I-8017/I-9017 Series

I/O Module User Manual

V3.0.3 July 2021

Written by Edward Ku/Cindy Huang

Edited by Anna Huang

Warranty

All products manufactured by ICP DAS are under warranty regarding defective materials for a period of one year, beginning from the date of delivery to the original purchaser.

Warning

ICP DAS assumes no liability for any damage resulting from the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copy right © 2018 by ICP DAS Co., Ltd. All rights are reserved.

Trademarks

Names are used for identification purposes only and may be registered trademarks of their respective companies.

Contact Us

If you have any problems, please feel free to contact us.

You can count on us for a quick response.

Email: service@icpdas.com

Table of Contents

Table of (Contents		3
Preface	•••••		6
1. Introd	uction		7
1.1.	Specif	fications	10
	1.1.1.	I-8017HW/I-8017HCW/I-8017DW	10
	1.1.2.	I-9017/I-9017-15/I-9017C-15	12
1.2.	Pin As	ssignments	14
	1.2.1.	I-8017HW	14
	1.2.2.	I-8017HCW	15
	1.2.3.	I-8017DW	16
	1.2.4.	I-9017	17
	1.2.5.	I-9017-15	18
	1.2.6.	I-9017C-15	19
1.3.	Jumpe	er Settings	20
	1.3.1.	Single-Ended/Differential Jumper Selection	20
	1.3.2.	Input Impedance Jumper Selection	21
	1.3.3.	Voltage/Current Measurement Jumper Selection	22
1.4.	Wire (Connections	23
	1.4.1.	I-8017HW/I-9017-15	23
	1.4.2.	I-8017DW/I-8017HCW/I-9017	24
	1.4.3.	I-9017C-15	24
1.5.	Block	Diagram	25
	1.5.1.	I-8017HW/I-8017DW/I-8017HCW	25
	1.5.2.	I-9017/I-9017-15	25

		1.5.3.	I-9017C-15	26
2. 0	uick	Start		27
	2.1.	MiniC	DS7-based Controllers	27
		2.1.1.	Basic Function	27
	2.2.	Wind	ows-based Controllers	30
		2.2.1.	Basic Function	30
	2.3.	Linux	-based Controllers	32
3. A	Pl int	roductio	n	33
	3.1.	i8017	'H_Init / pac_i8017HW_Init	36
	3.2.	i8017	H_GetFirmwareVersion / pac_i8017HW_GetFirmwareVersion	38
	3.3.	i8017	'H_GetLibVersion / pac_i8017HW_GetLibVersion	40
	3.4.	i8017	'H_GetLibDate / pac_i8017HW_GetLibDate	42
	3.5.	i8017	'H_GetSingleEndJumper / pac_i8017HW_GetSingleEndJumper	43
	3.6.	i8017	'H_ReadAI / pac_i8017HW_ReadAI	45
	3.7.	i8017	'H_ReadAI_AVG / pac_i8017HW_ReadAI_AVG	49
	3.8.	i8017	'H_ReadAlHex / pac_i8017HW_ReadAlHex	52
	3.9.	i8017	'H_ReadAIHex_AVG / pac_i8017HW_ReadAIHex_AVG	57
	3.10). i8017	'H_ReadGainOffset_Info / pac_i8017HW_ReadGainOffset_Info	61
	3.11	i8017	'H_Read_mA_GainOffset / pac_i8017HW_Read_mA_GainOffset	64
	3.12	. i8017	'H_Select_SingleEnd / pac_i8017HW_Select_SingleEnd	67
	3.13	. i8017	'H_Get_D_Sub_Status / pac_i8017HW_Get_D_Sub_Status	69
4. C	alibra	ation		71
	4.1.	Calibr	rate I-8017HW series modules on iPAC-8000	72
	4.2.	Resto	re I-8017HW series modules to defaults on iPAC-8000	76
	4.3.	Calibr	rate the I-8017HW series modules on WinCE and WES units	78
	4.4.	Resto	re I-8017HW series modules to defaults on WinCE and WES units	82

5. Tr	oubles	hooting	84
	5.1.	Verifying Analog Input functionality on a WinCE or WES PAC device	85
	5.2.	Service Request Requirements	89
	5.3.	What to do when the data read from the module seems unstable	90
Арр	endix A	. Error Code	91
Арр	endix B	. Read Al Function Performance	92
Арр	endix B	. Revision History	93

Preface

The information contained in this manual is divided into the following topics:

- Chapter 1, "Introduction" This chapter provides information related to the hardware, such as the specifications, jumper settings and wiring.
- Chapter 2, "Quick Start" This chapter provides information on how to get started, an overview of the location of the demo programs.
- Chapter 3, "API introduction" —This chapter describes the functions provided in the I-8017HW library together with an explanation of the differences in the naming rules used for the MiniOS7 and Windows platforms.
- Chapter 4, "Calibration" This chapter describes the calibration process for I-8017HW series modules on MiniOS7 and Windows platforms.
- Chapter 5, "Troubleshooting" This chapter provides some troubleshooting solutions should you encounter any problems while operating the I-8017HW.

1. Introduction

I-8017W/I-8017HCW/I-8017DW/I-9017/I-9017-15/I-9017C-15 (Hereinafter referred to as I-8017HW series modules) are high performance analog input modules, up to 16-channel single-ended or 8-channel differential inputs. It features 14-bit resolution, 100Ks/s sampling rates.

I-8017HW series modules can be used to measure voltage and current sources, except for I-9017C-15.

Applications

- High speed data acquisition systems
- Process monitoring and control
- Vibration analysis
- Digital pattern generator from the digital I/O port

The following table shows the differences between I-8017HW series modules.

Items		I-8017HW	I-8017HCW	I-8017DW
Channels		16-ch Single-ended/ 8-ch Differential		
	Voltage	±10 V, ±5 V, ±2.5 V, ±1.25 V		
Range	Current	+/- 20mA (Requires External 125 Ω Resistor)	+/-20 mA (Requires external 125 Ω resistor in single-ended wire method or jumper selectable in differential method)	
Dimensions (W x L x H, unit: mm)		30 x 115 x 102	30 x 114 x 85	

The following table shows the differences between I-9017 series modules.

Items		I-9017	I-9017-15	I-9017C-15
Channels		16-ch Single-ended30-ch Single-ended8-ch Differential15-ch Differential		15-ch Differential
Range Voltage		±10 V, ±5 V, ±2.5 V, ±1.25 V		n/a
	Current	+/- 20mA (Requires external 125 Ω resistor in single-ended wire method, or jumper selectable in differential method)	+/- 20mA (Requires External 125 Ω Resistor)	+/- 20mA

Applicable Platform table

The following table shows which platform the module applies to.

Platform	OS	Module
ХРАС	XP-8000(WES)	I-8017HW/I-8017DW/I-8017HCW
	XP-8000-Atom (WES)	I-8017HW/I-8017DW/I-8017HCW
	XP-8000-WES7 (WES7)	I-8017HW/I-8017DW/I-8017HCW
	XP-8000-CE6 (WinCE 6.0)	I-8017HW/I-8017DW/I-8017HCW
	XP-8000-Atom-CE6 (WinCE 6.0)	I-8017HW/I-8017DW/I-8017HCW
	XP-9000-WES7(WES7)	I-9017/I-9017-15/I-9017C-15
WPAC	WP-8000 (CE 5.0/7.0)	I-8017HW/I-8017DW/I-8017HCW
	WP-9000-CE7 (CE 7.0)	I-9017/I-9017-15/I-9017C-15
LinPAC	LinPAC-8000 (Linux kernel 2.6~4.4)	I-8017HW/I-8017DW/I-8017HCW
	LP-9000/LX-9000 (Linux kernel 3.2/4.4)	I-9017/I-9017-15/I-9017C-15
IPAC	iPAC-8000 (MiniOS7)	I-8017HW/I-8017DW/I-8017HCW
	I-8000 (MiniOS7)	I-8017HW/I-8017DW/I-8017HCW

I-8017DW module is equipped with a D-sub connection, meaning that it can be connected using a 37-pin D-sub Connector, as shown in the image below:

For more detailed information regarding 37-pin D-sub Connectors refer to the models indicated in the table below:

Model	Description
DN-37-A	I/O Connector Block with DIN-Rail Mounting and 37-pin D-sub Connector (Pitch: 5.08 mm)
DN-37-381-A	I/O Connector Block with DIN-Rail Mounting and 37-pin D-sub Connector (Pitch: 3.81 mm)
CA-3705A	Male-Female D-sub Cable 0.5 m
CA-3710A	Male-Female D-sub Cable 1 m
CA-3715A	Male-Female D-sub Cable 1.5 m

