

PIO-D144/D168 系列 用户手册

144/168 数字量输出入通道卡

简体中文版,版本 3.4, 2018 年 6 月

支援

PIO-D144 系列	PIO-D144, PIO-D144U, PIO-D144LU, PEX-D144LS
PIO-D168 系列	PIO-D168, PIO-D168A, PIO-D168U

承诺

郑重承诺:凡泓格科技股份有限公司产品从购买即日起一年内无任何材 料性缺损。

免责声明

版权

版权所有 © 2018 泓格科技股份有限公司,保留所有权力。

商标

手册中所涉及所有公司商标,商标名称及产品名称分别属于该商标或名称的拥有者所有.

与我们联系

如有任何问题欢迎联系我们,我们将会为您提供完善的咨询服务。 Email: <u>service@icpdas.com</u>, <u>service.icpdas@gmail.com</u>

PIO-D144/D168 系列卡 144/168 数字量输出入通道卡

目录

产	品清单		
1.	绪论		4
	1.1	特点	
	1.2	规格	7
	1.2.1	PEX-D144LS, PIO-D144LU, PIO-D144(U)	7
	1.2.2	PIO-D168(U)	
2.	硬件	结构	9
	2.1	板卡布局	9
	2.2	I/0 口位置	
	2.3	CARD ID 开关	
	2.4	引脚分配	
	2.4.1	PIO-D144/144U/D144LU/D168/D168U	
	2.4.2	PEX-D144LS	
	2.5	启动 I/O 运作	
	2.6	DI/DO 口结构	
	2.7	中断运行	
3.	安装	硬件装置	19
4.	软件	安装向导	23
	4.1	开始安装使用取得驱动安装程序	
	4.2	PNP 驱动程序安装	
	4.3	确认板卡安装成功	
	4.3.1	如何开启设备管理器	
	4.3.2	确认板卡是否正确安装	
5.	测试	PIO-D144/D168 系列卡	
	5.1	自我测试接线	
	5.1.1	PIO-D144/D144U/D144LU/D168/D168U	
	5.1.2	PEX-D144LS	
	5.2	执行测试程序	
6.]	I/O 控制	制寄存器	35
	6.1 如何	Ī找到 Ⅰ/O 地址	

РЮ 1 л л	-D144, /160 ž	/D168 杀列卞 为字景绘山 λ 通道卡				
144	71003					20
6	.2 J =	ti / 0 地名		 	 	11
C	621	™™Ka	••••••	 	 	/+1 //2
	622	RESEI\江内可行崩		 	 	42
	0.3.2	AUA		 	 	42
	0.3.3	AUX 页科可仔稿		 	 	43
	6.3.4	INI 屏蔽在前针谷		 	 	.43
	6.3.5	AUX		 	 	. 44
	6.3.6	<i>甲断极性控制奇仔舔</i>		 	 	44
	6.3.7	<i>读 与 8 位 致 퓲 奇 仔 츎</i>		 	 	. 45
	6.3.8	激活 1/0 口控制寄存器		 	 	45
	6.3.9	1/0 选择控制寄存器		 	 	46
	6.3.1	0 读Card ID 寄存器		 	 	47
7. 3	示例程	序		 	 	.48
7	'.1	WINDOWS DEMO 程序		 	 	. 48
7	2.2	DOS DEMO 程序		 	 	. 50
附习	₺: 端子	² 板		 	 •••••	.51
	A1. L	B-37, DN-37, DN-50 及 DN-100		 	 	. 51
	A2. L	B-8125		 	 	. 52
	АЗ. А	DP-37/PCI and ADP-50/PCI		 	 	. 52
	A4. L	B-24P/DB-24PD 光电隔离输入端子板		 	 	. 53
	A5. L	B-24R/DB-24RD 继电器输入端子板		 	 	. 54
	A6. L	B-24PR/DB-24POR/DB-24C		 	 	. 55
	A7.	端子板对照表		 	 	.56

产品清单

硬纸盒包装内包括以下项目:

注意:

如发现产品包装内的配件有任何损坏或遗失,请保留完整包装盒及配件,尽快联系我们,我们将有专人快速为您服务。

1. 绪论

PEX-D144LS 及 PIO-D144(L)U/D168U 板卡是泓格新上市并符合 RoHS 环保规范的产品,且设计为 软件上完全兼容于 PIO-D144/D168,用户不需修改任何软件便能容易替换。

PIO-D144(L)U/D168U 支持 3.3 V/5 V PCI bus 接口, PEX-D144LS 支持 PCI Express 接口,并提供 144/168 个数字输出入信道,它由 18/21 个 8 位的双向 I/O 端口所组成,这三个埠分别叫作埠 A(PA) 、埠 B(PB) 、埠 C(PC) ,且每个埠的初始设定皆为输入模式。PIO-D144(L)U/D168U 配 置有一个 37-pin D-sub 接头及 5/6 个 50-pin 公接头,让使用者容易配线,而 PEX-D144LS 配置 有一个 100-pin 高密度的 SCSI II 接头及 1 个 50-pin 公接头,让使用者方便快速配线且能够减 少内部扁平电缆,节省空间及插槽。

PIO-D144(L)U/D168U 及 PEX-D144LS 还有 Card ID 指拨开关功能,让用户可以自由设定每张板卡的标识符。当系统同时使用多张 PIO-D144(L)U/D168U 及 PEX-D144LS 板卡时,使用者可以迅速 而简单区别这些同型号的板卡。

PIO-D144LU 及 PEX-D144LS 还新增了 DI Pull High/Low 设定功能, 数字输入端口可设定为 pull-high 或 pull-low ,当信号线脱落或断线时,该 DI 值会相对维持 High 或 Low 的状态(非 浮动)。

此系列卡支持在 Linux、DOS、32/64-Bit Windows XP/2003/2008/2008/7/8/10 等操作系统环境下 使用,还提供有动态函式库及 Active X 控件使开发更加容易及简单易懂的各种语言范例程序, 如 Turbo C++、Borland C++、Microsoft C++、Visual C++、Borland Delphi、Borland C++ Builder、 Visual Basic、Visual C#.NET、Visual Basic.NET 及 LabVIEW 等,让用户能够快速的上手来使用。

▶ 比较表

Model	接口	Channels	DI Pull-High/Low	Card ID	逻辑电路	优点
PEX-D144LS	PCI Express	144	Yes	Yes	5 V/CMOS	低功耗、低温度
PIO-D144LU	Universal PCI	144	Yes	Yes	5 V/CMOS	低功耗、低温度
PIO-D144U	Universal PCI	144	No	Yes	5 V/TTL	速度快、驱动能力强 (输出能力)
PIO-D168U	Universal PCI	168	No	Yes	5 V/TTL	速度快、驱动能力强 (输出能力)

≻ 停产型号

Model	接口	Channels	DI Pull-High/Low	Card ID	逻辑电路	优点
PIO-D144	PCI Bus	144	No	No	5 V/TTL	速度快、驱动能力强 (输出能力)
PIO-D168 PIO-D168A	PCI Bus	168	No	No	5 V/TTL	速度快、驱动能力强 (输出能力)

1.1 特点

[PIO-D144/D144U/D144LU, PEX-D144LS]

- ▶ PIO-D144 为 PCI bus 接口,支持 +5 V PCI bus 插槽
- ▶ PIO-D144(L)U为 Universal PCI 接口,支持+3.3 V/+5 V PCI bus 插槽
- ➢ PEX-D144LS 为 PCI Express 接□,支持 PCI Express x 1 插槽
- Support the PCI Express x 1 for PEX-D144LS
- ▶ 144 个数字量输出入通道
- ▶ 18 个 8-bit 埠 (共 144-bit) 可分别规化为输出或输入
- ▶ PIO-D144LU/PEX-D144LS 支持 Pull-high/Pull-low 功能
- ▶ PIO-D144U/D144LU/PEX-D144LS 支持 Card ID 功能
- ▶ PIO-D144/D144U/D144LU: 一个 37-pin D-sub 接头及 5 个 50-pin 公接头
- ▶ PEX-D144LS: 一个 100-pin 高密度的 SCSI II 接头及 1 个 50-pin 公接头
- ➢ PIO-D144/D144U/D144LU: Digital I/O 反应速度最高可达 1 µs (1 MHz)
- ▶ PEX-D144LS: Digital I/O 反应速度可达 500 kHz

