	Assigned value to position counter • By setting the bit from FALSE to TRUE the position counter value (7000:12) will be set	BOOLEAN	RO	FALSE
7000:04	Set encoder z latch-clear mode	Set the latch and clear mode of the encoder counter in case of an index (z) event By setting the bit from FALSE to TRUE the Encoder z latch-clear mode (7000:06) will be set	BOOLEAN	RO	FALSE
7000:06	Encoder z latch-clear mode	Latch-clear mode of the encoder for an index (z) event • Valid range: 0x00 ~ 0x04 • 0: Disable index latch • 1: Latch index once. The encoder value will be latched by the index signal only once after 7000:06 has been set to 1 • 2: Latch continuous: After setting 7000:06	BIT8	RO	0x00

Index (hex)	Name	Description	Data type	Flags	Default
		to 2 the encoder value will be latched each time an index latch occurs. 3: Latch and clear once: After setting 7000:06 to 3 the encoder value will be latched and the encoder counter will be cleared at the first index signal encountered 4: Latch and clear continuous: After setting 7000:06 to 4 the encoder value will be latched and the encoder counter will be cleared after each index signal event			
7000:11	Set encoder value	Encoder value to be set via "Set encoder" • Valid range: 0x00000000^ 0xFFFFFFFF	INT32	RO	0x00000000
7000:12	Set position counter value	Position counter value to be set via "Set position counter" • Valid range: 0x00000000~ 0xFFFFFFFF	INT32	RO	0x00000000

Index 7010 STM Outputs

Index (hex)	Name	Description	Data type	Flags	Default
7010:0	STM Outputs	Stepper motor outputs	UINT8	RO	0x21
7010:01	Enable	Activates the output stage • Enable = TRUE Output "Maximal current" (0x8010:01) • Enable = FALSE Output to "Power on motor current" (0x8010:08)	BOOLEAN	RO	FALSE
7010:02	Reset	All errors that may	BOOLEAN	RO	FALSE

Index (hex)	Name	Description	Data type	Flags	Default
		have occurred are reset by setting this bit (rising edge) • By setting the bit from FALSE to TRUE errors which occurred during motion execution (e.g. overtemperature) will be cleared			
7010:03	Reduce torque	Activation of reduced torque (coil current) (sub index 8010:02)	BOOLEAN	RO	FALSE
7010:0c	Digital output1	Digital output1	BOOLEAN	RO	FALSE
7010:11	Position	Set position; Absolute target position for the "Position control" mode (see chapter 6.4) • Valid range: 0x00000000^ 0xFFFFFFFF	INT32	RO	0x00000000
7010:21	Velocity	Set velocity The target velocity for the "Velocity control" mode (see chapter 7) • Valid range: 0x00000000 0x00007fff	INT32	RO	0x00000000

Index 7020 POS Outputs

Index (hex)	Name	Description	Data type	Flags	Default
7020:0	POS Outputs		UINT8	RO	0x24
7020:01	Execute	Start travel command (rising edge), or prematurely abort travel command (falling edge)	BOOLEAN	RO	FALSE
7020:02	Emergency stop	Prematurely abort travel command with an emergency ramp (rising edge)	BOOLEAN	RO	FALSE
7020:11	Target position	Specification of the target position (unit: steps). • Depending on the	INT32	RO	0x00007FFF

Index (hex)	Name	Description	Data type	Flags	Default
(nex)		"Start type" (0x7020:22) the position can either be relative, absolute or additive • Valid range: 0x00000000~ 0xFFFFFFFF			
7020:21	Velocity	Specification of the maximum set velocity (unit: steps/second) Valid range: 0x00000000~ 0x00007fff	INT32	RO	0x00000000
7020:22	Start type	Specification of the start types (see Table 9: Start type definition)	UINT16	RO	0x0000
7020:23	Acceleration	Acceleration time (unit: see 0x8020:08) • see chapter 6.2.1 and 6.2.2. • Valid range: 0x0000~0xFFFF	UINT16	RO	0x0000
7020:24	Deceleration	Deceleration time (unit: see 0x8020:08) • see chapter 6.2.1 and 6.2.2. • Valid range: 0x0000~0xFFFF	UINT16	RO	0x0000

Index 7030 Latch Outputs

Index	Name	Description	Data type	Flags	Default
(hex)					
7030:0	Latch Outputs		UINT8	RO	0x04
7030:01	Enable latch active edge	DI 1 trigger level: rising	BOOLEAN	RO	FALSE
	DI 1	edge			
7030:02	Enable latch active edge	DI 2 trigger level: rising	BOOLEAN	RO	FALSE
	DI 2	edge			
7030:03	Enable latch inactive edge	DI 1 trigger level:	BOOLEAN	RO	FALSE
	DI 1	falling edge			
7030:04	Enable latch inactive edge	DI 2 trigger level:	BOOLEAN	RO	FALSE
	DI 2	falling edge			

9.7 Configuration Data

Index 8000 ENC Settings

Index (hex)	Name	Description	Data type	Flags	Default
8000:0	ENC Settings	Encoder settings	UINT8	RO	0x0E
8000:0E	Reversion of rotation	Activates reversion of	BOOLEAN	RW	FALSE
		rotation of the encoder			