1.1. Specifications

1.1.1. I-8017HW/I-8017HCW/I-8017DW

Model	I-8017HW	I-8017HCW	I-8017DW			
Analog Input						
Channels	8-ch Differential/16-Sin	gle-ended				
Voltage Input Range	±1.25, ±2.5, ±5 V, ±10 V	V				
Current Input Range	±20 mA ±20 mA (lumper Select)					
	125 Ω Resistor)					
Resolution	14-bit					
Sample Rate	Single Channel Polling Mode :90K S/s					
	Single Channel Interrupt Mode: 50K S/s					
	8 channel Scan Mode : 16 K S/s					
Accuracy	0.1% of FSR					
Zero Drift	± 0.1 uV/°C					
Span Drift	± 10 ppm/°C					
Input Impedance	20 K, 200 K, 20 M (Jumper Select)					
Input Bandwidth	100 KHz					
LED Indicators						
System LED Indicator	1 LED as Power Indicator					
I/O LED Indicator	16 LEDs as User defined Indicators					
EMS Protection						
ESD Protection	±4 kV Contact for each	Terminal				

Model	I-8017HW	I-8017HCW	I-8017DW				
Isolation							
Intra-module Isolation, Field-to-Logic 2500 Vrms							
Power							
Power Consumption	2 W Max.						
Mechanical	Mechanical						
Dimension (L x W x H, unit: mm)	30 x 115 x 102		30 x 114 x 85				
Environment							
Operating Temperature	-25 °C ~ +75°C						
Storage Temperature	-30 °C ~ +80°C						
Humidity	10% ~ 90% RH, nor	n-condensing					

1.1.2. I-9017/I-9017-15/I-9017C-15

Model	I-9017	I-9017-15	I-9017C-15		
Analog Input					
Channels	8 Differential/	15 Differential/	15 Differential		
	16 Single-ended	30 Single-ended			
Voltage Input Range	±1.25, ±2.5, ±5 V, ±10 V	v	-		
Current Input Range	±20 mA		±20 mA		
	(Requires OptionalExte	rnal 125 Ω Resistor)			
Resolution	14-bit				
Sample Rate	Single Channel Polling I	Mode :900K S/s			
	Single Channel Interrupt Mode: 50K S/s				
	15-channel Scan Mode : 16 K S/s				
Accuracy 0.1% of FSR					
Input Bandwidth	100 KHz				
Zero Drift	± 0.1 uV/°C				
Span Drift	± 10 ppm/°C				
Input Impedance	20 K, 200 K, 20 M (Jum	125 ohm			
LED Indicators					
System LED Indicator	1 LED as Power Indicator				
I/O LED Indicator					
EMS Protection					
	±4 kV Contact for each Terminal				
ESD (IEC 61000-4-2)	±8 kV Air for Random Point				

Model	I-9017	I-9017-15	I-9017C-15				
Isolation							
Intra-module Isolation,	2500 Vrms						
Power							
Power Consumption	2 W Max.						
Mechanical	-						
Dimension (L x W x H)	144 mm x 30.3 mm x 1	34 mm					
Environment	Environment						
Operating Temperature	ure -25 °C ~ +75°C						
Storage Temperature	-40°C ~ +85°C						
Humidity	10 % ~ 90% RH, non-co	ndensing					

1.2. Pin Assignments

1.2.1. I-8017HW

<i>i-</i> 8017HW			Terminal No.		Pin Assi	Pin Assignment	
					Differentia	Single- ended	
0 1 2 3	4567		[, = (01	Trig	Trig	
				02	AGND	AGND	
		Ì	[= (03	Vin0+	Vin0	
Trig —	\otimes		Ç = (04	Vin0-	Vin8	
AGND	\otimes		C = (05	Vin1+	Vin1	
Vin0+		Ц	5-0	06	Vin1-	Vin9	
Vinu		Π	(¤ (07	Vin2+	Vin2	
Vin1			, <u> </u>	08	Vin2-	Vin10	
Vin2+	Ŏ		(P)	09	Vin3+	Vin3	
Vin2- —	\bigcirc		[•]	10	Vin3-	Vin11	
Vin3+			(°	11	Vin4+	Vin4	
Vin3			[]	12	Vin4-	Vin12	
Vin4- —		Ħ	(<u></u> "	13	Vin5+	Vin5	
Vin5+ —	Ŏ			14	Vin5-	Vin13	
Vin5- —	\otimes		<u>"</u>	15	Vin6+	Vin6	
Vin6+			<u>[</u>]	16	Vin6-	Vin14	
Vint			Ŀ	17	Vin7+	Vin7	
Vin7			<u>[</u>	18	Vin7-	Vin15	
AGND	Ŏ		<u>[</u>	19	AGND	AGND	
A GND 20	\otimes			20	AGND	AGND	
		Į,					
	┙						

1.2.2. I-8017HCW

Pin Assignment						
18 CH A/I	Terr	ninal No.	Differentia	Single- ended		
1234567	[] = (01	Trig	Trig		
		02	AGND	AGND		
		03	Vin0+	Vin0		
ig — 🚺 🚫 📗		04	Vin0-	Vin8		
SND 🚫	(P	05	Vin1+	Vin1		
	5-1	06	Vin1-	Vin9		
	(n i	07	Vin2+	Vin2		
n1- — 👸 📗		08	Vin2-	Vin10		
n2+ — 🚫 📗	C 🗖	09	Vin3+	Vin3		
12- —	[_]	10	Vin3-	Vin11		
	C D	11	Vin4+	Vin4		
		12	Vin4-	Vin12		
4- — 👗 F	["	13	Vin5+	Vin5		
n5+ — 🚫 📗		14	Vin5-	Vin13		
15- —	<u>L</u>	15	Vin6+	Vin6		
	Ŀ	16	Vin6-	Vin14		
	Ľ <u>Ľ</u>	17	Vin7+	Vin7		
	Ŀ	18	Vin7-	Vin15		
SND		19	AGND	AGND		
gnd 🔊	L_	20	AGND	AGND		

1.2.3. I-8017DW

<i>i</i> -8017DW	Pin Assignment		Terminal No.		Pin Assignment		
	Differentia	Single-ended		\Box		Differentia	Single-ended
	AGND	AGND	19		37	RK Sensor	BK Sensor
	Trig	Trig	18	• •	36	DI Selisoi	DIX Sensor
	AI7-	AI15	17		25	-	-
	AI7+	AI17	16		24	-	-
	AI6-	AI14	15		34	-	-
	AI6+	AI6	14		33	-	-
	AI5-	AI13	13		32	-	-
	AI5+	AI5	12		31	-	-
	AI4-	AI12	11		30	-	-
	AI4+	AI4	10		29	-	-
	AI3-	AI11	09		28	-	-
	AI3+	AI3	08		27	-	-
H H	AI2-	AI10	07		26	-	-
	AI2+	AI2	06		25	-	-
	AT1-	AT9	05		24	-	-
	AT1+	ΔΙ1	04		23	-	-
• 20		A19	03		22	-	-
	AIO-	AIO	03		21	AGND	AGND
	AIU+	AIU BK Concer	02		20	AGND	AGND
	BK Sensor	BK Sensor	01				

1.2.4. I-9017

<i>i-9017</i> 16CHAI PWR HIA L/A 0 1 2 3 4 5 6 7							
	Pin Assignn	nent		Toursinglate		Pin Assigni	nent
	Differential	Single- ended		Terminal No	•	Differential	Single- ended
	Trig+	Trig+	1		11	Trig-	Trig-
	V0+(I0+)	Vin0	2		12	V0-(I0-)	Vin8
	V1+(I1+)	Vin1	3		13	V1-(I1-)	Vin9
	V2+(I2+)	Vin2	4		14	V2-(I2-)	Vin10
	V3+(I3+)	Vin3	5		15	V3-(I3-)	Vin11
	V4+(I4+)	Vin4	6		16	V4-(I4-)	Vin12
	V5+(I5+)	Vin5	7		17	V5-(I5-)	Vin13
	V6+(I6+)	Vin6	8		18	V6-(I6-)	Vin14
10/20	V7+(I7+)	Vin7	9		19	V7-(I7-)	Vin15
	AGND	AGND	10		20	AGND	AGND
(+)							

1.2.5. I-9017-15

÷	Pin Assignment			Terminal No.		Pin Assignment	
<i>i</i> -9017-15	V0+	Vin0	01		17	V0 -	Vin15
30 CH A/I PWR	V1+	Vin1	02		18	V1 -	Vin16
	V2+	Vin2	03		19	V2 -	Vin17
	V3+	Vin3	04		20	V3 -	Vin18
	V4+	Vin4	05		21	V4 -	Vin19
1 17	V5+	Vin5	06		22	V5 -	Vin20
	V6+	Vin6	07		23	V6 -	Vin21
	V7+	Vin7	08		24	V7 -	Vin22
	V8+	Vin8	09		25	V8-	Vin23
	V9+	Vin9	10		26	V9 -	Vin24
	V10+	Vin10	11		27	V10 -	Vin25
	V11+	Vin11	12		28	V11 -	Vin26
	V12+	Vin12	13		29	V12 -	Vin27
	V13+	Vin13	14		30	V13 -	Vin28
16/ 32	V14+	Vin14	15		31	V14 -	Vin29
	AGND	AGND	16		32	AGND	AGND
(+)							

1.2.6. I-9017C-15

÷	Pin Assignment		Terminal No.		Pin Assignment
<i>i</i> -9017C-15	I0+	01		17	IO -
15 CH A/I PWR	I1+	02		18	I1 -
	I2+	03		19	I2 -
	I3+	04		20	I3 -
	I4+	05		21	I4 -
1 17	I5+	06		22	I5 -
	I6+	07		23	I6 -
	I7+	08		24	I7 -
	I8+	09		25	I8-
	I9+	10		26	I9 -
	I10+	11		27	I10 -
	I11+	12		28	I11 -
	I12+	13		29	I12 -
	I13+	14		30	I13 -
16/ 32	I14+	15		31	I14 -
	AGND	16		32	AGND
(十)					

1.3. Jumper Settings

1.3.1. Single-Ended/Differential Jumper Selection

1.3.2. Input Impedance Jumper Selection

1.3.3. Voltage/Current Measurement Jumper Selection

1.4. Wire Connections

1.4.1. I-8017HW/I-9017-15

Tips & Warnings

When connecting to a current source, an optional external 125 Ω resistor is required.