[PIO-D168/D168U]

- ▶ PIO-D168 为 PCI bus 接口,支持 +5 V PCI bus 插槽
- ➢ PIO-D168U 为 Universal PCI 接□,支持 +3.3 V/+5 V PCI bus 插槽
- ▶ 168 个数字量输出入通道
- ▶ 21 个 8-bit 埠 (共 168-bit) 可分别规化为输出或输入
- ▶ PIO-D168U 支持 Card ID 功能
- ▶ 一个 37-pin D-sub 接头及 6 个 50-pin 公接头
- Digital I/O 反应速度最高可达 1 µs (1 MHz)

[共同功能]

- > 双向 I/O 通道可使用软件设定为输入/输出口
- ▶ 内建 I/O line 缓冲区
- ▶ 提供 4 个中断源通道: P2CO, P2C1, P2C2, P2C3
- ▶ 提供输出 Readback 功能
- ▶ 可直接连接 DB-24, DB-24R, DB-24PR, DB-24SSR, DB-24POR 或者其它兼容 OPTO-22 规格的 端子板

1.2 规格

1.2.1 PEX-D144LS, PIO-D144LU, PIO-D144(U)

型号	PEX-D144LS	PIO-D144LU	PIO-D144U	PIO-D144				
司位积粉字检查								
<u> </u>	144							
· 通道级 144								
数子输入 	5 V/01/00							
兼谷性	5 V/CMOS		5 V/TTL					
输入电压	Logic 0: 0.8 V max.							
	Logic 1: 2.0 V min.	I						
响应速度	500 kHz	1 MHz						
数字输出								
兼容性	5 V/CMOS		5 V/TTL					
	Logic 0: 0.1 V max.	Logic 0: 0.4 V i	max.					
	Logic 1: 4.4 V min.		Logic 1: 2.4 V min.					
输出能力	Sink: 6 mA @ 0.33 V		0.8 V					
	Source: 6 mA @ 4.77 V		Source: 32 mA @ 2.0 V					
响应速度	500 kHz	1 MHz	•					
公共								
★	PCI Express x 1	3.3 V/5 V Univer	5 V PCI, 32-bit,					
总线望念		33 MHz	33 MHz					
数据总线	8-bit							
卡ID	Yes(4-bit)			No				
	Female SCSI II 100-pin x 1	Female DB37 x	1					
	50-pin box header x 1	50-pin box header x 5						
尺寸(长 x 宽 x 高)	162 mm x 100 mm x 22 mm 180 mm x 105 mm x 22mm							
耗电量	600 mA @ +5 V							
运行温度	0 ~ 60 °C							
储存温度	-20 ~ 70 °C							
周围环境相对湿度	5 ~ 85% RH, non-condensing)						

注意:

I/O速度取决于I/O卡,总线速度,CPU速度和系统负载。任何条件更改都可能导致I/O速度不同。

1.2.2 PIO-D168(U)

板卡名称	PIO-D168 (停产)	PIO-D168U				
可编程数字输出入						
通道数	168					
数字输入						
兼容性	5 V/TTL					
檢入中国	Logic 0: 0.8 V max.					
- 柳八屯広	Logic 1: 2.0 V min.					
响应速度	1.2 MHz (Typical)					
数字输出						
兼容性	5 V/TTL					
输出中国	Logic 0: 0.4 V max.					
	Logic 1: 2.4 V min.					
输出能力	Sink: 64mA @ 0.8 V					
	Source: 32 mA @ 2.0 V					
响应速度	1.2 MHz (Typical)					
公共						
白线刑态	5 V PCL 32-bit 33 MHz	3.3 V/5 V Universal PCI, 32-bit, 33				
		MHz				
数据总线	8-bit					
卡ID	No	Yes(4-bit)				
	Female DB37 x 1					
1/0 连按头	50-pin box header x 6					
尺寸(长 x 宽 x 高)	200 mm x 105 mm x 22mm					
耗电量	1300 mA @ +5 V					
运行温度	0 ~ 60 °C					
储存温度	-20 ~ 70 °C					
周围环境相对湿度	5 ~ 85% RH, non-condensing					

注意:

I/O 速度取决于I/O 卡,总线速度, CPU 速度和系统负载。任何条件更改都可能导致I/O 速度不同。

2. 硬件结构

2.1 板卡布局

➢ PIO-D144LU 及 PEX-D144LS:

注意:

JPx 预设设定: JP1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18 = 1-2 短接= <u>Pull-Low</u> 详细关于 DI Pull-high/low 讯息,请参考 <u>第 2.2 节 "I/O 口位置"</u>。 → Pull-Low
 N
 ω Pull-High

2.2 I/O 口位置

在 PIO-D144/D168 系列板卡上有 18/21 个 8 位 I/O 端口。每个 I/O 端口能被程序设定成数字量 输入或输出。当 PC 第一次上电或重置,所有端口被配置成数字量输入端口。且 PIO-D144LU 及 PEX-D144LS 的数字量输入端口能通过跳线 JP1~JP18 可选择置上升沿或下降沿。这些 I/O 端口位子在下面说明:

表 2.1

型号			PIO-D168(U)					
连接头		CN1	CN2	CN3	CN4	CN5	CN6	CN7
PA0 ~ PA7	Port	Port0	Port3	Port6	Port9	Port14	Port15	Port18
PB0 ~ PB7	Port	Port1	Port4	Port7	Port10	Port13	Port16	Port19
PC0 ~ PC7	Port	Port2	Port5	Port8	Port11	Port14	Port17	Port20

表 2.2

型号		PIO-D144LU							
连接头		CN1	CN2	CN3	CN4	CN5	CN6		
DAO ~ DA7	Port	Port0	Port3	Port6	Port9	Port14	Port15		
	Pull-high/Low	JP1	JP4	JP7	PJ10	PJ13	PJ16		
PB0 ~ PB7	Port	Port1	Port4	Port7	Port10	Port13	Port16		
	Pull-high/Low	JP2	JP5	JP8	JP11	PJ14	PJ17		
	Port	Port2	Port5	Port8	Port11	Port14	Port17		
	Pull-high/Low	JP3	JP6	JP9	JP12	PJ15	PJ18		

注意:

1. 此板卡是双向 I/O 设计,供电后内定为 DI 模式。在正确切换至 DO 模式前,当 Jumper 设 为 pull-high 时,该 DI 通道可能会造成 Active-High 的 DO 设备 (例:DB-24R/24PR/24C) 作动。 或 Jumper 设为 pull-low 时,该 DI 通道可能会造成 Active-Low 的 DO 设备作动。 请依外接设备特性选择适当的 DI pull-high/low Jumper 设定。

2. 每个 P2C0/P2C1/P2C2/P2C3 可以作为中断信号源。更多信息参考至<u>章节 2.7 "中断运行"</u>。

表 2.3

型号	PEX-D144LS		
连接头	CON1	连接头	CON2
PA0~ PA7	Port0 (JP1 设定 pull-high/low)	PA40 ~ PA47	Port12 (JP13 设定 pull-high/low)
PB0 ~ PB7	Port1 (JP2 设定 pull-high/low)	PB40 ~ PB47	Port13 JP14 (设定 pull-high/low)
PC0 ~ PC7	Port2 (JP3 设定 pull-high/low)	PC40 ~ PC47	Port14 (JP15 设定 pull-high/low)
PA10 ~ PA17	Port3 (JP4 设定 pull-high/low)	PA50 ~PA57	Port15 (JP16 设定 pull-high/low)
PB10 ~ PB17	Port4 (JP5 设定 pull-high/low)	PB50 ~ PB57	Port16 (JP17 设定 pull-high/low)
PC10 ~ PC17	Port5 (JP6 设定 pull-high/low)	PC50 ~ PC57	Port17 (JP18 设定 pull-high/low)
PA20 ~ PA27	Port6 (JP7 设定 pull-high/low)	-	-
PB20 ~ PB27	Port7 (JP8 设定 pull-high/low)	-	-
PC20 ~ PC27	Port8 (JP9 设定 pull-high/low)	-	-
PA30 ~ PA37	Port9 (JP10 设定 pull-high/low)	-	-
PB30 ~ PB37	Port10 (JP11 设定 pull-high/low)	-	-
PC30 ~ PC37	Port11 (JP12 设定 pull-high/low)	-	-