Index 8010 STM Motor Settings

Index (hex)	Name	Description	Data type	Flags	Default
8010:0	STM Motor Settings	Stepper motor settings	UINT8	RO	0x12
8010:01	Maximum run current	Peak motor coil current for driving (unit: mA), default: 750, max: 2000 Valid range: 0~2000	UINT16	RW	0x02EE (750)
8010:02	Reduced run current	Reduced peak motor coil current for driving(reduced torque, unit: mA), default: 375, max: 1500 Will be activated when "Reduced torque" (0x7010:03) has been set to true Valid range: 0~1500	UINT16	RW	0x0177 (375)
8010:03	Maximum hold current	Motor standstill current (unit: mA), default: 750, max: 1500 • Valid range: 0~1500 ATTENTION: • Do not set the "Maximal hold current" value greater than 1200mA otherwise the device may reach over-	UINT16	RW	0x02EE (750)
		temperature and will switch the current output to			

Index (hex)	Name	Description	Data type	Flags	Default
(men)		"Safe motor current".			
8010:04	Reduced hold current	Reduced Motor standstill current (unit: mA), default: 375, max: 1500. Will be activated when "Reduced torque" (0x7010:03) has been set to true • Valid range: 0~1500	UINT16	RW	0x0177 (375)
8010:06	Motor fullsteps	Motor full steps per revolution (not supported)	UINT16	RW	0x0000
8010:07	Micro Steps	Number of microsteps per full step. • Supported values: 256, 128, 64, 32, 16, 8, 4, 2, 1	DT0801EN16	RW	0x0008 ("256")
8010:08	Power on motor current	Motor coil current output directly after power on (unit: mA) • Valid range: 0~1500	UINT16	RW	0x0177 (375)
8010:09	Max Start Velocity	Maximum possible start velocity of the motor • Valid range: 0x0000~0xFFFF	UINT16	RW	0x0064 (100)
8010:12	Safe motor current	Set the safe motor coil current (will be applied if state changes from OP to a different state)(unit: mA) • Valid range: 0~1500 ATTENTION: • Do not set the "Safe motor current" value higher than 1000mA otherwise the device may irreparable be damaged due to over-temperature. • It is suggested not to change the factory default setting.	UINT16	RW	0x0177 (375)

Index 8012 STM Features

Index (hex)	Name	Description	Data type	Flags	Default
8012:0	STM Features	Stepper motor features	UINT8	RO	0x42
8012:01	Operation mode	Operating mode, • 0: automatic • 2: velocity control • 3: position control	DT0802EN04	RW	0x00 ("Automatic")
8012:09	Invert motor polarity	Activates reversal of the motor rotation direction.	BOOLEAN	RW	FALSE
8012:11	Select info data 1	Select "Info data 1": 3: Motor coil current A 4: Motor coil current B 7: Motor velocity 8: Encoder position 9: Position counter 14: Error code (see motion stop error table)	DT0803EN08	RW	0x03 ("Motor coil current A")
8012:19	Select info data 2	Select "Info data 2": 3: Motor coil current A 4: Motor coil current B 7: Motor velocity 8: Encoder position 9: Position counter 14: Error code (see motion stop error table)	DT0803EN08	RW	0x04 ("Motor coil current B")
8012:2A	Power on DO 1	Set the power on DO 1 (will be applied directly after switching the device on)	BOOLEAN	RW	FALSE
8012:2B	Safety DO 1	Set the safe DO 1 (will be applied if state changes from OP to different state)	BOOLEAN	RW	FALSE
8012:30	Invert digital input 1	Inversion of digital input 1	BOOLEAN	RW	FALSE
8012:31	Invert digital input 2	Inversion of digital input 2	BOOLEAN	RW	FALSE
8012:32	Function for input 1	Select the digital input 1 type: O: Normal input 1: Hardware stop	DT080AEN04	RW	0x00 ("Normal input")

Index (hex)	Name	Description	Data type	Flags	Default
(-)		enable			
8012:36	Function for input 2	Select the digital input 2 type: O: Normal input 1: Hardware stop enable	DT080AEN04	RW	0x00 ("Normal input")
8012:37	Limit switch stop mode	Hardware limit stop mode • 0: Limit switch hard stop - motion output stops immediately once the limit switch has been activated • 1: Limit switch soft stop - motor decelerates to stop. The deceleration setting has to be done via 8020:0D	DT080BEN01	RW	0x00 ("Limit switch hard stop")
8012:40	Encoder index latch trigger	Latch trigger setting for the encoder index (z) pulse: • 0: Level trigger • 1: Rising edge trigger • 2: Falling edge trigger • 3: Rising and falling edge trigger	DT0811EN03	RW	0x00 ("Level trigger")
8012:42	Encoder index polarity	Active polarity of the encoder index (z): • 0: Low active • 1: High active	DT0813EN01	RW	0x01 ("High active")
8012:43	Generate hardware limit stop error	Set whether a error stop will be generated if motion has been stopped by hardware limit switch. The error first have to be cleared before the next motion command can be issued.	BOOLEAN		TRUE

Index (hex)	Name	Description	Data type	Flags	Default
		O: no error stop No error reset is necessary to issue the next command. This mode is being used if limit stop is being used for home search. 1: Generate an error stop Error reset is necessary (0x7010:02)			