1.4.2. I-8017DW/I-8017HCW/I-9017

Input Type	Differential	Single-ended
Jumper Position		
Voltage	m∨/v+ Vn+ n-	mv/v ⁺ ■ Win+ AGND
Current	$ \begin{array}{c} $	$ \begin{array}{c} \begin{matrix} \Box \\ \bullet \\ \bullet \\ \hline 125\Omega \end{matrix} $

Tips & Warnings

Single-ended Input Type: Current Input Wiring need to jumper at voltage input, an options external 125 Ω resistor is required.

1.4.3. I-9017C-15

1.5. Block Diagram

1.5.1. I-8017HW/I-8017DW/I-8017HCW

1.5.2. I-9017/I-9017-15

1.5.3. I-9017C-15

2. Quick Start

This chapter will be accompanied by demos to explain how to implement functions such as read AI and calibration process

Demos can be downloaded in the following link:

https://www.icpdas.com/en/download/show.php?num=2323

2.1. MiniOS7-based Controllers

2.1.1. Basic Function

Basic function can be used to retrieve configuration information and verify the AI reading function.

Basic information includes:

- Version number and published date of the library.
- FPGA version.
- Single-ended/Differential jumper settings.
- Gain and offset values for each input range.
- Data reading of each channel.

The following steps take Base_Info.exe as example and display the information of I-8017HW.

Step 1: Please refer to the "Wire Connections", connect a stable signal source (such as a battery) to I-8017HW

Tips & Warnings

- 1. Unused channels should be connected to GND to avoid floating.
- 2. A battery output should provide a stable enough signal.
- 3. A 125 Ohm resistor is required when measuring current input.

Step 2: Plug I-8017HW in the MiniOS7 controller, connect the power supply to the unit and

connect the unit to the Host PC by RS-232 cable

Step 3: Run 7188xw.exe on the host PC and open the COM Port which is connecting to the

MiniOS7 Controller

Tips & Warnings

7188xw.exe is an interface for PC, it can help users to communicate with MiniOS7 PAC, please refer to the MiniOS7 PAC user manual for more detail.

Step 4: Run Base Info.exe on the controller and verify that basic information and AI data from

each channel are correct or not, as indicated in the diagram below

2.2. Windows-based Controllers

2.2.1. Basic Function

Basic function can be used to retrieve configuration information and verify the AI reading function.

Basic information includes:

- Version number and published date of the library.
- FPGA version.
- Single-ended/Differential jumper settings.
- Gain and offset values for each input range.
- Data reading of each channel.

The following steps take pac_i8017HW_Basic_Info.exe as example and display the information of I-8017HW.

Step 1: Please refer to the "Wire Connections", connect a stable signal source (such as a battery) to I-8017HW

Tips & Warnings

- 1. Unused channels should be connected to GND to avoid floating.
- 2. A battery output should provide a stable enough signal.
- 3. A 125 Ohm resistor is required when measuring current input.

Step 2: Plug I-8017HW in the Windows-based controller and connect the power supply to the unit.

Step 3: Run pac i8017HW Basic Info.exe on the controller and verify that basic information and AI data read from each channel are correct, as shown in the figure below:

i-8017HW De	mo for Do	otNet Version		
Slot Index	Slot	5 💌	Input rar	Library and FPGA version
Jumper	Diffe	rential) 🔘 floa	Single-ended/differential jumper position
Library Version	3110)	C	02 038 CH:08
Library Date	Mart	22 2021		
Firmware Versi	ion 0009	,	CH:01	02.038 ^{CH:09}
	Gain	Offset	CH:02	02.039 H:10
+/- 10V	34058	-26	CH:03	02.038 H:11
+/- 5V	34061	-27	CH:04	02.038 Verify the AI data
+/- 2.5V	34059	-21	CH:05	
+/-1.25V	34048	-23	1:06	02.036 ^{IH:14}
+/- 20mA	34059	-21	CH	00.997 CH:15
Exit			Gain	value is around 33000

2.3. Linux-based Controllers

Basic function can be used to retrieve configuration information and verify the AI reading function.

Basic information includes:

- Version number and published date of the library.
- FPGA version.
- Single-ended/Differential jumper settings.
- Gain and offset values for each input range.
- Data reading of each channel.

Please follow the steps below to learn how to use I-8017HW series modules.

Step 1: Users need to download LinPAC SDK, which is includes GNU tool chain, Libraries, header, <u>examples files, etc.</u>

- Step 2: Check the power cable, Ethernet cable, VGA monitor, the communication cable between controller and PC has been connected well, and then check the i-8017W/9017 has been plugged in the controller.
- Step 3: Refer to the Jumper Settings section. Ensure that the Differential/Single-ended selection jumper is in the Differential position. Connect a stable signal source to the module (e.g., a battery output) using the differential wiring method.

Step 4: Next, check the communication between controller and PC is fine or not, and download the demo program files to the controller.

PRRODUCT	CPU	DOWNLOAD LINK
LP-8x4x	PXA270	https://www.icpdas.com/en/download/show.php?num=982
LP-8x2x/9000	AM335x	https://www.icpdas.com/en/download/show.php?num=915
LX-8000/9000	x86/E38xx	http://www.icpdas.com/en/download/show.php?num=904

3. API introduction

ICPDAS supplies a range of C/C++ API functions for I-8017HW series modules.

When developing a program, refer to either the 8017HW.h header file, or the API functions described in the following sections for more detailed information.

ICPDAS also supplies a range of C# function that can be used to develop.NET programs, these functions are ported from the relevant C/C++ functions.

Download link: https://www.icpdas.com/en/download/show.php?num=2323

API Naming Table

The following table shows the API names on different platforms and the beginning of API.

Diatform	Due du et incluide d	API prefix characters	S	
Platiorm		C / C++	C#	
Windows CE5	I-8017HW / I-8017HCW /I-8017DW			
Windows CE6	I-8017HW / I-8017HCW /I-8017DW		"pac8017HWNet.	
Windows CE7	I-8017HW / I-8017HCW /I-8017DW	"pac_i8017W_"		
WINDOWS CE7	I-9017 / I-9017-15 / I-9017C-15		+ function name	
	I-8017HW / I-8017HCW /I-8017DW			
WES	I-9017 / I-9017-15 / I-9017C-15			
MiniOS7		"i8017W_"		
WINIOS7	1-801/HW / 1-801/HCW /1-801/DW	+ function name		
		"i8017W_"	NUU	
Linuu	1-801/HW / 1-801/HCW /1-801/DW	+ function name	NUII	
		"I9017_"		
	I-9017 / I-9017-15 /I-9017C-15			

The following is an overview of the functions provided in the 8017HW.lib and pac_i8017HW.lib.

API for I-8017HW series and I-9017 series

ΑΡΙ	Description
i8017H_Init pac_i8017HW_Init	Used to initialize the module
i8017H_GetFirmwareVersion pac_i8017HW_GetFirmwareVersion	Used to read the firmware (FPGA) version information
i8017H_GetLibVersion pac_i8017HW_GetLibVersion	Used to read the version and build information for the currently installed Library
i8017H_GetLibDate pac_i8017HW_GetLibDate	Used to read the build date information for the currently installed Library
i8017H_GetSingleEndJumper pac_i8017HW_GetSingleEndJumper	Used to read the status of the input jumper (Differential or Single-ended mode)
i8017H_ReadAl pac_i8017HW_ReadAl	Used to read the Analog Input value from a specific channel in float format
i8017H_ReadAI_AVG pac_i8017HW_ReadAI_AVG	Used to read the average Analog input value from a specific channel in float format
i8017H_ReadAlHex pac_i8017HW_ReadAlHex	Used to read the Analog Input value from a specific channel in 16-bit hexadecimal format
i8017H_ReadAlHex_AVG pac_i8017HW_ReadAlHex_AVG	Used to read the average Analog input value from a specific channel in hexadecimal format
i8017H_ReadGainOffset_Info pac_i8017HW_ReadGainOffset_Info	Used to read the calibrated voltage Gain and Offset values

API for I-9017 and I-9017C-15:

ΑΡΙ	Description
i8017H_Read_mA_GainOffset	Used to read the calibrated current Gain and Offset
pac_i8017HW_Read_mA_GainOffset	values

API for I-9017-15

ΑΡΙ	Description
i8017H_Select_SingleEnd	Used to set the Single-ended/ differential mode of
pac_i8017HW_Select_SingleEnd	I-9017-15.