注意:

1. 此板卡是双向 I/O 设计,供电后内定为 DI 模式。在正确切换至 DO 模式前,当 Jumper 设 为 pull-high 时,该 DI 通道可能会造成 Active-High 的 DO 设备 (例:DB-24R/24PR/24C) 作动。 或 Jumper 设为 pull-low 时,该 DI 通道可能会造成 Active-Low 的 DO 设备作动。 请依外接设备特性选择适当的 DI pull-high/low Jumper 设定。

2. 每个 P2C0/P2C1/P2C2/P2C3 可以作为中断信号源。更多信息参考至<u>章节 2.7 "中断运行"</u>。

2.3 Card ID 开关

PIO-D144(L)U/D168U 及 PEX-D144LS 在硬件上新增 Card ID 指拨开关,此功能为 PIO-D144(L)U/D168U 及 PEX-D144LS 仅有。让使用者可以自由设定每张板卡的识别码。当系统 同时使用多张 PIO-D144(L)U/D168U 及 PEX-D144LS 卡时,使用者可以迅速而简单区别这些同型 号的板卡。出厂预设 Card ID 为 0x0。详细的 SW1 Card ID 设定,请参考至表 2.4。

(预设设定)

表 2.4 (*)**预设设定**; OFF → 1; ON → 0

Card ID (Hex)	1 ID0	2 ID1	3 ID2	4 ID3
(*) 0x0	ON	ON	ON	ON
0x1	OFF	ON	ON	ON
0x2	ON	OFF	ON	ON
0x3	OFF	OFF	ON	ON
0x4	ON	ON	OFF	ON
0x5	OFF	ON	OFF	ON
0x6	ON	OFF	OFF	ON
0x7	OFF	OFF	OFF	ON
0x8	ON	ON	ON	OFF
0x9	OFF	ON	ON	OFF
0xA	ON	OFF	ON	OFF
ОхВ	OFF	OFF	ON	OFF
0xC	ON	ON	OFF	OFF
0xD	OFF	ON	OFF	OFF
OxE	ON	OFF	OFF	OFF
0xF	OFF	OFF	OFF	OFF

简体中文版,版本 3.4, 2018 年 6 月,第 13 页

2.4 引脚分配

PIO-D144/D168 系列卡连接器引脚分配参考至图 2-3 及图 2-4。

2.4.1 PIO-D144/144U/D144LU/D168/D168U

- ➤ CN1: 37 针 D 型母头连接器 (Port0, Port1, Port2).
- ➤ CN2/CN3/CN4/CN5/CN6/CN7: 50 针扁平电缆连接器 (Port3 ~ Port20).

Pin Assign- ment	Te	rminal N	10.	Pin Assign- ment	Pin Assign- ment	Te	ermir	nal N	lo.	Pin Assign- ment
					PC_7	01	0	0	02	GND
N.C	01		20	+5V	PC_6	03	0	0	04	GND
N.C.	02	•	21	GND	PC_5	05	0	0	06	GND
PB_7	03	• •	21		PC_4	07	0	0	08	GND
PB 6	04	• •	22	PC_/	PC_3	09	0	0	10	GND
PB 5	05	• •	23	PC_6	PC_2	11	0	0	12	GND
PR 4	06	•	24	PC_5	PC_1	13	0	0	14	GND
	07	•	25	PC_4	PC_0	15	0	0	16	GND
PD_3	07		26	PC_3	PB_/	1/	0	0	18	GND
PB_2	08	••	27	PC_2	PB_6	19		0	20	GND
PB_1	09	•	28	PC 1		21	Ľ	0	22	GND
PB_0	10	•	29	PC 0	PD_4	25		0	24	GND
GND	11	•	30	ΡΔ 7	PB 2	27		0	20	GND
N.C.	12	•	31	DA 6	PB 1	29		õ	30	GND
GND	13	• •	22		PB 0	31	0	õ	32	GND
N.C.	14	• •	32	PA_5	PA 7	33	0	0	34	GND
GND	15	••	33	PA_4	PA 6	35	0	0	36	GND
NC	16	•	34	PA_3	PA_5	37	0	0	38	GND
CND	17	•	35	PA_2	PA_4	39	0	0	40	GND
	1/	•	36	PA_1	PA_3	41	0	0	42	GND
+5V	18	••	37	PA_0	PA_2	43	0	0	44	GND
GND	19	\mathbf{O}			PA_1	45	0	0	46	GND
					PA_0	47	0	0	48	GND
					+5V	49	0	0	50	GND
图 2-3		CN1			CN	2, CN: CN7 (F	3, CN 210-E	V4, (0168	CN5, C U onl	CN6 y)

2.4.2 PEX-D144LS

- ▶ CON1:100 针 SCSIⅡ 连接器 (Port0~ Port11)
- ➢ CON2: 50 针扁平电缆连接器 (Port12 ~ Port17)

LS	Pin	Terminal No.			Pin
	Assign-				Assign-
	ment				ment
接哭	PA 00	01		51	PA 10
	PA_01	02		52	DA 11
		02		52	DA 12
	PA_02	04		54	PA_12
	PA_03	04		54	PA_13
接哭	PA_04	05		55	PA_14
	PA_05	06		50	PA_15
	PA_06	07		5/	PA_16
	PA_07	80		58	PA_17
	PB_00	09		59	PB_10
	PB_01	10		60	PB_11
	PB_02	11		61	PB_12
	PB_03	12		62	PB_13
	PB_04	13		63	PB_14
	PB_05	14		64	PB_15
	PB_06	15		65	PB_16
	PB_07	16		66	PB_17
	PC_00	17		67	PC_10
	PC_01	18		68	PC_11
	PC_02	19		69	PC_12
	PC_03	20		70	PC_13
	PC_04	21		71	PC_14
	PC_05	22		72	PC_15
	PC_06	23		73	PC_16
	PC_07	24		74	PC_17
	GND	25		75	GND
	PA_20	26		76	PA_30
	PA_21	27		77	PA_31
	PA_22	28		78	PA_32
	PA_23	29		79	PA_33
	PA_24	30		80	PA_34
	PA_25	31		81	PA_35
	PA_26	32		82	PA_36
	PA_27	33		83	PA 37
	PB_20	34		84	PB_30
	PB_21	35		85	PB 31
	PB 22	36		86	PB 32
	PB 23	37		87	PB 33
	PB_24	38		88	PB 34
	PB_25	39	1881	89	PB 35
	PB_26	40		90	PB 36
	PB_27	41		91	PB 37
	PC_20	42		92	PC_30
	PC_21	43		93	PC_31
	PC 22	44		94	PC 32
	PC_23	45		95	PC 33
	PC_24	46		96	PC 34
	PC 25	47		97	PC 35
	PC 26	48		98	PC 36
	PC 27	49		99	PC_37
	+5 V	50		100	+5 V
图 2-4			CON1		

Pin Assign- ment	Terminal No.			Pin Assign- ment	
GND	01	0	0	02	+5 V
PA_40	03	0	0	04	PA_50
PA_41	05	0	0	06	PA_51
PA_42	07	0	0	08	PA_52
PA_43	09	0	0	10	PA_53
PA_44	11	0	0	12	PA_54
PA_45	13	0	0	14	PA_55
PA_46	15	0	0	16	PA_56
PA_47	17	0	0	18	PA_57
PB_40	19	0	0	20	PB_50
PB_41	21	0	0	22	PB_51
PB_42	23	90	0	24	PB_52
PB_43	25	0	0	26	PB_53
PB_44	27	40	0	28	PB_54
PB_45	29	0	0	30	PB_55
PB_46	31	0	0	32	PB_56
PB_47	33	0	0	34	PB_57
PC_40	35	0	0	36	PC_50
PC_41	37	0	0	38	PC_51
PC_42	39	0	0	40	PC_52
PC_43	41	0	0	42	PC_53
PC_44	43	0	0	44	PC_54
PC_45	45	0	0	46	PC_55
PC_46	47	0	0	48	PC_56
PC_47	49	0	0	50	PC_57
CON2					