Index 8020 POS Settings

Index	Name	Description	Data type	Flags	Default
(hex)					
8020:0	POS Settings	Position settings	UINT8	RO	0x07
8020:01	Velocity min	Minimum set velocity • Valid range: 0~8388096	UINT32	RW	0x00000000
8020:02	Velocity max	 Maximum set velocity Maximum velocity supported by the system Valid range: 0~8388096 	UINT32	RW	0x00002710 (10000)
8020:03	Acceleration pos	Acceleration in positive direction of rotation (unit: see 8020:08) • Valid range: 0~65535	UINT16	RW	0x03E8 (1000)
8020:04	Acceleration neg	Acceleration in negative direction of rotation (unit: see 8020:08) • Valid range: 0~65535	UINT16	RW	0x03E8 (1000)
8020:05	Deceleration pos	Deceleration in positive direction of rotation (unit: see 8020:08) • Valid range: 0~65535	UINT16	RW	0x03E8 (1000)
8020:06	Deceleration neg	Deceleration in	UINT16	RW	0x03E8

Index (hex)	Name	Description	Data type	Flags	Default
		negative direction of rotation (unit: see 8020:08) • Valid range: 0~65535			(1000)
8020:07	Emergency deceleration	Emergency deceleration (both directions of rotation, unit: see 8020:08) • Valid range: 0~65535	UINT16	RW	0x0000
8020:08	Acceleration unit	Set the acceleration unit: O: Acceleration time from Vmin to Vmax [ms] 1: Acceleration time from Vmin to Vtarget [ms] 2: Acceleration [128*uStep/sec^2] 3: Acceleration time from Vcurrent to Vtarget [ms]	DT0814EN02	RW	0 ("Acceleration time from Vmin to Vmax [ms]")
8020:09	Acc-Dec parameter definition	Set the acceleration-deceleration profile: 1: Acceleration>Start phase & Deceleration>Stop Phase 2: Acceleration>Acceleration & Deceleration> Deceleration (not support by "Acceleration unit" = 3)	DT0815EN01	RW	0 ("Acceleration>Start phase & Deceleration>Stop Phase")
8020:0D	Hardlimit deceleration	Hardware limit deceleration (both directions of rotation, unit: see 8020:08) • Valid range: 0~65535	UINT16	RW	0x0000

Index 8021 POS Features

Index (hex)	Name	Description	Data type	Flags	Default
8021:0	POS Features		UINT8	RO	0x01
8021:01	Start type	Standard start type:	DT080FEN16	RW	0x0002

Index (hex)	Name	Description	Data type	Flags	Default
		 0: Idle, 1: Absolute, 2: Relative, 3:Endless plus 4:Endless minus 6: Additive, 1001: absolute change, 1002: relative change, 1006: additive change 			("Relative")

9.8 Driver Tuning Functions

Index 8030 Vendor Specific

Index (hex)	Name	Description	Data type	Flags	Default
8030:0	Vendor specific	Stepper motor specific tuning configuration	UINT8	RO	0x0D
8030:01	GCONF	General configuration	UINT32	RW	0x00000000
8030:02	CHOPCONF	Chopper configuration	UINT32	RW	0x100101D5
8030:03	COOLCONF	Smart energy control "coolStep" and "stallGuard"	UINT32	RW	0x00000000
8030:04	PWMCONF	Voltage PWM mode stealthChop	UINT32	RW	0x00050480
8030:05	TPOWER_DOWN	Sets the delay time after standstill of the motor to motor current power down. The time range is about 0 to 4 seconds.	UINT32	RW	0x00000007
8030:06	TSTEP	Actual measured time between two 1/256 micro steps derived from the step input frequency in units of 1/F_CLK. (F_CLK = 2^24)	UINT32	RO	
8030:07	TPWMTHRS	This is the upper velocity of the for "stealthChop" voltage PMW mode. TSTEP>=TPWMTHRS - "steathChop" PWM mode is enabled, if configured	UINT32	RW	0x00000000

Index (hex)	Name	Description	Data type	Flags	Default
(IICX)		- "dsStep" is disabled			
8030:08	TCOOLTHRS	This is the lower threshhold velocity for switching on smart energy "coolStep and "stallGuard" feature.	UINT32	RW	0x0000000
8030:09	THIGH	This velocity setting allows velocity dependent switching into different chopper mode and fullstepping to maximize torque.	UINT32	RW	0x0000000
8030:0A	VDCMIN	Automatic commutation dcStep enabled above velocity VDCMIN (unsigned)	UINT32	RW	0x00000000
8030:0B	DCCTRL	dcStep (DC) automatic commutation configuration register		WO	
8030:0C	DRV_STATUS	"stallGuard" value and driver error flags (see separate table)		RO	
8030:0D	PWM_SCALE	Actual PWM amplitude scaler (255=max. Voltage) In voltage mode PWM, this value allows to detect a motor stall.		RO	

The tables in chapter 11 provides further information about the trinamic TMC5130A register represented by the "Vendor Specific" Service Data Object.