API for I-9017-15

ΑΡΙ	Description
i8017H_Select_SingleEnd	Used to set the Single-ended/ differential mode of
pac_i8017HW_Select_SingleEnd	I-9017-15.

API for I-8017DW

ΑΡΙ	Description
i8017H_Get_D_Sub_Status	Used to get connector status between D sub and
pac_i8017HW_Get_D_Sub_Status	8017DW.

3.1. i8017H_Init / pac_i8017HW_Init

This function is used to initialize the module and must be called at least once before using any other function.

Syntax

For MiniOS7

short i8017HW_Init(int slot);

For Windows (CE and WES)

short pac_i8017HW_Init(int slot);

For Linux

short I8017_Init(int slot);
short I9017_Init(int slot);

// for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameters

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

Refer to Appendix A: "Error Code" for more details.
[C/C++]

int slot;

i8017HW_Init(slot);

[C#]

int slot;

pac8017HW.Init(slot);

```
int main(){
    int slot, ret;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    l8017_lnit(slot);
    Close_Slot(slot);
    return 0;
}
```

3.2. i8017H_GetFirmwareVersion / pac_i8017HW_GetFirmwareVersion

This function is used to read the firmware (FPGA) version information for the module.

Syntax

For MiniOS7

short i8017HW_GetFirmwareVersion(int slot, short* firmware);

For Windows (CE and WES)

short pac_i8017HW_GetFirmwareVersion(int slot, short* firmware);

For Linux

short I8017_GetFirmwareVersion(int slot, short* firmware); short I9017_GetFirmwareVersion(int slot, short* firmware); // for LinPAC-8000 // for LP-9000, LX-9000

Parameters

slot

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

*firmware

[Output]The firmware version information for the I-8017 module.

Return Values

Refer to Appendix A: "Error Code" for more details.

[C/C++]

int slot;

short firmware;

i8017HW_GetFirmwareVersion(slot, &firmware);

[C#]

int slot;

Int16 firmware = 0;

pac8017HWNet.pac8017HW.FirmwareVersion(slot, ref firmware);

```
int main(){
    int slot, ret;
    short firmware;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    l8017_Init(slot);
    l8017_GetFirmwareVersion(slot, &firmware);
    Close_Slot(slot);
    return 0;
}
```

3.3. i8017H_GetLibVersion / pac_i8017HW_GetLibVersion

This function is used to read the version and build information for the Library.

Syntax

For MiniOS7

short i8017HW_GetLibVersion(void);

For Windows (CE and WES)

short pac_i8017HW_GetLibVersion(void);

For Linux

short I8017_GetLibVersion(void);
short I9017_GetLibVersion(void);

// for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameters

None

Return Values

The version number.

Others: Refer to Appendix A: "Error Code Definitions" for more details.

[C/C++]

short version;

version = i8017HW_GetLibVersion();

[C#]

Int16 version;

version = pac8017HWNet.pac8017HW.LibVersion();

```
int main(){
    int slot, ret;
    short version;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    I8017_Init(slot);
    version = i8017HW_GetLibVersion();
    Close_Slot(slot);
    return 0;
}
```

3.4. i8017H_GetLibDate / pac_i8017HW_GetLibDate

This function is used to read the build date information for the Library.

Syntax

For MiniOS7

void i8017HW_GetLibDate(char libDate[]);

For Windows (CE and WES)

void pac_i8017HW_GetLibDate(char libDate[]);

Parameters

libDate[]

A string indicating the build date of the Library.

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C/C++]

char date;

i8017HW_GetLibDate(date);

[C#]

string date;

date = pac8017HWNet.pac8017HW.LibDate();

3.5. i8017H_GetSingleEndJumper / pac_i8017HW_GetSingleEndJumper

This function is used to read whether the jumper is set to either Differential or Single-ended mode.

Syntax

For MiniOS7

short pac_i8017HW_GetSingleEndJumper(int iSlot, short* selectJumper);

For Windows (CE and WES)

short pac_i8017HW_GetSingleEndJumper(int iSlot, short* selectJumper);

For Linux

short I8017_GetSingleEndJumper(int iSlot, short* selectJumper); // for LinPAC-8000 short I9017_GetSingleEndJumper(int iSlot, short* selectJumper); // for LP-9000, LX-9000

Parameters

iSlot

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

* selectJumper

[Output] The status of module.

0: Differential Mode

1: Single-ended Mode

Return Values

Refer to Appendix A: "Error Code" for more details.

[C/C++]

int slot, jumper;

i8017HW_GetSingleEndJumper(slot, &jumper);

[C#]

int slot, jumper;

pac8017HWNet.pac8017HW.SingleEndJumper(slot, ref jumper);

[C] (For LinPAC)

```
int main(){
    int slot, jumper, ret;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    l8017_Init(slot);
    l8017_GetSingleEndJumper(slot, & jumper);
    Close_Slot(slot);
    return 0;
}
```

Note

The old version LinPAC SDK will show I8017_GetSingleEndJumper(slot) function in demo, if you want to use new I8017_GetSingleEndJumper(slot, & jumper) function, it is necessary to install the latest SDK and recompile your examples.

3.6. i8017H_ReadAI / pac_i8017HW_ReadAI

This function is used to read the Analog Input value in float format from a specific channel of the module.

Syntax

For MiniOS7

short i8017HW_ReadAl(int iSlot, int iChannel, int iGain, float* fValue);

For Windows (CE and WES)

short pac_i8017HW_ReadAI(int iSlot, int iChannel, int iGain, float* fValue);

For Linux

short I8017_ReadAI(int iSlot, int iChannel, int iGain, float* fValue); // for LinPAC-8000 short I9017_ReadAI(int iSlot, int iChannel, int iGain, float* fValue); // for LP-9000, LX-9000

Parameters

iSlot

```
Specific slot number (0 - 7), except range of slot is number 1 \sim 8 for LinPAC.
```

iChannel

Specifies channel number.

```
For I-8017HW / I-8017HCW / I-8017DW / I-9017 => 0 \sim 8 in differential method; 0 \sim 15 in single-ended method.
```

For I-9017-15 => 0 \sim 14 in differential method; 0 \sim 29 in single-ended method.

For I-9017C-15 => always 0 ~ 14.

iGain

```
Specifies the input range: 0: +/- 10.0V 1: +/- 5.0V 2: +/- 2.5V 3: +/- 1.25V 4: +/- 20mA
```

* fValue

[Output] the analog input value in float format.

Return Values

Others: Refer to Appendix A: "Error Code" for more details.

Note

I-8017HW series modules equipped with a 14-bit AD chip.

This function will calibrate the data that read from the chip and convert it into 16-bit data. The following pictures show the scale of voltage and data and how to calculate the hexadecimal data into floating data.

[C++]

int slot, ch, gain;

float fValue;

pac_i8017HW_ReadAl(slot, ch, gain,& fValue);

[C#]

int slot, ch, gain;

float fValue;

pac8017HWNet.pac8017HW.ReadAl(slot, ch, gain, ref fValue);

```
int main(){
    int slot, ch, gain, ret;
    float fValue;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    l8017_Init(slot);
    l8017_ReadAl(slot, ch, gain, &fValue);
    Close_Slot(slot);
    return 0;
}
```

3.7. i8017H_ReadAI_AVG / pac_i8017HW_ReadAI_AVG

This function is used to read the average Analog Input value in float format from the module.

Syntax

For MiniOS7

short i8017HW_ReadAI_AVG(int slot,int iChannel,int iGain,unsigned short averageCnt, float* fValue);

For Windows (CE and WES)

short pac_i8017HW_ReadAI_AVG(int slot,int iChannel,int iGain,unsigned short averageCnt, float* fValue);

For Linux

short I8017_ReadAI_AVG(int slot, int iChannel, int iGain, unsigned short averageCnt, float* fValue); // for LinPAC-8000 short I9017_ReadAI_AVG(int slot, int iChannel, int iGain, unsigned short averageCnt, float* fValue); // for LinPAC-9000, LX-9000

Parameters

Slot

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

iChannel

Specifies the channel number

For I-8017HW / I-8017HCW / I-8017DW / I-9017 => 0 ~ 8 in differential method; 0 ~ 15 in single-ended method.

For I-9017-15 => 0 \sim 14 in differential method; 0 \sim 29 in single-ended method.

For I-9017C-15 => always 0 ~ 14.

iGain

```
Specifies the input range: 0: +/- 10.0V 1: +/- 5.0V 2: +/- 2.5V 3: +/- 1.25V 4: +/- 20mA
```

averageCnt

the average count for each sampling routine.(1 ~ 65535)

* fValue

[Output] the analog input value in float format.

Return Values

Others: Refer to Appendix A: "Error Code" for more details.

Note

The parameter "fValue" is an arithmetic mean value.

This function will read 14-bit AD data many times, depend on the parameter "averageCnt", and add all the values together.