2.5 启动 I/O 运作

当 PC 第一次运行,所有与运行有关的数字量 I/O 通道不可用。注意数字量 I/O 通道的每个口 是激活或禁用是由 RESET\信号决定的,参考<u>章节 6.3.1 "RESET\ 控制寄存器"</u>讲述更多信息。 电源开启状态所有 DI/O 口如下:

- ▶ DI/DO 操作为每个口是禁用
- ▶ DI/DO □都配置成数字量输入□
- ▶ DO锁存寄存器未定义,参考<u>章节 2.6 "DI/DO 口结构"</u>

用户执行一些初始化才能使用这些数字输入/输出端口。推荐的步骤如下:

步骤 1: 找到 PIO/PISO 板卡映像地址。(参考章节 6.1 "如何找到 I/O 地址")

步骤 2: 激活所有数字量 I/O 运行(参考<u>章节 6.3.1 "RESET\ 控制寄存器")</u>

步骤 3:选择控制端口(参考 <u>章节 6.3.8 "激活 I/O 口控制寄存器"</u>)

步骤 4: 发送初始值到 D/O 闭锁寄存器(参考 <u>章节 2.6 "DI/DO 口结构"</u>和 <u>章节 6.3.7 "读/写</u> 8 位数据寄存器")

步骤 5: 重复步骤 3 和步骤 4 去初始化其它 DO 口。

步骤 6: 配置所有数字量 I/O 口到他们想要的 DI 或 DO 功能(参考<u>章节 6.3.9 "I/O 选择控制</u> 寄存器")。

注意: 更多初始化数字量 I/O 端口信息,请参考 DEMO1.C (DOS) 范例程序。

2.6 DI/DO 口结构

示例图 2.5 中是 PIO-D144/D168 系列卡数字量 I/O 控制结构。下面是控制信号方法的介绍。

- ▶ RESET 为低电平状态所以 DI/DO 运行状态为禁用。
- ▶ RESET 为高电平状态所有 DI/DO 运行状态为激活。
- ▶ 如果 DI/DO 设定为 DI 口,这个口能接受来自外部信号源的数字量输入。
- ▶ 如果 DI/DO 设定为 DO □,来自这个□的数字量输出值能被读回。

如果 DI/DO 设定为 DI 口,发送数据到 DI 口将改变 DO 闭锁寄存器。并且当这个口是设定为数 值量输出并立刻被激活闭锁数据将被输出。

2.7 中断运行

P2C0, P2C1, P2C2, P2C3 能被使用在中断信号源。参考 <u>章节 2.1 "板卡布局"</u>和 <u>章节 2.4 "引脚</u> <u>分配"</u>为 P2C0/P2C1/P2C2/P2C3 位置。PIO-D144/D168 的中断是 level-trigger 和 Active_High。 中断信号能够被编程为 inverted 或 non-inverted。

下面告诉你怎样配置中断信号源:

1. 信号源的电平高或低来正确的初始化.

2. 如果初始化状态是高电平,请选择反向设定中断信号源(<u>章节6.3.6"中断极性控制寄存器"</u>)。 如果初始化状态是低电平,请选择正向设定中断信号源(<u>章节6.3.6"中断极性控制寄存器"</u>)

3. 激活中断功能(<u>章节 6.3.4 "INT 屏蔽控制寄存器"</u>)

4. 如果中断信号是激活的,这个中断服务程序将被启动。

注意:在 DOS 示例程序中 DEMO3.C 和 DEMO4.C 是使用一个信号中断源范例程序, DEMO5.C 是使用四个中断源范例程序。如果仅仅一个中断信号源被使用,中断服务程序不需要去确定中断源。可是,如果使用多个中断源,中断服务程序要去确定激活信号,下面将说明:

1. 读取中断信号源现在状态

- 2. 比较现在状态和以前状态去确定激活信号
- 3. 如果 P2C0 是激活,执行中断服务 P2C0 正向/反向 程序
- 4. 如果 P2C1 是激活,执行中断服务 P5C0 正向/反向 程序
- 5. 如果 P2C2 是激活,执行中断服务 P8C0 正向/反向 程序
- 6. 如果 P2C3 是激活,执行中断服务 P11C0 正向/反向 程序
- 7. 保存当前状态为老状态

注意:如果中断信号太短,现在状态可能和原来状态相同,因此,在中断服务程序被执行前中断信号 需要保持激活一段时间 (Hold time) 。这个保持时间在不同的操作系统是不同的,可能从数毫秒到1 秒。在一般情况下,20 ms 对大部份操作系统都已足够。

3. 安装硬件装置

注意: 建议先安装软件驱动程序,因为有些操作系统 (如,Windows 2000)可能会要求您重新启动计算机。因此可减少您重新启动计算机开机的次数。

依照下列步骤来完成安装:

步骤 1: 安装 PIO-D144/D168 系列卡的软件驱动程序。

详细软件驱动程序安装信息,请 参考至<u>章节4"软件安装向导"</u>。

步骤 2: 设定 SW1 DIP-Switch 来配置 Card ID。

详细 Card ID (SW1) 设定,请参考至 <u>章节 2.3 "Car ID 开关"</u>。 (此 Card ID 功能为 PIO-D144U/LU, PEX-D144LS 及 PIO-D168U 仅有)

步骤 5: 选择未使用的 PCI/PCI Express 插槽。

步骤 8: 小心插入 PIO-D144/D168 系列卡至 PCI/PCI Express 插槽。

步骤 11: 启动计算机电源。

进入 Windows 后,请依照提示讯 息完成即插即用驱动安装,请参 考至<u>章节4 "软件安装向导"。</u>

4. 软件安装向导

PIO-D144/D168 系列板卡支持在 DOS、32-/64-bit Windows XP/2003/2008/7/8/10 等操作系统环境下使用。本章节将详细介绍如何取得驱动安装执行檔、驱动安装程序以及验证板卡是否正确安装...等。

4.1 开始安装使用--取得驱动安装程序

PIO-D144/D168 系列卡驱动程序安装执行文件,可从随机出货的配件 CD 软件光盘中或从泓格的软件网站中下载。请参考表 4-1 及 4-2 来选择适当的驱动程序。

操作系统Windows 2000, 32/64-bit Windows XP, 32/64-bit Windows 2003,
32/64-bit Windows Vista, 32/64-bit Windows 7, 32/64-bit Windows 2008,
32/64-bit Windows 8, 32/64-bit Windows 10名称UniDAQ Driver/SDK (unidaq_win_setup_xxxx.exe)CD-ROMCD:\\ NAPDOS\PCI\UniDAQ\DLL\Driver\下载网站http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/dll/driver/详细 UniDAQ 驱动程序安装,可参考至 UniDAQ DLL 软件使用手册。
手册下载位置:
CD:\NAPDOS\PCI\UniDAQ\Manual\
http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/manual/

表 4-1: UniDAQ Driver/SDK (建议新用户安装此驱动程序)

表 4-2: PIO-DIO Series Classic Driver (建議已安裝使用過 PIO-DIO 系列卡的原用戶使用此驅動程式)

操作系统	Windows 95/98/ME, Windows NT, Windows 2000, 32-bit Windows XP, 32-bit Windows 2003, 32-bit Windows Vista, 32-bit Windows 7, 32-bit Windows 8, 32-bit Windows 10
名称	PIO-DIO Series Classic Driver(PIO_DIO_Winvxxx.exe)
CD-ROM	CD:\\ NAPDOS\PCI\PIO-DIO\DLL_OCX\Driver\
下载网站	http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pio-dio/dll_ocx/driver/
安装程序	详细 PIO-DIO 驱动程序安装,可参考至 PIO-DIO DLL 软件使用手册。 手册下载位置: CD:\NAPDOS\PCI\PIO-DIO\Manual\ <u>http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pio-dio/dll_ocx/driver/</u>