9.9 Information and Diagnostic Data

Index A010 STM Diag data

Index (hex)	Name	Description	Data type	Flags	Default
A010:0	STM Diag data	Stepper motor diagnostic data	UINT8	RO	0x11
A010:02	Over temperature	Driver IC temperature has reached more than 80 °C • ATTENTION: This error message must be acknowledged by the user (see index 0x7010:02)	BOOLEAN	RO	FALSE

Index (hex)	Name	Description	Data type	Flags	Default
A010:03	Torque overload	Not supported	BOOLEAN	RO	FALSE
A010:04	Under voltage	Indicates an undervoltage on the charge pump. The driver is disabled in this case • ATTENTION: This error message must be acknowledged by the user (see index 0x7010:02)	BOOLEAN	RO	FALSE
A010:05	Over voltage	Not supported	BOOLEAN	RO	FALSE
A010:06	Short circuit A	Short to GND detected on phase A. The driver becomes disabled. Switch the ECAT-2091S off/on.	BOOLEAN	RO	FALSE
A010:07	Short circuit B	Short to GND detected on phase B. The driver becomes disabled. Switch the ECAT-2091S off/on.	BOOLEAN	RO	FALSE
A010:08	No control power	Not supported	BOOLEAN	RO	FALSE
A010:09	Misc error	Driver has been shut down due to - overtemperature - short circuit detection - undervoltage "uv_cp" ATTENTION: This error message must be acknowledged by the user (see index 0x7010:02)	BOOLEAN	RO	FALSE
A010:0a	Configuration	Not supported	BOOLEAN	RO	FALSE
A010:11	Actual operation mode	Not supported	DT0809EN04	RO	0x00
A010:1e	Error code	Shows the error which resulted in a motion execution stopped (see motion stop error table)	UINT32	RO	0x00000000

Index A020 POS Diag data

Index (hex)	Name	Description	Data type	Flags	Default
A020:0	POS Diag data	Stepper motor diagnostic data for position control	UINT8	RO	0x06
A020:01	Command rejected	Dynamic change of the target position was not accepted	BOOLEAN	RO	FALSE

Index (hex)	Name	Description	Data type	Flags	Default
A020:02	Command aborted	Command aborted due to internal error or emergency stop	BOOLEAN	RO	FALSE
A020:03	Target overrun	Change the target position on the fly may lead to an overshoot of the position and therefore change in direction of rotation may be necessary	BOOLEAN	RO	FALSE
A020:04	Target timeout	Not supported	BOOLEAN	RO	FALSE
A020:05	Position lag	Not supported	BOOLEAN	RO	FALSE
A020:06	Emergency stop	Emergency stop	BOOLEAN	RO	FALSE

9.10 Configuration Parameters Storage

Index F008 Internal EEPROM

Index (hex)	Name	Description	Data type	Flags	Default
F008:0	Internal EEPROM	Storing CoE parameters to the internal EEPROM.	UINT8	RO	0x05
F008:01	Code Word	Password for saving CoE configuration data to the EEPROM Password: 0x12345678	UINT32	RW	0x00000000
F008:02	Save Counter	Total number of save sequence	UINT16	RO	0x0000
F008:03	Load factory default	Load factory default configuration immediately after power on. By setting this parameter to FALSE the user set configuration data (0x8000 to 0x8021) will be loaded after power on	BOOLEAN	RW	TRUE
F008:04	Save configuration data	Save all configuration setting to local nonvolatile memory. • Set to TRUE in order to save the configuration data (0x8000 to 0x8021)	BOOLEAN	RW	FALSE

Index (hex)	Name	Description	Data type	Flags	Default
		to the memory of the ECAT-2091S			
F008:05	Save error encountered	Indicates whether data has been successfully written to memory	BOOLEAN	RO	FALSE

9.11 Station alias Configuration

Index F009 Station Alias

	mack 1005 Station 7 mas				
Index	Name	Description	Data type	Flags	Default
(hex)					
F009:0	Station Alias		UINT8	RO	0x02
F009:01	Rotary switch value	rotary switch value • set this value to the corresponding ESC register if the "ESC register load setting" is 0	UINT16	RO	0x00
F009:02	ESC register load setting	Get alias value from rotary switch or SII, and set this value to the corresponding ESC register. This setting only takes effect when ECAT-2091S is powered on. • 0: rotary switch • 1: SII	BOOLEAN	RW	0x0

10 Error Table

Motion Stop Error			
Error	Description		
0x0001	Software emergency stop		
0x0002	Over-temperature		
0x0004	Under voltage		
0x0008	Short circuit A		
0x0010	Short circuit B		
0x0020	Left hardware switch		
0x0040	Right hardware switch		
0x0080	EtherCAT status changed from OP to PreOP or SafeOP during motion execution		
0x0100	The motion chip has been reset. This error mainly occurs when there is no motor voltage (VM) supply		

Table 14: Motion stop error table

11 Vendor Specific Register Definitions

	GCONF - General Configuration Register					
Bit	Name	Description	Default			
0	I_scale_analog	0: Normal operation, use internal reference voltage	0			
		1: Use voltage supplied to AIN as current reference				
1	internal_Rsense	0: Normal operation	0			
		1: Internal sense resistors. Use current supplied into				
		AIN as reference for internal sense resistor				
2	en_pwm_mode	1: stealthChop voltage PWM mode enabled	0			
		(depending on velocity thresholds). Switch from off				
		to on state while in stand still, only.				
3	enc_commutation	1: Enable commutation by full step encoder	0			
		(DCIN_CFG5 = ENC_A, DCEN_CFG4 = ENC_B)				
4	shaft	1: Inverse motor direction	0			
5	diag0_error	(only with SD_MODE=1)	0			
		1: Enable DIAGO active on driver errors:				
		Over temperature (ot), short to GND (s2g),				
		undervoltage chargepump (uv_cp)				
		DIAGO always shows the reset-status, i.e. is active				
		low during reset condition.				
6	diag0_otpw	(only with SD_MODE=1)	0			
		1: Enable DIAGO active on driver over temperature				
		prewarning (otpw)				
7	diag0_stall	(with SD_MODE=1)	0			
		1: Enable DIAGO active on motor stall (set				
		TCOOLTHRS before using this feature)				
		diag0_step (with SD_MODE=0)				
		0: DIAGO outputs interrupt signal				
		1: Enable DIAGO as STEP output (dual edge triggered				
		steps) for external STEP/DIR driver				
8	diag1_stall	(with SD_MODE=1)	0			
		1: Enable DIAG1 active on motor stall (set				
		TCOOLTHRS before using this feature)				
		diag1_dir (with SD_MODE=0)				
		0: DIAG1 outputs position compare signal				
		1: Enable DIAG1 as DIR output for external STEP/DIR				
		driver				
9	diag1_index	(only with SD_MODE=1)	0			
		1: Enable DIAG1 active on index position (microstep				
		look up table position 0)				
10	diag1_onstate	(only with SD_MODE=1)	0			
		1: Enable DIAG1 active when chopper is on (for the				
		coil which is in the second half of the fullstep)				
11	diag1_steps_skipped	(only with SD_MODE=1)	0			
		1: Enable output toggle when steps are skipped in				