Then, calibrate the average and convert it into 16-bit data

[C++]

int slot, ch, gain;

unsigned short cnt;

float fValue;

pac_i8017HW_ReadAI_AVG(slot, ch, gain, cnt,& fValue);

[C#]

int slot, ch, gain;

Uint cnt;

float fValue;

pac8017HWNet.pac8017HW.ReadAI_AVG(slot, ch, gain, cnt, ref fValue);

int main(){	
int slot, ch, gain;	
unsigned short cnt;	
float fValue;	
Open_Slot(slot);	
I8017_Init(slot);	
I8017_ReadAI_AVG(slot, ch, gain, cnt,& fValue);	
Close_Slot(slot);	
return 0;	
}	

3.8. i8017H_ReadAlHex / pac_i8017HW_ReadAlHex

This function is used to read the Analog Input value in 16-bit hexadecimal format.

Syntax

For MiniOS7

short i8017HW_ReadAIHex(int iSlot,int iChannel,int iGain,short* iValue);

For Windows (CE and WES)

short pac_i8017HW_ReadAIHex(int iSlot,int iChannel,int iGain,short* iValue);

[C] (For LinPAC)

short I8017_ReadAIHex(int iSlot,int iChannel,int iGain,short* iValue); // for LinPAC-8000 short I9017_ReadAIHex(int iSlot,int iChannel,int iGain,short* iValue); // for LP-9000, LX-9000

Parameters

iSlot

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

iChannel

Specifies the channel number

```
For I-8017HW / I-8017HCW / I-8017DW / I-9017 => 0 \sim 8 in differential method; 0 \sim 15 in single-ended method.
```

For I-9017-15 => 0 \sim 14 in differential method; 0 \sim 29 in single-ended method.

For I-9017C-15 => always 0 ~ 14.

iGain

Specifies the input range

- 0: +/- 10.0V
- 1: +/- 5.0V
- 2: +/- 2.5V
- 3: +/- 1.25V
- 4: +/- 20mA

* iValue

[Output] the analog input value in hexadecimal format.

Return Values

Others: Refer to Appendix A: "Error Code" for more details.

Note

I-8017HW series modules use a 14-bit AD chip.

This function will calibrated the data that read from the chip and convert it into 16-bit data.

The following pictures show the scale of voltage and data.

[C++]

int slot, ch, gain;

short hval;

pac_i8017HW_ReadAIHex(slot, ch, gain,& hval);

[C#]

int slot, ch, gain;

int hval;

pac8017HWNet.pac8017HW.ReadAIHex(slot, ch, gain, ref hval);

[C] (For LinPAC)

int slot, ch, gain;

short hval;

Open_Slot(slot); I8017_Init(slot);

I8017_ReadAIHex(slot, ch, gain, &hval);

3.9. i8017H_ReadAlHex_AVG / pac_i8017HW_ReadAlHex_AVG

This function is used to read the average Analog Input value in 16-bit hexadecimal format.

Syntax

For MiniOS7

short i8017HW_ReadAIHex_AVG(int slot,int iChannel,int iGain,unsigned short averageCnt, short* iValue);

For Windows (CE and WES)

short pac_i8017HW_ReadAIHex_AVG(int slot,int iChannel,int iGain,unsigned short
averageCnt,
 short* iValue);

For Linux

short I8017_ReadAIHex_AVG(int slot,int iChannel,int iGain,unsigned short averageCnt,short*
iValue);

short I9017_ReadAIHex_AVG(int slot, int iChannel, int iGain, unsigned short averageCnt, short* iValue);

Parameters

slot

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

iChannel

Specifies the channel number

For I-8017HW / I-8017HCW / I-8017DW / I-9017 => 0 \sim 8 in differential method; 0 \sim 15 in single-ended method.

For I-9017-15 => 0 \sim 14 in differential method; 0 \sim 29 in single-ended method.

For I-9017C-15 => always 0 ~ 14.

iGain

```
Specifies the input range: 0: +/- 10.0V 1: +/- 5.0V 2: +/- 2.5V 3: +/- 1.25V 4: +/- 20mA
```

averageCnt

the average count for each sampling routine.

* iValue

[Output] the analog input value in hexadecimal format.

Return Values

Others: Refer to Appendix A: "Error Code" for more details.

Note

The parameter "iValue" is an arithmetic mean value.

This function will read 14-bit AD data many times, depend on the parameter "averageCnt",

and add all the values together.

Then, calibrate the average and convert it into 16-bit data

[C++]

int slot, ch, gain; unsigned short cnt;

short hval;

pac_i8017HW_ReadAIHex_AVG(slot, ch, gain, cnt,& hval);

[C#]

int slot, ch, gain;

uint cnt;

int hval;

pac8017HWNet.pac8017HW.ReadAIHex_AVG(slot, ch, gain, cnt, ref hval);

```
int main(){
    int slot, ch, gain, ret;
    unsigned short cnt;
    short hval;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    I8017_Init(slot);
    I8017_ReadAIHex_AVG(slot, ch, gain, cnt, & hval);
    Close_Slot(slot);
    return 0;
}
```

3.10. i8017H_ReadGainOffset_Info / pac_i8017HW_ReadGainOffset_Info

This function is used to read the calibrated Gain and Offset values for the I-8017 module inserted in a specific slot

Syntax

For MiniOS7 short i8017HW_ReadGainOffset_Info(int iSlot, int iGain, unsigned short* iGainValue, short* iOffsetValue);

For Windows (CE and WES)

```
short pac_i8017HW_ReadGainOffset_Info(
    int iSlot, int iGain, unsigned short* iGainValue, short* iOffsetValue
);
```

For Linux

short I8017_ReadGainOffset_Info(
 int iSlot, int iGain, unsigned short* iGainValue, short* iOffsetValue);
 //for LinPAC-8000
short I9017_ReadGainOffset_Info(
 int iSlot, int iGain, unsigned short* iGainValue, short* iOffsetValue);
 //for LinPAC-9000, LX-9000

Parameters

iSlot

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

iGain

Specifies the input range 0: +/- 10.0V 1: +/- 5.0V 2: +/- 2.5V 3: +/- 1.25V 4: +/- 20mA

*iGainValue

[Output]Specifies the calibrated Gain value

*iOffsetValue

[Output]Specifies the calibrated Offset value

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C++]

Int slot,Gain;

unsigned short GainValue;

short OffsetValue;

short pac_i8017HW_ReadGainOffset_Info(slot, Gain,& GainValue,& OffsetValue);

[C#]

Int slot,Gain; unsigned short GainValue; short OffsetValue; pac8017HWNet.pac8017HW.GainOffset_Info(slot, Gain, ref GainValue, ref OffsetValue);

```
int main(){
    int slot, Gain, ret;
    unsigned short GainValue;
    short OffsetValue;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    I8017_Init(slot);
    I8017_ReadGainOffset_Info(slot, Gain, &GainValue, &OffsetValue);
    Close_Slot(slot);
    return 0;
}
```

3.11. i8017H_Read_mA_GainOffset / pac_i8017HW_Read_mA_GainOffset

This function is used to read the calibrated Gain and Offset values for the I-9017/I-9017C-15 module inserted in a specific slot.

Syntax

```
For MiniOS7
short i8017H_Read_mA_GainOffset(
int slot, short ch, unsigned short* GainValue, short* offsetValue
);
```

For Windows (CE and WES)

```
short pac_i8017H_Read_mA_GainOffset(
    int slot, short ch, unsigned short* GainValue, short* offsetValue
);
```

For Linux

short I8017_Read_mA_GainOffset(
 int slot, short ch, unsigned short* GainValue, short* offsetValue);
 // for LinPAC-8000
short I9017_Read_mA_GainOffset(
 int slot, short ch, unsigned short* GainValue, short* offsetValue);
 //for LP-9000, LX-9000

Parameters

slot

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

ch

Specifies the channel

Valid range :

I-8017HCW/I-9017 = 0 to 7

I-9017C-15 = 0 to 14

* GainValue

Specifies the calibrated Gain value

* offsetValue

Specifies the calibrated Offset value

Return Values

Refer to Appendix A: "Error Code" for more details.

Examples

[C/C++]

int slot; short ch; unsigned short GainValue; short OffsetValue; i8017H_Read_mA_GainOffset(slot, ch,& GainValue, & OffsetValue);

[C#]

Int slot;

Int16 ch;

UInt16 GainValue;

Int16 OffsetValue;

pac8017HWNet.pac8017HW. Ch_mAGainOffset (slot,ch,ref GainValue,ref OffsetValue);

<pre>int slot, ret; short ch; unsigned short GainValue; short OffsetValue; ret=Open_Slot(slot); if (ret > 0) { printf("Open Slot%d failed, return value=%d \n", slot, ret); return (-1);</pre>
<pre>short ch; unsigned short GainValue; short OffsetValue; ret=Open_Slot(slot); if (ret > 0) { printf("Open Slot%d failed, return value=%d \n", slot, ret); return (-1);</pre>
unsigned short GainValue; short OffsetValue; ret=Open_Slot(slot); if (ret > 0) { printf("Open Slot%d failed, return value=%d \n", slot, ret); return (-1);
<pre>short OffsetValue; ret=Open_Slot(slot); if (ret > 0) { printf("Open Slot%d failed, return value=%d \n", slot, ret); return (-1);</pre>
ret=Open_Slot(slot); if (ret > 0) { printf("Open Slot%d failed, return value=%d \n", slot, ret); return (-1);
if (ret > 0) { printf("Open Slot%d failed, return value=%d \n", slot, ret); return (-1);
printf("Open Slot%d failed, return value=%d \n", slot, ret); return (-1);
return (-1);
}
I8017_Init(int slot);
<pre>I8017_Read_mA_GainOffset(slot, ch, &GainValue, &OffsetValue);</pre>
Close_Slot(slot);
return 0;
}

3.12. i8017H_Select_SingleEnd / pac_i8017HW_Select_SingleEnd

This function is used to set the Single-ended/ differential mode of I-9017-15.