4.2 PnP 驱动程序安装

步骤 1:关闭计算机电源,并安装 PIO-D144/d168 系列卡至计算机中。

详细 PIO-D144/D168 系列卡硬件安装,请参考至 <u>章节 3 "安装硬件装置"</u>。

步骤 2: 开启计算机电源来完成即插即用驱动安装。

注意: 有些作系统 (如, Windows 7/8/10) 会找到新硬件后, 将自动完成即插即用驱动安装, 因此将会跳过步骤 3 到步骤 5。

步骤 3: 选择"自动安装软件 (建议选项)(1)"后,按"下一步(N)>"按钮到下一个画面。

步骤 4: 按下"完成"按钮,来完成安装。

步骤 5:显示"您的新硬件已安装且已可使用"讯息。

简体中文版,版本 3.4, 2018 年 6 月,第 26 页

4.3 确认板卡安装成功

请到装置管理员中来确认您的 PIO-D144/D168 系列板卡已正确的安装到 PC 中,请依照您的操作系统,参考至下列来开启您的装置管理员。

4.3.1 如何开启设备管理器

Microsoft Windows 2000/XP

步骤 1: 单击 **"开始" → "控制台(C)"**,开 启控制台后,再双击 **"系统"** icon 来开启 **"系统内容"** 配置框。

步骤 2: 单击 "硬件"标签后,再单击 "设备管理器(<u>D)</u>"按钮。

Microsoft Windows 2003

- 步骤 1: 单击 "开始" → "系统管理工具" → "计算机管理"。
- 步骤 2: 在 "系统工具" 控制台树中,单击 "设备管理器"。

Microsoft Windows 7/10	控制台 (3)
步骤 1: 单击 "开始" → "控制台(<u>C</u>)" →"系 统及安全性"。 步骤 2: 然后在 "系统" 下方单击 "设备管 理器"。	 → 器器管理員 ◆ 檢視裝置和印表機 → 回新装置驅動程式
或者是, 步骤 1: 单击 "开始 Start" 按钮。 步骤 2: 在 搜寻字段 中输入 设备管理员 ,再 按 Enter 键。	
注意: 您必须以 系统管理员的身份登入 ,才 能变更「设备管理器」内的设定。 其他使 用者可以检视设定,但无法进行变更。	♀ 查看更多結果

Microsoft Windows 8

步骤 1: 将鼠标移至左下角,在出现"开始"的小图 标上按鼠标右键。

步骤 2: 在功能列表中点选"设备管理器"。

或者是,可按快速组合键 [Windows Key] +[X] 来开 启功能列表,在点选"**设备管理器"**。

简体中文版,版本 3.4,2018 年 6 月,第 28 页

4.3.2 确认板卡是否正确安装

检查 PIO-D144/D168 系列板卡是否正确安装,如已安装完成,装置管理员中将显示 PIO-D144/D168 板卡名称于 DAQCard 项目下,如下图所示:

Ⅰ 装置管理員	_		×
檔案(F) 動作(A) 檢視(V) 說明(H)			
🗢 🔿 📰 📴 🚺 📰 🖳 💺 🗙 📀			
V 🗄 DESKTOP-44513S2			
V 🚽 DAQCard			
UniDAQ]PIO-D144/PEX-D144S Digital	I/O Bo	ard	
		_	
> 🍙 存放控制器			
🛛 🔉 🍢 🛼 新装置 👘 安装)	戎功		
> 🖷 音效、視訊及遊戲控制器			
> 🏢 音訊輸入與輸出			
> □ 處理器			
> ■ 秋尾表旦 > ■ 通用库列匯流排控制器			
>			
> 🕕 滑鼠及其他指櫄裝置			
> 🛄 電腦			
> 🛄 監視器			
> 🔜 磁碟機			
> 🕎 網路介面卡			

5. 测试 PIO-D144/D168 系列卡

此章节将详细介绍自我测试步骤。您可依照下列步骤来确认 PIO-D144/D168 系列卡是否能正常 启动。 在自我测试前,您必须先完成软件驱动程序及硬件的安装。详细软硬件安装信息请参 考至 <u>章节3"安装硬件装置"</u>及 <u>章节4"软件安装向导"。</u>

5.1 自我测试接线

5.1.1 PIO-D144/D144U/D144LU/D168/D168U

在开始自我测试前,请先准备下列项目: ☑ 一条 CA-3710 Cable (选购品,产品网页 <u>http://www.icpdas.com/products/Accessories/cable/cable_selection.htm</u>)

☑ 一个 DN-37 接线端子版
 (选购品,产品网页
 http://www.icpdas.com/root/product/solutions/pc based io board/daughter boards/dn-37.html)

步骤 1: 使用 CA-3710 Cable 将 DN-37 连接至您板卡的 CN1 (CON1)。

步骤 2: 将 Port0 (PA0~PA7) 连接至 Port1 (PB0~PB7)。

5.1.2 PEX-D144LS

在开始自我测试前,请先准备下列项目: ☑ 一条 CA-SCSI100-15 Cable (选购品,产品网页 <u>http://www.icpdas.com/products/Accessories/cable/cable_selection.htm</u>)

☑ 一个 DN-100 接线端子版
 (选购品,产品网页
 http://www.icpdas.com/root/product/solutions/pc based io board/daughter boards/dn-100.html)

步骤 1: 使用 CA-SCSI100-15 Cable 将 DN-100 连接至您板卡的 CON1。

步骤 2: 将 Port0 (PA00 ~ PA07) 连接至 Port1 (PB00 ~ PB07)。

5.2 执行测试程序

下面自我测试范例为安装 UniDAQ 驱动程序。如果您安装的驱动程序为 PIO-DIO series classic, 请参考至 PIO-D144/D168 的快速入门指南来执行自我测试步骤。 (http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pio-dio/manual/quickstart/classic/)

步骤 1:双击"UniDAQUtility.exe",开始进行测试。在完成 UniDAQ 驱动程序后,此 UniDAQ Utility.exe 将被安装放置默认路径 C:\ICPDAS\UniDAQ\Driver\下。

步骤 2:确认一张 PIO-D144/D168 系列板卡成功安装至 计算机上。注意:数字 0 为第一张卡。

步骤 3: 按下"TEST"按钮,开始测试。

注意: PEX-D144LS、PIO-D144LU、PIO-D144U、PIO-D168U的 软件完全与 PIO-D144/D168 软件兼容。

步骤 4: DIO 功能测试结果。

- 1. 点选"Digital Output"项目。
- 2. 从 "Port Number" 下拉式选单,选择 "Port 1"。
- 3. 点选 DO 通道 0, 2, 4, 6 为 ON 起。

1 0 PIO-D144 (CARD ID:0)	_	
Analog Input Analog Qutput Digital Input Digital Output	mer/ <u>C</u> ounter	MISC.
3 7 6 5 4 3 2 1 0 OFF ON OFF ON OFF ON Port Number HEX 55	OF	ON(1)
	Ð	XIT

- 4. 点选"Digital Input"项目。
- 5. 从 "Port Number" 下拉式选单,选择 "Port 0"。
- 6. DO 相对应的 DI 通道 0, 2, 4, 6 需显示为 High 的状态 (红灯亮起)。

🖗 0 PIO-D144 (CARD ID:0)	_		×
Analog Input Analog Qutput Digital Input Digital Output Timer/	<u>C</u> ounter	MISC	2
7 6 5 4 3 2 1 0			
	0	01/11	
	. 💆		
6		OFF(0)
•			
ß			
Port Number 0 HEX 55			
	Ð	(IT	

6.I/O 控制寄存器

6.1 如何找到 I/O 地址

在上电后即插即用 BIOS 将分配适当的一个 I/O 地址到每个 PIO/PISO 板卡。PIO-D144/D168 系列 板卡 ID 如下:

表 6-1:

	PIO-D144	PIO-D144/D144U/D144LU	PEX-D144LS
	(Rev 1.0 ~ 3.0)	(Rev 4.0 或更新版本)	(Rev 1.0 或更新版本)
Vendor ID	0xE159	0xE159	0xE159
Device ID	0x0002	0x0001	0x0001
Sub-Vendor ID	0x80	0x5C80, 0x1c80	0x1c80
Sub-Device ID	0x01	0x01	0x01
Sub-Aux ID	0x10	0x00	0x00