Page 98

	GCONF - General Configuration Register					
Bit	Name	Description	Default			
		dcStep mode (increment of LOST_STEPS). Do not				
		enable in conjunction with other DIAG1 options.				
12	diag0_int_pushpull	0: SWN_DIAG0 is open collector output (active low)	0			
		1: Enable SWN_DIAGO push pull output (active high)				
13	diag1_poscomp_pushpull	0: SWP_DIAG1 is open collector output (active low)	0			
		1: Enable SWP_DIAG1 push pull output (active high)				
14	small_hysteresis	0: Hysteresis for step frequency comparison is 1/16	0			
		1: Hysteresis for step frequency comparison is 1/32				
15	stop_enable	0: Normal operation	0			
		1: Emergency stop: ENCA_DCIN stops the sequencer				
		when tied high (no steps become executed by the				
		sequencer, motor goes to standstill state).				
16	direct_mode	0: Normal operation	0			
		1: Motor coil currents and polarity directly				
		programmed via serial interface: Register XTARGET				
		(0x2D) specifies signed coil A current (bits 80) and				
		coil B current (bits 2416). In this mode, the current				
		is scaled by IHOLD setting. Velocity based current				
		regulation of voltage PWM is not available in this				
		mode. The automatic voltage PWM current				
		regulation will work only for low stepper motor				
		velocities.				
17	test_mode	0: Normal operation	0			
		1: Enable analog test output on pin ENCN_DCO.				
		IHOLD[10] selects the function of ENCN_DCO: 02:				
		T120, DAC, VDDH				
		Attention: Not for user, set to 0 for normal				
		operation!				

Table 15: GCONF - General Configuration Register

ATTENTION:

Functions marked in grey are not allowed to be changed. These functions are fixed by hardware and should not be changed.

	CHOPCONF- Chopper Configuration					
Bit	Name	Function	Description	Default		
31	-	reserved	-	0		
30	diss2g	Short to GND protection	0: Short to GND protection is on	0		
		disable	1: Short to GND protection is disabled			
29	dedge	enable double edge step	1: Enable step impulse at each step edge	0		
		pulses	to reduce step frequency requirement.			
28	intpol	interpolation to 256	1: The actual microstep resolution (MRES)	1		
		microsteps	becomes extrapolated to 256 microsteps			
			for smoothest motor operation (useful for			
			Step/Dir operation, only)			
27	mres3	MRES	• %0000:	0		
26	mres2	micro step resolution	Native 256 microstep setting. Normally	0		

CHOPCONF- Chopper Configuration					
Bit	Name	Function	Description	Default	
25	mres1		use this setting with the internal	0	
24	mres0		motion controller. * %0001 %1000: 128, 64, 32, 16, 8, 4, 2, FULLSTEP Reduced microstep resolution esp. for Step/Dir operation. The resolution gives the number of microstep entries per sine quarter wave. The driver automatically uses microstep positions which result in a symmetrical wave, when choosing a lower microstep resolution. step width=2^MRES [microsteps]	0	
23	sync3	SYNC	This register allows synchronization of the	0	
22	sync2	PWM synchronization	chopper for both phases of a two phase	0	
21	sync1	clock	motor in order to avoid the occurrence of	0	
20	sync0		a beat, especially at low motor velocities. It is automatically switched off above VHIGH. ■ %0000: Chopper sync function chopSync off ■ %0001 %1111: Synchronization with fSYNC = f_CLK /(sync*64) Hint: Set TOFF to a low value, so that the chopper cycle is ended, before the next sync clock pulse occurs. Set for the double desired chopper frequency for chm=0, for the desired base chopper frequency for chm=1.	0	
19	vhighchm	high velocity chopper mode	This bit enables switching to chm=1 and fd=0, when VHIGH is exceeded. This way, a higher velocity can be achieved. Can be combined with vhighfs=1. If set, the TOFF setting automatically becomes doubled during high velocity operation in order to avoid doubling of the chopper frequency.	0	
18	vhighfs	high velocity fullstep selection	This bit enables switching to fullstep, when VHIGH is exceeded. Switching takes place only at 45° position. The fullstep target current uses the current value from the microstep table at the 45° position.	0	
17	vsense	sense resistor voltage based current scaling	O: Low sensitivity, high sense resistor voltage 1: High sensitivity, low sense resistor voltage Voltage	0	
16	tbl1	TBL	%00 %11:	1	
15	tbl0	blank time select	Set comparator blank time to 16, 24, 36 or 54 clocks	0	