Syntax

For MiniOS7

short i8017HW_Select_SingleEnd(int slot, short selection);

For Windows (CE and WES)

short pac_i8017HW_Select_SingleEnd(int slot, short selection);

For Linux

short I9017_Select_SingleEnd(int slot, short selection);

// for LinPAC-9000, LX-9000

Parameters

slot

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

selection

The status of module.

0: Differential Mode

1: Single-ended Mode

Return Values

Refer to Appendix A: "Error Code" for more details.

[C/C++]

int slot;

short status;

pac_i8017H_Select_SingleEnd(slot, status);

[C#]

Int slot;

Int16 selection;

pac8017HWNet.pac8017HW. Select_SingleEnd_Differential (slot, selection);

int main(){	
int slot, ret;	
short status;	
ret=Open_Slot(slot);	
if (ret > 0) {	
printf("Open Slot%d failed, return value=%d \n", slot, ret);	
return (-1);	
}	
I9017_Init(slot);	
I9017_Select_SingleEnd(slot, status);	
Close_Slot(slot);	
return 0;	
}	

3.13. i8017H_Get_D_Sub_Status / pac_i8017HW_Get_D_Sub_Status

This function is used to get connector status between D sub and 8017DW.

Syntax

For MiniOS7

short i8017HW_Get_D_Sub_Status(int iSlot, short* D_Sub_Status);

For Windows (CE and WES)

```
short pac_i8017HW_Get_D_Sub_Status(int iSlot, short* D_Sub_Status);
```

For Linux

short I8017_Get_D_Sub_Status(int iSlot, short* D_Sub_Status); // for LinPAC-8000

Parameters

slot

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

*D_Sub_Status

The status of D_Sub.

1 : Open

0 : Close

Return Values

Refer to Appendix A: "Error Code" for more details.

Note

function for I-8017DW module only, in the others 8017 series module, the value of D Sub Status will always be 1.

[C/C++]

int slot;

short status;

pac_i8017HW_Get_D_Sub_Status(slot, status);

[C#]

int slot;

Int16 selection;

pac8017HWNet.pac8017HW.D_Sub_Status(slot, selection);

```
int main(){
    int slot, ret;
    short status;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    I8017_Init(slot);
    I8017_Get_D_Sub_Status(slot, status);
    Close_Slot(slot);
    return 0;
}
```

4. Calibration

Each module calibrated and finished test before shipment, so usually it is unnecessary to calibrate the module again, unless the input impedance is changed or the accuracy is lost.

In order to calibrate the module, the following preparations are required:

- A single stable calibration source, such as a 3 1/2 digit power supply (or better) or a battery output.
- A single 4 1/2 digit voltage meter (15-bit resolution or better)
- A Calibration Program. Please visit ICP DAS website and download demo programs, the calibration program will be inside.

Tips & Warnings

1. An unstable calibration source will cause calibration errors and will affect the accuracy of the data acquisition.

- 2. I-8017HW / I-8017HCW / I-8017DW / I-9017-15 only uses channel 0 to calibrate every type of range.
- 3. The gain and offset value of the range of +/- 20 mA for I-8017HW / I-8017HCW / I-8017DW/I-9017-15 are the same as the range of +/- 2.5V.

If users wish to calibrate +/- 20 mA, calibrate +/- 2.5V will be fine.

- 4. I-9017 only uses channel 0 to calibrate every voltage range.
- 5. I-9017 / I-9017C-15 needs to calibrate every channel one by one within the range of +/- 20mA.

4.1. Calibrate I-8017HW series modules on iPAC-8000

Step 1: Wiring method

Please refer to the "2.1.2. Wiring the iPAC-8000" chapter of the IP-8000 user manual to establish RS-232 connection between the controller and the PC, and connect the power supply to the controller.

Set the Differential/Single-ended jumper to the differential position, connect source and modules in differential mode and connect the voltage or current meter to the wiring, like the following figure:

Then, plug module into the controller.
Step 2: Download, upload and execute calibration program

The calibration program can be downloaded in ICP DAS website.

Please refer to the following link:

https://www.icpdas.com/en/download/show.php?num=2323

In order to upload programs, please refer to the "2.2.2. Installing the MiniOS7" and "2.5.2.

Uploading and Executing iPAC-8000 programs" of the IP-8000 user manual to download

MiniOS7 Utility which can help users to upload programs and learn how to operate.

After uploading the calibration program, right click on it and click "Run" to execute it.

MiniOS7 Utility Version	n 3.2.7	🗔 Tools 🔗 Help 🛪			_			
Look in: MiniOS7_Utility			Lock in: Disk A	404,773	oytes available	ele B		
Name bin FIRMWARE OS_IMAGE T188eu.ini load232.dll Mini0S7_Utility.chm Mini0S7_Utility.chw	Size Type File Folder File Folder File Folder 1KB INI File 1KB URL File 88KB DLL File 1.01%KB CHN File 15KB CHV File	Modified 2018/1/23 下午 03.2 2018/1/23 下午 03.2 2017/5/25 下午 01:3 2018/1/23 下午 03.2 2007/1/31 下午 12.5 2009/10/15 上午 03.2 2019/8/14 下午 03.3	No Name IP_801 Pxc Run Run w Reset Erase	rith parameters MiniOS F4 Disk	Size 53,915 2011/3	Modified 201 上午 11:12:00		
MiniOS (Juliy) exe MiniOS (Juliy) exe Gurins00.dat Gurins00.dat Gurins001.dat Connection(F2)	ICod(F5)	<pre>7188xW1. 7183x for W [Begin Key AutoRun: Autodownloa Current wor original ba now baudrat Calib * Calib * Lat * Lat * Lat * Ple * to * ver *********** * (1)Calib * (1)Calib * (2)Calib * (2)Calib * (3)Calib * (4)Calib * (4)Calib * (5)Show * (2)Quit ************************************</pre>	31 [COM1:115200,N IN 32 version 1. Thread]Curre d files: None k directory="C: udrate = 115200 e = 1152001 >run #0 in slot3 ************************************	8,1],FC=0,CTS- 31 (2006/03 ant set: Use (ICPDAS\Min for 8017H/8 Version = 18 voltage sign 'H/8017HS f: .2011 by M '************************************	=1, DIR=C:\[CPDA 3/14)[By ICP] = COM 1 115200 niOS7_Utility ************************************	AS\MiniOS7_Utili DAS. Tim Tsa 0,N,8,1 y"	y 	
								~

Step 3: Calibrate

After execute the program, select the range that needs to be calibrated and press the number corresponding to the range.

🔯 7188XW 1.31 [COM1:115200,N,8,1],FC=0,CTS=1, DIR=C:\ICPDAS\Min − □ ×	
7188x for WIN32 version 1.31 (2006/03/14)[By ICPDAS. Tim Tsai.] [Begin Key Thread]Current set: Use COM1 115200,N,8,1 AutoRun: Autodownload files: None Current work directory="C:\ICPDAS\Mini0S7_Utility" original baudrate = 115200! now baudrate = 115200!	^
C837_V2_UDP>run #0 8017 Found in slot3 ************************************	
<pre>************************************</pre>	

Output stable positive source to channel 0, and type the value displayed on the voltage meter.

Please choose (0~3,r,t,s,q):0 Original Gain=33647 , Offset= 8 for +/- 10V Please input 1st voltage (0.0~+10.0):9.497

Output stable negative source to channel 0, and type the value displayed on the voltage meter.

Point 1=(1D45 Hex) Please input 2nd voltage (0.0~-10.0):<u>-9.488</u> Point 2=(E77C Hex), -6276 y1= 31119.769531, y2=-31090.277344 x1=7493, x2=-6276 New Gain= <u>37012</u>,0ffset=<u>-2734</u>,Save to EEPROM ? (y/n):

Press 'y' to save new gain and offset values

After finish the calibration, press 't' to test calibrated AI data with new gain and offset values, and check whether the AI value is correct or not

ale de ste ale de ste ste ste ste ste ste ste ste ste st	
<pre>************************************</pre>	
Please choose (0~3,r,t,s,q): <u>t</u> ************************************	
<pre>* (0)Read Gain_0 -10.00V to +10.00V * * (1)Read Gain_1 - 5.00V to + 5.00V * * (2)Read Gain_2 - 2.50V to + 2.50V * * (3)Read Gain_3 - 1.25V to + 1.25V * * (q)quit * ***********************************</pre>	
Please choose (0~3,q): <u>0</u> Please input voltage source (-10.0~+10.0) to 8017 Press any key continue,'q' quit AI value=-9.4197 AI value=-9.4610 AI value=-9.4460	module

4.2. Restore I-8017HW series modules to defaults on iPAC-8000

Step 1: Download, upload and execute calibration program

The calibration program can be downloaded in ICP DAS website.