表 6-2:

	PIO-D168A	PIO-D168/D168U
Vendor ID	0xE159	0xE159
Device ID	0x0002	0x0001
Sub-Vendor ID	0x80	0x9880
Sub-Device ID	0x01	0x01
Sub-Aux ID	0x50	0x50

使用列下功能函式能够让您识别 PIO/PISO 系列板卡各 Sub IDs:

- PIO_DriverInit(&wBoard, wSubVendor, wSubDevice, wSubAux)
- PIO_GetConfigAddressSpace(wBoardNo,*wBase,*wIrq, *wSubVendor, *wSubDevice, *wSubAux, *wSlotBus, *wSlotDevice)
- Show_PIO_PISO(wSubVendor, wSubDevice, wSubAux)

详细功能函数定义及说明,请参考至 PIO-DIO DLL 软件使用手册。以下列举重要的驱动程序功 能参数说明:

- 1. 资源分配信息:
- **wBase:** 板卡的基础地址
- wirq: 板卡正在使用的 IRQ

2. PIO/PISO 识别板卡信息:

- wSubVendor: 板卡的 subVendor ID
- wSubDevice: 板卡的 subDevice ID
- wSubAux: 板卡的 subAux ID

3. PC 插槽信息:

- wSlotBus: 板卡的 Slot Bus 编码值
- wSlotDevice: 板卡的 Slot Device ID 值
- **1.** 使用 PIO_PISO.EXE utility 工具程序,能够更便利且快速来检测并显示安装在计算机主机中 所有的 PIO/PISO 系列卡,更详细讯息参考至 <u>PIO_PISO.EXE Utility</u>。

> **PIO_PISO.EXE** Utility

工具程序 PIO_PISO.EXE 适用于所有的 PIO/PISO 系列卡,且能够显示 PIO/PISO 系列卡安装在计算机主机上的所有硬件信息 (如: Sub-Vender, Sub-Device 和 Sub-Aux ID),具体参数参考表 6-1 及表 6-2。如果 PIO_PISO.EXE utility 找不到 PIO/PISO 系列卡时,请尝试使用另一个 PCI 插槽,然后再开启 PIO_PISO.EXE utility 搜寻一次。

- ▶ 执行 PIO_PISO.EXE utility 将可取得下列信息:
- ▶ 显示安装在计算机主机上的所有 PIO/PISO 系列卡
- ▶ 显示分配给每个 PIO/PISO 系列卡的所有资源
- ▶ 显示 PIO/PISO 系列卡的 wSlotBus 及 wSlotDevice 识别值

PIO_PISO.exe utility 具程序下载位置:

CD:\NAPDOS\PCI\Utility\Win32\PIO_PISO\

http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/utility/win32/pio_piso/

➢ DOS 系统

在 DOS 系统下使用,下载位置如下: CD:\NAPDOS\PCI\Utility\DOS\ http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/utility/dos/

PIO_PISO 源始程序代码,如下:

6.2 分配 I/O 地址

即插即用 BIOS 将分配 PIO/PISO 板卡适当的 I/O 地址。假如只有一块 PIO/PISO 卡,用户能够确 定这块卡为 card_0。如果有两个 PIO/PISO 卡在系统中,用户将很难找到哪一块卡是 card_0。 软件驱动最多能够支持 16 块卡。所以用户可以安装 16 块 PIO/PISO 板卡在一台 PC 中。下面的 方法说明查找和确定 card_0 和 card_1:

通过主板 ROM BIOS 去自动分配 PIO/PISO 板卡的 I/O 地址。用户同样可以再分配 I/O 地址。强 烈推荐用户不要去改变 I/O 地址,即插即用 BIOS 将会很好的去分配每个 PIO/PISO 板卡的 I/O 地址。

下面的方式是使用 wSlotBus 和 wSlotDevice 来简单的识别 card_0:

步骤 1: 移除 PC 中所有 PIO-D144/D168 系列卡。

步骤 2: 安装一块 PIO-D144/D168 系列卡到 PC 的第一个 PCI 插槽,运行 PIO_PISO.EXE。

然后记录 wSlotBus1 和 wSlotDevice1 的信息。

步骤 3: 移除 PC 中所有 PIO-D144/D168 系列卡。

步骤 4: 安装一块 PIO-D144/D168 系列在 PC 的第二个插槽并运行 PIO_PISO.EXE。

然后记录 wSlotBus2 和 wSlotDevice2 的信息。

步骤 5: 重复步骤 3 和 4 到每个 PCI 插槽并记录所有 wSlotBus 和 wSlotDevice 信息。

表 6-3

	Locating/Resource			
	wSlotBus (Bus#)	wSlotBus (Device#)		
Slot_1	0	0x07		
Slot_2	0	0x08		
Slot_3	0	0x09		
Slot_4	0	0x0A		
PCI-BRIDGE				
Slot_5	1	0x0A		
Slot_6	1	0x08		
Slot_7	1	0x09		
Slot_8	1	0x07		

上面所记录的是在一台 PC 机上的 wSlotBus 和 wSlotDevice 信息。这些值将被映射到 PC 的物理 插槽。任何 PIO-D144/D168 系列卡的映像将不能被改变。因此,下面三个步骤就能够使用这个 信息确定 PIO-D144/D168 系列卡:

步骤 1: 利用表 6-1 及 6-2 wSlotBus 和 wSlotDevice 信息。

步骤 2: 输入板卡号到函数 PIO_GetConfigAddressSpace(...)去获得板卡的详细信息,尤其是 wSlotBus 和 wSlotDevice 信息。

步骤 3: 用户可以识别一个指定的 PIO-D144/D168 系列板卡,通过步骤 1 和步骤 2 得到的 wSlotBus 和 wSlotDevice 数据来比较。

注意:通常 PIO-D144/D168 系列卡安装在插槽 0 就是 card0,安装在插槽 1 就是 card1。

表 6-4:

6.3 I/O 地址映像

通过主板 ROM BIOS 去自动分配 PIO/PISO 板卡的 I/O 地址。用户同样可以再分配 I/O 地址。强 烈推荐用户不要去改变 I/O 地址,即插即用 BIOS 将会很好的去分配每个 PIO/PISO 板卡最适合的 I/O 地址。PIO-D144/D168 系列卡的 I/O 地址见下表。

Address	Read/读	Write/写
wBase+0	保留	RESET\ 控制寄存器
wBase+2	保留	Aux 控制寄存器
wBase+3	Aux 资料寄存器	Aux 资料寄存器
wBase+5	Reserved	INT 屏蔽控制寄存器
wBase+7	Aux引脚状态寄存器	保留
wBase+0x2a	保留	INT 极性控制寄存器
	读取 D/O Readback	
WBase+0xc0	读取 8-bit 资料从 D/I 端口	—— 与人 8-011 负科到 D/O ज
wBase+0xc4	保留	选择 I/O 端口激活
wBase+0xc8	保留	I/O 端口 0-15 向方控制
wBase+0xcc	保留	I/O 端口 16-11 向方控制
wBase+0xd0	保留	I/O 端口 12-17 向方控制
wBase+0xd4	但网	I/O 端口 18-20 向方控制
		(为 PIO-D168 系列仅有)
wBase+0xf0	读取 Card ID	

注意: 有关 wBase 详情请参考 <u>章节 6.1 "如何找到 I/O 地址"</u>。

6.3.1 RESET\控制寄存器

(Write): wBase+0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
保留	RESET\						

当 PC 的电源第一次开启, RESET\ 信号是低电平状态。这将禁用所有 D/I/O 操行。用户在使用 任何 D/I/O 命令前,必须将 RESET\ 信号置于高电平状态。

示 例 :	
outportb (wBase,1);	/* RESET\=High → 所有 D/I/O 激活*/
outportb (wBase,0);	/* RESET\=Low → 所有 D/I/O 禁用*/