		CHOPCONF-	Chopper Configuration	
Bit	Name	Function	Description	Default
			Hint: %01 or %10 is recommended for	
			most applications	
14	chm	chopper mode	 0: Standard mode (spreadCycle) 1: Constant off time with fast decay time. Fast decay time is also terminated when the negative nominal current is reached. Fast decay is after on time. 	0
13	rndtf	random TOFF time	 0: Chopper off time is fixed as set by TOFF 1: Random mode, TOFF is random modulated by dN_{CLK}= -12 +3 clocks. 	0
12	disfdcc	fast decay mode	chm=1: disfdcc=1 disables current comparator usage for termi-nation of the fast decay cycle	0
11	fd3	TFD [3]	chm=1: MSB of fast decay time setting TFD	0
10	hend3	HEND	• chm=0	0
9	hend2	hysteresis low value	%0000 %1111:	0
8	hend1	OFFSET	Hysteresis is -3, -2, -1, 0, 1,, 12	1
7	hend0	sine wave offset	(1/512 of this setting adds to current setting) This is the hysteresis value which becomes used for the hysteresis chopper. ■ chm=1 %0000 %1111: Offset is -3, -2, -1, 0, 1,, 12 This is the sine wave offset and 1/512 of the value becomes added to the absolute value of each sine wave entry.	1
6	hstrt2	- HSTRT	■ chm=0	1
5	hstrt1	hysteresis start value	%000 %111:	0
4	hstrt0	added to HEND - TFD [20] fast decay time setting	Add 1, 2,, 8 to hysteresis low value HEND (1/512 of this setting adds to current setting) Attention: Effective HEND+HSTRT ≤ 16. Hint: Hysteresis decrement is done each 16 clocks • chm=1 Fast decay time setting (MSB: fd3): %0000 %1111: Fast decay time setting TFD with N _{CLK} = 32*HSTRT (%0000: slow decay only)	1
3	toff3	TOFF off time	Off time setting controls duration of slow	0
2	toff2	and driver enable	decay phase	1
1	toff1		N _{CLK} = 12 + 32*TOFF	0

	CHOPCONF- Chopper Configuration					
Bit	Name	Function	Description	Default		
0	toff0		%0000: Driver disable, all bridges off %0001: 1 – use only with TBL ≥ 2 %0010 %1111: 2 15	1		
			General enable for the motor driver, the actual value does not influence stealthChop O: Driver off 1 15: Driver enabled			

Table 16: CHOPCONF- Chopper Configuration

	COOLCONF- Smart Energy Control					
Bit	Name	Function	Description	Default		
	-	reserved	-	0		
24	sfilt	stallGuard2 filter enable	 0: Standard mode, high time resolution for stallGuard2 1: Filtered mode, stallGuard2 signal updated for each four fullsteps (resp. six fullsteps for 3 phase motor) only to compensate for motor pole tolerances 	0		
23	-	reserved		0		
22	sgt6	stallGuard2 threshold	This signed value controls stallGuard2	0		
21	sgt5	value	level for stall output and sets the optimum	0		
20	sgt4		measurement range for readout. A lower	0		
19	sgt3		value gives a higher sensitivity. Zero is the	0		
18	sgt2		starting value working with most motors.	0		
17	sgt1		-64 to +63: A higher value makes	0		
16	sgt0		stallGuard2 less sensitive and requires more torque to indicate a stall.	0		
15	seimin	minimum current for smart current control	 0: 1/2 of current setting (IRUN) 1: 1/4 of current setting (IRUN) 	0		
14	sedn1	current down step speed	 %00: For each 32 stallGuard2 values 	0		
13	sedn0		 decrease by one %01: For each 8 stallGuard2 values decrease by one %10: For each 2 stallGuard2 values decrease by one %11: For each stallGuard2 value decrease by one 	0		
12	-	reserved		0		
11	semax3	stallGuard2 hysteresis	If the stallGuard2 result is equal to or	0		
10	semax2	value for smart current	above (SEMIN+SEMAX+1)*32, the motor	0		
9	semax1	control	current becomes decreased to save	0		
8	semax0		energy. %0000 %1111: 0 15	0		
7	-	reserved		0		
6	seup1	current up step width	Current increment steps per measured	0		
5	seup0		stallGuard2 value %00 %11: 1, 2, 4, 8	0		

COOLCONF- Smart Energy Control						
Bit	Name	Function	Function Description			
4	-	reserved		0		
3	semin3	minimum stallGuard2	If the stallGuard2 result falls below	0		
2	semin2	value for smart current	SEMIN*32, the motor current becomes	0		
1	semin1	control and	increased to reduce motor load angle.	0		
0	semin0	smart current enable	%0000: smart current control coolStep	0		
			off			
			• %0001 %1111: 1 15			