Please refer to the following link:

https://www.icpdas.com/en/download/show.php?num=2323

In order to upload programs, please refer to the "2.2.2. Installing the MiniOS7" and "2.5.2.

Uploading and Executing iPAC-8000 programs" of the IP-8000 user manual to download

MiniOS7 Utility which can help users to upload programs and learn how to operate.

After uploading the calibration program, right click on it and click "Run" to execute it.

Step 2: Restore defaults

After execute the program, press 'r' to restore defaults.

```
7188XW 1.31 [COM1:115200,N,8,1],FC=0,CTS=1, DIR=C:\ICPDAS\MiniOS7_Utility
                                                                                                                                    \times
            or WIN32 version 1.31 (2006/03/14)[By ICPDAS.
                                                                                               Tim Tsai.]
 Begin Key Thread...]Current set: Use COM1 115200,N,8,1
AutoRun:
Autodownload files: None
Current work directory="C:\ICPDAS\MiniOS7_Utility"
Calibration porgram for 8017H/8017HS
              Lattice Firmware Version = 9
             Please connect a voltage signal
to ch0 of the 8017H/8017HS first.
ver 1.0.1 Mar 01 2011 by Martin
                                                                                    *
.
********
                                                                          ******
Gain_0 -10.00V to +10.00V *
Gain_1 - 5.00V to + 5.00V *
Gain_2 - 2.50V to + 2.50V *
Gain_3 - 1.25V to + 1.25V *
     (0)Calibrate
    (1)Calibrate
(2)Calibrate
    (3)Calibrate Gain_3 - 1.25V to + 1.25
(r)Recover default calibration settings
     (t)Read calibrated AI value of ChO
(s)Show calibrated Gain/Offset parameters
* (q)quit
*****
    Please choose (0~3,r,t,s,q):
                               Gain_0 -10.00V to +10.00V
Gain_1 - 5.00V to + 5.00V
Gain_2 - 2.50V to + 2.50V
Gain_3 - 1.25V to + 1.25V
     (O)Calibrate
    (1)Calibrate
(2)Calibrate
                                                                                *
     (3)Calibrate
    (r)Recover default calibration settings *
(t)Read calibrated AI value of ChO *
(s)Show calibrated Gain/Offset parameters *
Please choose (0~3,r,t,s,q):r

        Backup default Gain/Offset parameters settings

        +/- 10V
        Gain =34058 Offset =-26

        +/- 5V
        Gain =34061 Offset =-27

        +/- 2.5V
        Gain =34059 Offset =-21

        +/- 1.25V
        Gain =34048 Offset =-23

        +/- 20mA
        Gain =34059 Offset =-21

        Gain/Offset parameters which in using

        +/- 10V
        Gain = 34058 Offset = -26

        +/- 5V
        Gain = 34061 Offset = -27

        +/- 2.5V
        Gain = 34059 Offset = -21

        1.250
                              Gain =34048 Offset =-23
Gain =34059 Offset =-21
        20mA
```

4.3. Calibrate the I-8017HW series modules on WinCE and WES units

Step 1: Wiring method

Set the Differential/Single-ended jumper to the differential position, connect source and modules in differential mode and connect the voltage or current meter to the wiring, like the following figure:

Then, plug module into the controller.

Step 2: Download and execute calibration program

The calibration program can be downloaded in ICP DAS website.

Please refer to the following link:

https://www.icpdas.com/en/download/show.php?num=2323

Step 3: Calibrate

After execute the program, please follow the steps one by one.

Select the index where the module is.

Select the name of module and click "Next" button.

Form1				_				
Step 1 : Sele	ct the index w	here module	e is					
Slot Index	Slot 3 💌							
Library Version :	3110	Library Date :	May 20) 2021				
Firmware Ver :	9	Jumper Position :	Differe	ntial				
Step 2 : Sele	ct module the	n click "Next	" butte	en				
Module Name	I-8017HW / I-8017h	Next		_				
Exit	I-9017 I-9017-15 I-9017C-15	I-8017HW /	I-8017HC	1-801	7DW			
		Step 3 St	ep 4,5 Step) 6,7 Step	8			
		Step 3	: Selec	t the ii	nput range	e to be	calibra	ated
			Range :	+/- 1	.0.0V 🔽			
			TIP:Ran	ge +/- 2.5'	V and range +/-2	0 mA are t	he same g	gain and offset vaue.
			The <u>U</u> SI	NG gain, o	ffset value :	The <u>D</u> EF	AULT gain	, offset value :
			Gain :	Offset :		Gain :	Offset :	
		+/- 10V	34058	-26		34058	-26	
		+/- 5V	34061	-27		34061	-27	
		+/- 2.5V	34059	-21		34059	-21	
		+/- 1.25\	34048	-23		34048	-23	
		+/- 20m/	34059	-21		34059	-21	
						Restore	Defaults	
		Exit						

Change to "page Step 4,5",

Output stable positive source to channel 0 and type the value displayed on the voltage meter, then Click "Read" button.

I-8017HW / I-8017HCW / I-8017DW
Step 3 Step 4,5 Step 6,7 Step 8
Step 4 : Connect a stable <u>P</u> OSITIVE source to
channel 0 and voltage meter
Step 5 : Input the value displayed on voltage meter
then click "Read" button
Voltage meter(float foramt,unit : V) : 9.6848 TIP: The closer the input voltage is to the UPPER limit of the range, the better. EX : Range : +/-10V, Input Voltage : 9.5V
Read Channel D(Not calibrated, Unit : V) : 9.3337
Exit

Change to "page Step 6,7",

Output stable negative source to channel 0 and type the value displayed on the voltage meter, then Click "Read" button.

Change to "page Step 8",

Click "Test" to read calibrated AI data with new and original gain and offset values , and check whether the new gain and offset values are correct or not.

I-8017HW / I	-8017HCW / I-8017DW											
Step 3 Step 4,5 Step 6,7 Step 8												
Step 8 : Test / Save new gain, offset value												
	The following are the new and original gain and offset values.											
	Click "Test" button to read AI and check ca	librate successfully or not.										
	The <u>N</u> EW gain, offset value :	The <u>O</u> RIGINAL gain, offset value :										
	Gain : 34024 Offset : 0	Gain : 34058 Offset : -26										
	Calibrated AI Data with new gain, offset values NEW: -9.6777 Test SAVE	Calibrated AI Data with original gain, offset values ORI: <u>-9.6987</u>										
Exit												

Click "SAVE" to save new gain and offset values.

I-8017HW / I-	8017HCW / I-801	L7DW										
Step 3 Step 4,5 Step 6,7 Step 8												
Step 8 :	Step 8 : Test / Save new gain, offset value The following are the new and original gain and offset values.											
	Click "Test" buttor	Click "Test" button to read AI and check calibrate successfully or not.										
	The <u>N</u> EW gain, of	fset value :	The ORIGINAL gain, offset value :									
	Gain : 34024	Offset : 0	Gain : 34058 Offset : -26									
	Calibrated AI Data offset values	a with new gain,	Calibrated AI Data with original gain, offset values									
	NEW: -9.6777	7	ORI: -9.6987									
	Test SAVE SAVE Are you sure to save new settings? Yes No											
Exit												

4.4. Restore I-8017HW series modules to defaults on WinCE and WES units

Step 1: Download and execute calibration program

The calibration program can be downloaded in ICP DAS website.

Please refer to the following link:

https://www.icpdas.com/en/download/show.php?num=2323

Step 2: Restore defaults

After execute the program, please follow the steps one by one.

Select the index where the module is.

Form1												
Step 1 : Select the index where module is												
Slot Index	•											
Library Version :	Slot 0 Slot 1	Library Date :	May 20 2021									
Firmware Ver :	Slot 2 Slot 3	Jumper Position :										
Step 2 : Selec	Slot 4 Slot 5	n click "Next"	butten									
Module Name	Slot 6 Slot 7	Next										
Exit		-										

Select the name of module and click "Next" button.

Form1	
Step 1 : Select the index where module is	1-8017HW / 1-8017HCW / 1-8017DW
Slot Index Slot 3	Step 3 Step 4,5 Step 6,7 Step 8
Library Version: 3110 Library Date: Ma	ay 20 Step 3 : Select the input range to be calibrated
Firmware Ver : 9 Jumper Position :	Range : +/- 10.0V TIP:Range +/- 2.5V and range +/-20 mA are the same gain and offset vaue.
Step 2 : Select module then diet "No C" bu	The USING gain, offset value : The DEFAULT gain, offset value :
Module Name I-8017HW / I-8017HC Exit I-9017-15 I-9017C-15	Gain: Offset : Gain: Offset : +/- 10V 34058 -26 34058 -26 +/- 5V 34061 -27 34061 -27 +/- 2.5V 34059 -21 34059 -21 +/- 1.25V 34048 -23 34048 -23 +/- 2.0mA 34059 -21 34059 -21 Restore Defaults

Click "Restore Defaults" button.