6.3.2 AUX 控制寄存器

(Write): wBase+2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Aux7	Aux6	Aux5	Aux4	Aux3	Aux2	Aux1	Aux0

Aux?=0→ 表明 Aux 用作 D/I Aux?=1→ 表明 Aux 用作 D/O

当 PC 第一次上电启动时,所有 Aux 信号默认为低电平,且所有 PIO/PISO 系列板卡 I/O 口为数 字量输入状态。

6.3.3 Aux 资料寄存器

(Read/Write): wBase+3

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Aux7	Aux6	Aux5	Aux4	Aux3	Aux2	Aux1	Aux0

当 Aux?用于 D/O 时,输出状态由寄存器控制。由于寄存器设计结构特点所至,因此这个寄存器为保留不使用。

6.3.4 INT 屏蔽控制寄存器

(Write): wBase+5

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	EN3	EN2	EN1	ENO

EN0=0→ 禁用 P2C0, CN1 是一个中断信号 (默认) EN0=1→ 启动 P2C0, CN1 是一个中断信号

示 例 :	
outportb(wBase+5,0);	/* 禁用中断 */
outportb(wBase+5,1);	/*启动中断 P2C0 */
outportb(wBase+5,0x0f);	/*启动中断 P2C0, P2C1, P2C2, P2C3 */

6.3.5 Aux 状态寄存器

(Read): wBase+7

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Aux7	Aux6	Aux5	Aux4	Aux3	Aux2	Aux1	Aux0

Aux0=P2C0, Aux1=P2C1, Aux2=P2C2, Aux3=P2C3, Aux7~4=Aux-ID 的更多信息可参考至 DEMO5.C 。 Aux 0~3 是使用中断源。 中断服务程序读取该这个寄存器去识别中断源。更多信息参考 <u>章节</u> <u>2.7 "中断运行"</u>。

6.3.6 中断极性控制寄存器

(Write): wBase+0x2A

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	0	0	INV3	INV2	INV1	INV0

该寄存器提供函数控制中断信号源反相或同相作用。具体应用案例如下:

INV0=1→ 选择 P2C0 的反相信号 INV0=0→ 选择 P2C0 的正相信号

示 例 :	
outportb(wBase+0x2a,0x0f); /	*选择反相输入 P2C0/1/2/3 */
outportb(wBase+0x2a,0x00); /	*选择正相输入 P2C0/1/2/3 */
outportb(wBase+0x2a,1);	/*选择正相输入 P2C0 */
	/*选择反相输入 P2C1/2/3 */
outportb(wBase+0x2a,3);	/*选择正相输入 P2C0/1 */
	/*选择相反输入 P2C2/3*/

更多信息参考<u>章节 2.7 "中断运行"</u>与 DEMO5.C (DOS)。

6.3.7 读/写 8 位数据寄存器

(Read/Write): wBase+0xc0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7	D6	D5	D4	D3	D2	D1	D0

在 PIO-D144/D168 系列中有 18/21 个 8 位 I/O 口。每个 I/O 口可以配置成 DI 或 DO 口。这个寄存器为数字量 输入/输出,用户能发送/接收这个地方数字量数据。注意:当 PC 第一次上电所有 I/O 口为 DI。

/*写入 Port0 */	
/*读取 Port0 或 D/O Readback */	
	/*写入 Port0 */ /*读取 Port0 或 D/O Readback */

注意:确定在读取/写入数据寄存器以前 I/O 口配置(DI 或 DO)(参考 <u>章节 3.3.9 "I/O 选择控制寄</u>存器")

6.3.8 激活 I/O 口控制寄存器

(Read/Write): wBase+0xc4

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7	D6	D5	D4	D3	D2	D1	D0

PIO-D144/D168 系列中有 18/21 个 8 位 I/O 口。仅仅只有一个 I/O 口能被激活在同一时间。下面示例将告诉您如何激活 PIO 卡。

示 例 :	
outportb(wBase+0xc4, 0);	/* I/O port0 激活*/
outportb(wBase+0xc4, 1);	/* I/O port1 激活*/
outportb(wBase+0xc4, 17);	/* I/O port17
outportb(wBase+0xc4, 20);	/* I/O port20 激活*/

6.3.9 I/O 选择控制寄存器

(Write): wBase+0xc8

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	Port5	Port4	Port3	Port2	Port1	Port0

(Write): wBase+0xcc

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	Port11	Port10	Port9	Port8	Port7	Port6

(Write): wBase+0xd0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	Port17	Port16	Port15	Port14	Port13	Port12

(Write): wBase+0xd4

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	Port20	Port19	Port18

Port?=1→ 这个口为 DI Port?=0→这个口为 DO

这些寄存器提供函数去配置 PIO/PISO 板卡数字量输入或输出口。每个 I/O 口能被编程为 DI 或 DO。注: 当 PC 第一次开启所有 port 使用的是 DI。详细 I/O 口位置和配置信息请参考至 <u>章节</u> 2.2 "I/O 口位置"。

示例:		
outportb(wBase+0xc8,0);	/* Port0 - Port5 为 DO 口	*/
outportb(wBase+0xcc,0x3f);	/* Port6 - Port11 为 DI 口	*/
outportb(wBase+0xd0,0x38);	/* Port12 - Port14 为 DO 口	*/
	/* Port15 - Port17 为 DI 口	*/

6.3.10 读 Card ID 寄存器

(Read): wBase+0xf0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	0	0	ID3	ID2	ID1	ID0

示**例**:

wCardID = inportb(wBase+0xf0);

注意: 仅有 PIO-D144U, PIO-D144LU, PEX-D144LS, PIO-D168U 支持 Card ID 功能。

7. 示例程序

7.1 Windows Demo 程序

如果 DLL 驱动没有正确安装那么所有 DEMO 程序将不能正常工作。在 DLL 驱动安装过程的时候,安装程序将注册适当的内核驱动到操作系统中,并且拷贝 DLL 驱动和 DEMO 程序到适当的位置,你可以选择(Win98/Me/NT/2000 and 32-/64-bit Win XP/2003/2008/7/8/10)驱动软件包。一次完整的驱动安装,下列出现相关的 DEMO 程序、库文件、声明的头档在不同的运行环境:

➢ PIO-DIO Series Classic 驱动程序的 Demo 程序:

取得示例程序位置: CD:\NAPDOS\PCI\PIO-DIO\DLL_OCX\Demo\ <u>http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pio-dio/dll_ocx/demo/</u>

♦ BCB4 → for Borland C ⁺⁺ Builder 4 PIODIO.H → Header files PIODIO.LIB → Linkage library for BCB only	 Delphi4 → for Delphi 4 PIODIO.PAS → Declaration files
 ♦ VC6 → for Visual C⁺⁺ 6 PIODIO.H → Header files PIODIO.LIB → Linkage library for VC only 	 ◆ VB6 → for Visual Basic 6 PIODIO.BAS → Declaration files
♦ VB.NET2005 → for VB.NET2005 PIODIO.vb → Visual Basic Source files	♦ CSharp2005 → for C#.NET2005 PIODIO.cs → Visual C# Source files

详细 PIO-DIO 系列的 DLL 函式,请参考至 PIO-DIO DLL 软件使用手册 (CD:\NAPDOS\PCI\PIO-DIO\Manual\)

➢ UniDAQ SDK 驱动程序的 Demo 程序:

取得示例程序位置:

CD:\NAPDOS\PCI\UniDAQ\DLL\Demo\

http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidag/dll/demo/

 BCB6 → for Borland C⁺⁺ Builder 6 UniDAQ.H → Header files UniDAQ.LIB → Linkage library for BCB only 	 Delphi6 → for Delphi 6 UniDAQ.PAS → Declaration files
 ◆ VB6 → for Visual Basic 6 UniDAQ.BAS → Declaration files 	 ◆ CSharp2005 → for C#.NET2005 UniDAQ.cs → Visual C# Source files
 ♦ VC6 → for Visual C⁺⁺ 6 UniDAQ.H → Header files UniDAQ.LIB → Linkage library for VC only 	 ◆ VB.NET2005 → for VB.NET2005 UniDAQ.vb → Visual Basic Source files
 ♦ VC.NET2005 → for VC.NET2005 (32-bit) UniDAQ.H → Header files UniDAQ.LIB → Linkage library for VC only 	 ♦ VC.NET2005 → for VC.NET2005 (64-bit) UniDAQ.H → Header files UniDAQ.LIB → Linkage library for VC only