Table 17: COOLCONF- Smart Energy Control

	PWMCONF- Voltage PWM Mode stealthChop					
Bit	Name	Function	Description	Default		
	-	reserved	-	0		
21	freewheel1	Allows different	Stand still option when motor current	0		
		standstill modes	setting is zero (I_HOLD=0).			
20	freewheel0		%00: Normal operation	0		
			%01: Freewheeling			
			%10: Coil shorted using LS drivers			
			%11: Coil shorted using HS			
			driverssetting is zero (I_HOLD=0).			
			%00: Normal operation			
			%01: Freewheeling			
			%10: Coil shorted using LS drivers			
			%11: Coil shorted using HS drivers			
19	pwm_	Force symmetric PWM	0: The PWM value may change within	1		
	symmetric		each PWM cycle (standard mode)			
			1: A symmetric PWM cycle is enforced			
18	pwm_	PWM automatic	0: User defined PWM amplitude. The	0		
	autoscale	amplitude scaling	current settings have no influence.			
			1: Enable automatic current control			
			Attention: When using a user defined			
			sine wave table, the amplitude of this			
			sine wave table should not be less than			
			244. Best results are obtained with 247			
			to 252 as peak values.			
17	pwm_freq1	PWM frequency	■ %00: fPWM=1/1024 f _{CLK}	1		
16	pwm_freq0	selection	■ %01: fPWM=1/683 f _{CLK}	0		
			■ %10: fPWM=1/512 f _{CLK}			
			■ %11: fPWM=1/410 f _{CLK}			
15	PWM_	User defined amplitude	pwm_ autoscale=0	0		
14	GRAD	(gradient) or regulation	Velocity dependent gradient for PWM	0		
13		loop gradient	amplitude:	0		
12			PWM_GRAD * 256 / TSTEP	0		
11			is added to PWM_AMPL	1		
10			<pre>pwm_ autoscale=1</pre>	0		
9			User defined maximum PWM	0		
8			amplitude change per half wave (1 to 15)	1		

	PWMCONF- Voltage PWM Mode stealthChop					
Bit	Name	Function	Ď	escription	Default	
7	PWM_	User defined amplitude	•	pwm_ autoscale=0	0	
6	AMPL	(offset)		User defined PWM amplitude offset (0-	0	
5				255)	0	
4				The resulting amplitude (limited to	0	
3				0255) is:	0	
2				PWM_AMPL + PWM_GRAD * 256 /	0	
1				TSTEP	0	
0			•	pwm_ autoscale=1 User defined maximum PWM amplitude when switching back from current chopper mode to voltage PWM mode (switch over velocity defined by TPWMTHRS). Do not set too low values, as the regulation cannot measure the current when the actual PWM value goes below a setting specific value. Settings above 0x40 recommended.	0	

Table 18: PWMCONF- Voltage PWM Mode stealthChop

	Velocity Dependent Driver Feature Control Register					
R/W	Bit Qty	Name	Description	Default		
W	8	TPOWER_DOWN	TPOWERDOWN sets the delay time after stand still (stst) of the motor to motor current power down. Time range is about 0 to 4 seconds. 0((2^8)-1) * 2^18 t _{CLK}	0x00000007		
R	20	TSTEP	Actual measured time between two 1/256 microsteps derived from the step input frequency in units of 1/f _{CLK} . Measured value is (2^20)-1 in case of overflow or stand still. All TSTEP related thresholds use a hysteresis of 1/16 of the compare value to compensate for jitter in the clock or the step frequency. The flag small hysteresis			
			modifies the hysteresis to a smaller value of 1/32. (Txxx*15/16)-1 or (Txxx*31/32)-1 is used as a second compare value for each comparison value.			
			This means, that the lower switching velocity equals the calculated setting, but the upper switching velocity is higher as defined by the hysteresis setting.			
			When working with the motion controller, the measured TSTEP for a given velocity V is in the range (224 / V) ≤ TSTEP ≤ 224 / V - 1.			

	Velocity Dependent Driver Feature Control Register				
R/W	Bit	Name	Description	Default	
	Qty				
			In dcStep mode TSTEP will not show the mean velocity		
			of the motor, but the velocities for each microstep,		
			which may not be stable and thus does not represent		
			the real motor velocity in case it runs slower than the		
14/	20	TDVA/AATUDC	target velocity.	0	
W	20	TPWMTHRS	This is the upper velocity for stealthChop voltage PWM	0	
			mode. TSTEP ≥ TPWMTHRS		
			- stealthChop PWM mode is enabled, if configured - dcStep is disabled		
W	20	TCOOLTHRS	This is the lower threshold velocity for switching on	0x00000000	
VV	20	TCOOLITIKS	smart energy coolStep and stallGuard feature.	0.00000000	
			(unsigned)		
			Set this parameter to disable coolStep at low speeds,		
			where it cannot work reliably. The stop on stall		
			function (enable with sg_stop when using internal		
			motion controller) and the stall output signal become		
			enabled when exceeding this velocity. In non-dcStep		
			mode, it becomes disabled again once the velocity falls		
			below this threshold.		
			TCOOLTHRS ≥ TSTEP ≥ THIGH:		
			 coolStep is enabled, if configured 		
			 stealthChop voltage PWM mode is disabled 		
			 TCOOLTHRS ≥ TSTEP 		
			 Stop on stall and stall output signal is 		
			enabled, if configured		
W	20	THIGH	This velocity setting allows velocity dependent	0x00000000	
			switching into a different chopper mode and		
			fullstepping to maximize torque. (unsigned)		
			The stall detection feature becomes switched off for 2-		
			3 electrical periods whenever passing THIGH threshold		
			to compensate for the effect of switching modes.		
			TSTEP ≤ THIGH:		
			coolStep is disabled (motor runs with normal		
			current scale) stealthChop voltage PWM mode is disabled		
			If vhighchm is set, the chopper switches to chm=1		
			with TFD=0 (constant off time with slow decay,		
			only).		
			chopSync2 is switched off (SYNC=0)		
			 If vhighfs is set, the motor operates in fullstep 		
			mode and the stall detection becomes switched		
			over to dcStep stall detection.		
	1	I	1 222	l	