I-8017HW / I	I-8017HW / I-8017HCW / I-8017DW											
Step 3 Step	Step 3 Step 4,5 Step 6,7 Step 8											
Step 3 :	Step 3 : Select the input range to be calibrated											
Range : +/- 10.0V 💌												
	TIP:Range +/- 2.5V and range +/-20 mA are the same gain and offset vaue.											
	The <u>U</u> SI	NG gain, offset value :	The <u>D</u> EFAULT gain, offset value :									
	Gain :	Offset :	Gain : Offset :									
+/- 10V	34024	0 Restore Checking	× 26									
+/- 5V	34061	-2: Are you sure to resto	pre defaults? 27									
+/- 2.5V	34059	-2: <u>Y</u> es	<u>No</u> 21									
+/- 1.25V	34048	-23	34048 -23									
+/- 20mA	34059	-21	34059 -21									
			Restore Defaults									
Exit												

5. Troubleshooting

This chapter discusses how to solve some common problems you may encounter.

This chapter contains:

- How to verify the AI function on a WinCE or WES PAC Service/Request Requirements
- What to do when the data read from the module seems unstable

5.1. Verifying Analog Input functionality on a WinCE or WES PAC device

If the data read from the module is inconsistent with the input signal, and you would like to confirm the input function, the pac_i8017W_Utility.exe tool may be helpful. The utility can only be used with modules designed for controllers using the WinCE and WES platforms and is located in the I-8017W C# demo program folder for the controller. (See the Location of the Demo Programs section for more details)

Step 1: Connect a stable signal to the module.

- a. Connect your input signal according to whether differential or single-ended Jumper settings are used. (See the Jumper Settings section for more details)
- b. The input range can be from -10 V to +10 V.
- c. Insert the module into a slot in a Windows platform controller and then power on the controller.

Tips & Warnings

- 1. A battery output should provide a stable enough signal.
- 2. A 125 Ω resistor is required when measuring current input.
- 3. If the result is not as stable as the input signal when measuring the voltage using the differential input type, it is recommended that an additional wire is connected between the Vn- and the AGND (analog ground) pins to enhance the accuracy. Note that this method has no benefit in enhancing accuracy when measuring current input.

Step 2: Launch the pac i8017W Utility.exe

Step 3: Read the information from the module

- a. Select the slot that the module is connected to from the slot index drop-down list.
- b. Click the Basic Information tab.

The Basic Information page includes:

- The version information for the FPGA firmware
- The current position of the Differential/Single-ended jumper
- The Gain and Offset values for each input type

Form1																_ [×
I-8017HW Slo	(t Inde)	c	Slot	3	•												
Basic Informa	ation	AI Test															
Library Vers	sion 30	001		Refre	sh												
Firmware	Firmware 18			Sav	e											L	
Single-Ende	ed/ Diff	erential	Diffe	erential		Т										L	
+/- 10V	Gain	33636		Offset	-90	Т										L	
+/- 5V	Gain	33632		Offset	-88											L	
+/- 2.5V	Gain	33639		Offset	-85												
+/- 1.25V	Gain	33628		Offset	-75	-1											
+/- 20mA	Gain	33639		Offset	-85												
																L	
																L	
																L	
																Т	
							_	_	_	 	_	_	_	_	_		

Click the Save button to save all the information to the Slot1_8017W_Info.txt file. This information is useful for troubleshooting when requesting service.

Verifying the Gain and Offset Values

In a normal situation, the Gain value should be around 33000 (33000 to 34000). If the value is greatly different from 33000, it means that the value is incorrect. To correct this situation, try the following:

- a. Press Refresh to retrieve the Gain values again and confirm whether or not they are correct.
- b. Relocate the module to a different slot, and then repeat Steps 2 and 3 to confirm whether or not the Gain values are correct.

Test the input function.

- a. Click the AI test tab, and then select the required input range from the Gain drop-down list.
- b. Enter the required sample count, and choose the data format from the Format drop-down list.
- c. Click the Start button.

Form1	L								_ 🗆 ×	
I-8014	IW slot Ind	ex Slo	ot 1	•						
Basic Information AI Test										
Gain	+/- 10.0 \	/ 🔽 Co	unt 100	0	For	mat Floa	at 💌			
	First Data	Min Data	Max Data	Delta	I	First Data	Min Data	Max Data	Delta	
СО	02.6645	02.6636	02.6651	00.0015	C8					
C1	02.6642	02.6636	02.6651	00.0015	C9					
C2	02.6642	02.6639	02.6648	00.0009	C10					
СЗ	02.6642	02.6639	02.6651	00.0012	C11					
C4	02.6642	02.6636	02.6651	00.0015	C12					
C5	02.6642	02.6639	02.6648	00.0009	C13					
C6	02.6642	02.6636	02.6651	00.0015	C14					
C7	02.6642	02.6639	02.6651	00.0012	C15					
	Start		Time Ti	cks 39			Save			

After the sampling process is completed, the data will be displayed in the respective columns for each channel.

d. If necessary, click the Save button to save the data and the sampling time to the SampleData_Hex_mm_dd_hh_mim_sec.csv file.

5.2. Service Request Requirements

If you are using a stable signal source to output a signal to the module, such as a battery, and are receiving incorrect or unstable data, prepare the following three items and e-mail them to <u>service@icpdas.com</u>

- An image of the physical wiring
- The file saved from the Basic Information tab (See step 3 in Section 6.1 above)
- The file saved from the AI Test tab (See step 4 in Section 6.1 above)

5.3. What to do when the data read from the module seems unstable

If the voltage can be measured correctly when testing using a battery, but not when using the real signal source, the error may be caused by any or all of the following factors:

- A noise-corrupted signal source
- Instability in the signal source
- A floating signal source that is not referenced to a system ground(earth or building ground)

Because of the nature of the high-speed data acquisition function on the module, any noise coupled to a signal, or any change in voltage on an unstable source, is also captured. In this situation, signal filtering or isolation should be considered in order to enhance the quality of the signal.

It is recommended that the V- pin is connected to the AGND (system ground) pin when measuring differential signals, as shown in the figure below.

Appendix A. Error Code

Code	Definition	Description
0	NoError	This indicates that there have been no errors
-1	ID_ERROR	There is a problem with the module ID
-2	SLOT_ERROR	There is a Slot index error
-3	CHANNEL_ERROR	There is a Channel index error (0 - 15)
-4	GAIN_ERROR	There is a Gain error (0 - 4)
-6	NOT_SUPPORT_ERROR	The function is not support the Firmware
-7	NOT_Calibration	The module is not calibrated

Appendix B. Read AI Function Performance

Test with library version 0x3110.

Platform Test Items			MiniOS7	CE 5.0	CE 6.0	CE 7.0	WES	ΙΟΤ
8017H	HEX format	One channel	29	94 ~ 95	71~82	112 ~ 115	77	81
		Eight channels	19	38 ~ 39	35 ~ 39	36 ~ 37	36	37
	Float format	One channel	7	89 ~ 93	70 ~ 82	111 ~ 113	77	82
		Eight channels	4	37 ~ 38	35 ~ 39	36 ~ 37	36	36
8017HC	HEX format	One channel	28	95 ~ 96	72 ~ 82	113 ~ 116	77	82
		Eight channels	18	38 ~ 39	35 ~ 39	36 ~ 37	36	37
	Float format	One channel	7	90~91	71~82	111 ~ 114	77	82
		Eight channels	6	37 ~ 38	35 ~ 39	36 ~ 37	35	37

Unit : K Hz.

Notes

- There is no need to switch the MUX when using a single channel as it provides the best performance. However, when using multiple channels the MUX needs to be switched and you should be aware that the performance will be affected by switching the MUX.
- 2. The MiniOS7 system is not designed for mathematical operations, so it is more suitable for non-continuous data sampling in high speed applications.
- 3. Large amounts of non-continuous data samples can be saved on the other memory devices, for example MicroSD cards or NAND flash memory.
- 4. A Backplane Timer Interrupt can be used for the CE5 and CE6 platforms when performing continuous data sampling.
- 5. The Timer on the WES platform can be affected by Ethernet communication or when using a mouse. If greater accuracy is required for the sample frequency (less than 50 ms), it is recommended that either the CE5 or the CE6 platform is used.

Appendix B. Revision History

This chapter provides revision history information to this document.

The table below shows the revision history.

Revision	Date	Description	
1.0.0	January 2018	Initial issue	
2.0.0	January 2018	 Added content for the I-8017DW and I-8017HCW modules Added calibration instructions for modules based on the Windows platform Added performance information for all platforms 	
3.0.0	March 2018	 Added content for the I-9017, I-9017-15,I-9017C-15 modules Modify library , demo path Added WP-9000 , ippc-wes7 library , demo path Modify API functions 	
3.0.2	August 2019	Modify calibrate steps	
3.0.3	May 2021	 Modify Quick start Modify the download path of libraries and demos Modify performance information for all platforms Added optioning modules on Linux platform 	