详细 UniDAQ 的 DLL 函式及范例程序,请参考至 UniDAQ DLL 软件使用手册 (CD:\NAPDOS\PCI\UniDAQ\Manual\)

7.2 DOS Demo 程序

取得示例程序位置: CD:\NAPDOS\PCI\PIO-DIO\DOS\D144\PIOD144\ CD:\NAPDOS\PCI\PIO-DIO\DOS\D168\PIOD168\ http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/pio-dio/dos/

 \oplus \TC*.* \rightarrow for Turbo C 2.xx or above

Ð $TCLIB^*.* \rightarrow for TC Library$ Ð $TCDEMO^{*.*} \rightarrow for TC demo program$ \$ $TCDIAG^*.* \rightarrow$ for TC diagnostic program \$ \TC\LIB\PIO.H

- \rightarrow TC Declaration File
- Ð $TCLIBTCPIO_L.LIB \rightarrow TC Large Model Library File$
- \oplus $TCLIBTCPIO_H.LIB \rightarrow TC$ Huge Model Library File

详细 DOS 的 DLL 函式,请参考至 PIO-DIO DLL 软件使用手册 (CD:\NAPDOS\PCI\PIO-DIO\Manual\)

附录: 端子板

A1. DB-37, DN-37, DN-50 及 DN-100

DB-37: DB-37 是一个 37 针的端子板可以很方便的进行接线。使用 \succ 37-pin cable (如: CA-3710) 将 DB-37 连接至 PIO-D144/D144U/D144LU 及 PIO-D168/D168U 的 CON1。

DN-37 及 DN-50: DN-37 是一个带 DIN 安装导轨和 37 芯 D 型插 \succ 头的 I/O 接线板。DN-50 是一个带 DIN 安装导轨和 50 针的公头 扁平电缆。可以很方便的进行接线。

使用 37-pin cable (如: CA-3710) 将 DN-37 连接至 PIO-D144/D144U/D144LU 及 PIO-D168/D168U 的 CON1, 再使用 50-pin cable (如: CA-5002) 将 DN-50 连接至板卡的 CN1/CN2/CN3 °

DN-50

DN-37

▶ DN-100: DN-100 是一个 100 针的 SCSI II 接头端子板可以很方便 的进行接线。使用 100-pin SCSI II cable (如: CA-SCSI100-15) 将 DN-100 连接至 PEX-D144LS 的 CON1。

DN-100

A2. DB-8125

DB-8125 是一个带 1 米 D 型连接头 37 芯电缆的螺钉端子板。 DB8125 由一个 DB-37 和两个 20 芯扁平电缆组成。

DB-8125

A3. ADP-37/PCI and ADP-50/PCI

ADP-37/PCI和 ADP-50/PCI分为 50 针的 PCI 插槽的端子档板。它们一边可接连 50 针的接线头,另一端可连接 PC 上相应的插槽上。参考如下:

ADP-37/PCI:用于 PCI 总线卡的 50 针电缆到 37 针 D 型连接器的插槽挡板。 ADP-50/PCI:用于 PCI 总线卡的 50 针电缆连接到机箱的插槽挡板

A4.DB-24P/DB-24PD 光电隔离输入端子板

DB-24 是 24 通道隔离数字量输入端子板。 DB-24P 的光隔离输入由光电偶合器带一个 电流检测用电阻组成。你可以用它来检测从 TTL 电平到 24 V 直流信号。也可以用来检测 宽范围的交流信号。还可以用此卡来隔离计 算机和工业环境中常发生的共模电压,地环

流以及电压尖峰。见图 A4-1 。表 A4-1 是用来比较 DB-24P 和 DB-24PD。

表 A4-1:

	DB-24P	DB-24PD
50-pin Flat-Cable Header	Yes	Yes
D-sub 37-pin Header	No	Yes
Other Specifications		Same

A5. DB-24R/DB-24RD 继电器输入端子板

DB-24R 有 24 个 C 型继电器,通过可编程使 得机电式继电器可直接通断负载。每路继电 器可控制一个 0.5 A/110 V 或 1A/24 VDC 的负 载。通过 50 针与 OPTO-22 兼容的连接器或 20 针扁平电缆线连接器,给对应通道的功率 继电器加上 5 V 电压信号来激活其工作。每

个通道一个 LED,共有 24 个高亮度 LED,当与之关联的继电器接通时发亮。为避免你的 PC 过载,本板卡需要一个+12 VDC 或+24 VDC 的外界电源供电。 见图 A5-1。

	DB-24R	DB24RD
50-pin Flat-Cable Header	Yes	Yes
D-sub 37-pin Header	No	Yes
Other Specifications	Sa	me
表 A5-2:		
DB-24R, DB-24RD	24 * Relay (120 V, 0.5 A)	
DB-24PR, DB-24PRD	24 * Power Relay (250 V, 5 A)	
DB-24POR	24 * PhotoMOS Relay (350 V, 0.1 /	4)
DB-24SSR	24 * SSR (250 V _{AC} , 4 A)	
DB-24C	24 * Open Collector (30 V, 100 mA)
DB-16P8R	16 * Relay (120 V, 0.5 A) + 8 * Isola	ated Input

A6. DB-24PR/DB-24POR/DB-24C

DB-24PR是 24 通道功率继电器板,它有可编程控制的 8 个 C 型继电器和 16 个 A 型继电器,用来直接通断负载。每个继电器可以控制一个

250 AC 或 30 DC 的 5 负载。通过 50 针与 OPTO-22 兼容的连接器或 20 针扁平电缆线连接器, 给适当通道的功率继电器加上 5V 电压信号来激活。每通道具有一个 LED 指示,共 有 24 个高亮 度的 LED,当与之关联的继电器接通时发亮。为避免 PC 过载,本板卡需要一个+12 DC 或+24 DC 的电源供应。见图 A6-1。

表 A6-1:

DB-24PR	24 * Power Relay, 5A/250 V
DB-24POR	24 * PhotoMOS Relay, 0.1 A/350 V _{AC}
DB-24C	24 * Open Collector, 100 mA per channel, 30 V max.

注意:

- 1.50 针连接器(OPTO-22 兼容) 适合于 DIO-24, DIO-48, DIO-144, PIO-D144, PIO-D96, PIO-D56, PIO-D48, PIO-D24, PIO-D168。
- 2.20 针 连接器适合于 16 通道数字量输出, A-82X, A-62X, DIO-64, ISO-DA16/DA8。
- 3. 通道: 16 Form A Relay, 8 Form C Relay。
- 4. 继电器: 5A/110 VAC 或 5 A/30 VDC。

A7. 端子板对照表

端子板对照表 A7-1 为 PIO-D144/D168 系列板卡,参考如下:

表 A7-1:

I/O Card		PIO-D144 PIO-D144U PIO-D144LU PIO-D168 PIO-D168U	PIO-D144 PIO-D144U PIO-D144LU PIO-D168 PIO-D168U	PEX-D144LS
Cable/	20-Pin	50-Pin	37-Pin	100-Pin
Daughter Boards	Flat-Cable	Flat-Cable	D-sub	SCSI II
DB-37	NO	NO	Yes	NO
DN-37	NO	NO	Yes	NO
ADP-37/PCI	NO	Yes	Yes	NO
ADP-50/PCI	NO	Yes	NO	NO
DB-24P	NO	Yes	NO	NO
DB-24PD	NO	Yes	Yes	NO
DB-16P8R	NO	Yes	Yes	NO
DB-24R	NO	Yes	NO	NO
DB-24RD	NO	Yes	Yes	NO
DB-24C	Yes	Yes	Yes	NO
DB-24PR	Yes	Yes	NO	NO
DB-24PRD	NO	Yes	Yes	NO
DB-24POR	Yes	Yes	Yes	NO
DB-24SSR	NO	Yes	Yes	NO
DN-100	NO	NO	NO	Yes