Table 19: Velocity Dependent Driver Feature Control Register

	Ramp Generator driver Feature Control Register				
R/W	Bit	Name	Description	Default	
	Qty				
W	23	VDCMIN	Automatic commutation dcStep becomes enabled above velocity VDCMIN (unsigned) (only when using internal ramp generator, not for STEP/DIR interface – in STEP/DIR mode, dcStep becomes enabled by the external signal DCEN) In this mode, the actual position is determined by the sensor-less motor commutation and becomes fed back to XACTUAL. In case the motor becomes heavily loaded, VDCMIN also is used as the minimum step velocity. Activate stop on stall (sg_stop) to detect step loss. ■ 0: Disable, dcStep off ■ VACT ≥ VDCMIN ≥ 256: - Triggers the same actions as exceeding THIGH setting. - Switches on automatic commutation dcStep Hint: Also set DCCTRL parameters in order to operate dcStep. (Only bits 22 8 are used for value and for comparison)	0x00000000	

Table 20: Ramp Generator driver Feature Control Register

	Motor Drive Register					
R/W	Bit Qty	Name	Description	Default		
W	24	DCCTRL	dcStep (DC) automatic commutation configuration register (enable via pin DCEN or via VDCMIN): ■ bit 9 0: DC_TIME: Upper PWM on time limit for commutation (DC_TIME * 1/f _{CLK}). Set slightly above effective blank time TBL. ■ bit 23 16: DC_SG: Max. PWM on time for step loss detection using dcStep stallGuard2 in dcStep mode. (DC_SG * 16/f _{CLK}) Set slightly higher than DC_TIME/16 0=disable Attention: Using a higher microstep resolution or	0x00000000		
			interpolated operation, dcStep delivers a better stallGuard signal. DC_SG is also available above VHIGH if vhighfs is activated. For best result also set vhighchm.			
R	8	PWM_SCALE	Actual PWM amplitude scaler (255=max. Voltage) In voltage mode PWM, this value allows to detect a motor stall.			

Table 21: Motor Drive Register

Bit Name Function Description 31 stst This flag indicates motor stand still operation mode. This occurs 2^20	
	Default
standstill indicator operation mode. This occurs 2^20	l in each
	clocks
after the last step pulse.	
30 olb open load indicator 1: Open load detected on phase A	
phase B Hint: This is just an informative flag	
29 ola open load indicator driver takes no action upon it. Fals	
phase A detection may occur in fast motion	
standstill. Check during slow motion	
28 s2gb short to ground 1: Short to GND detected on phase indicator phase B The driver becomes disabled. The	
27 s2ga short to ground active, until the driver is disabled to software (TOFF=0) or by the ENN i	-
26 otpw overtemperature pre- 1: Overtemperature pre-warning t	
warning flag is exceeded.	illesiloiu
The overtemperature pre-warning	r flag is
common for both bridges.	, ridg is
25 ot overtemperature flag 1: Overtemperature limit has been	reached
Drivers become disabled until otpy	
cleared due to cooling down of the	
The overtemperature flag is comm	
both bridges.	
24 stallGuard stallGuard2 status 1: Motor stall detected (SG_RESUL	T=0) or
dcStep stall in dcStep mode.	
23 - reserved Ignore these bits	
22	
21	
20 CS actual motor current / Actual current control scaling, for	
19 ACTUAL smart energy current monitoring smart energy current s	caling
18 controlled via settings in register	
17 COOLCONF, or for monitoring the f	function
16 of the automatic current scaling.	
15 fsactive full step active 1: Indicates that the driver has swi	
indicator fullstep as defined by chopper mo	de
settings and velocity thresholds.	
14 reserved Ignore these bits	
13	
12	
11	
10 SC DESULT stallGuard2 result Machanical load measurement:	
9 SG_ RESULT stallGuard2 result Mechanical load measurement: 8 respectively PWM on The stallGuard2 result gives a mea	
7 time for coil A in stand measure mechanical motor load. A	
6 still for motor value means lower mechanical loa	
temperature detection of 0 signals highest load. With ont	
temperature detection of 0 signals highest load. With opti	
setting, this is an indicator for a mo	RESULT to
setting, this is an indicator for a monogram of the stall detection compares SG_R	CLUTIC
setting, this is an indicator for a monograph of the stall detection compares SG_RES 0 in order to detect a stall. SG_RES 1 wood as a base for spelStan apparent	SULT is
setting, this is an indicator for a monograph of the stall detection compares SG_R on order to detect a stall. SG_RES	SULT is

	DRV_ STATUS - Drive Error Flags and stallGuard2 Value				
Bit	Name	Function	Description	Default	
			stealthChop mode.		
			SG_RESULT is ALSO applicable when dcStep		
			is active. stallGuard2 works best with		
			microstep operation.		
			Temperature measurement:		
			In standstill, no stallGuard2 result can be		
			obtained. SG_RESULT shows the chopper		
			on-time for motor coil A instead. If the		
			motor is moved to a determined microstep		
			position at a certain current setting, a		
			comparison of the chopper on-time can		
			help to get a rough estimation of motor		
			temperature. As the motor heats up, its coil		
			resistance rises and the chopper on-time		
			increases.		

Table 22: DRV_STATUS - Drive Error Flags and stallGuard2 Value

$$f_{CLK} = 2^{24} [Hz]$$