CAN-8123/CAN-8223/
CAN-8423/CAN-8823

CANopen Slave Device

User’s Manual

Warranty
Without contrived damage, all products manufactured by ICP DAS are
warranted in one year from the date of delivery to customers.

Warning

ICP DAS revises the manual at any time without notice. However, no
responsibility is taken by ICP DAS unless infringement act imperils to patents
of the third parties.

Copyright
Copyright © 2007 is reserved by ICP DAS.

Trademark
The brand name ICP DAS as a trademark is registered, and can be used
by other authorized companies.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 1

Contents

1

INTFOAUCTION e e s 4
I R @ V7= 1 PP 4
1.2 Hardware FEAtUIES.........uuuiiiie e 6
1.3 CAN-8X23 FEAUIES ... 7
1.4 ULHTY FEALUIES ..ot 8
Hardware SpecCifiCation ..o 9
2.1 Hardware StrUCTUI.......iii e 9
2.2 LAYOUL STTUCTUIE cooeeiiiiiie e 11
2.3 WIre CONNECTION oiiiiiiiiiiee et e e e 12
2.4 CAN CONNECION ittt 13
2.5 Terminal Resistor Jumper and Initial Switch............................. 15
2.6 POWEN LED ... 15
2.7 CANoOpeNn Status LED........ccoooiiiiiii e 16

271 The RUNLED ..ccccooiiiiee e 16

2.7.2 TheERRLED ..ottt 17
2.8 The Node ID & the Baud rate Rotary Switch...............cccooeee. 19
2.9 1/O Pair-connection Mode.........ccoooeiiiiiiiiii 20
2.10 MOdUIE SUPPOIT oo 21
CANopen AppPlICAtioNcooeiiieeeee e 22
3.1 CANOPen INtroduUCtiON.....cccciiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 22
3.2 SDO INTrodUCTION .coeviiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeee e 29
3.3 PDO INtrodUCTION .cooeviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 31
G0 S 11V, (@3 8 [a1 o T 1V Tox 1 o IS 43
3.5 NMT INTrOAUCTION covveeiiie e 44

3.5.1 Module Control ProtocCols........ccccceiiiiiiiii, 45

3.5.2 Error Control ProtocColsevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiies 46
Configuration & Getting Start ... 49
4.1 CAN-8123/CAN-8223 Configuration Flowchart..............ccc.eeeeeee 49
4.2 CAN-8423/CAN-8823 Configuration Flowchart..............cceeueeeee 51
4.3 CANopen Slave Utility OVErVIEWuuvvvivvirmmimiiiiiiiiiiiiiininnnns 53
4.4 Configuration with the CANopen Slave Utilityccccccvvvennnes 54
4.5 CAN-8123/8223 Configuration (Off-line mode)ccccuvvvvnnnene 55
4.6 CAN-8423/8823 Configuration (On-line mode)ccccvvvvvnnnnne 60
CANopen Communication Setl........cccooeiiiiiiiii 65
5.1 SDO CommuNiCatioN Stccevvviiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee 66

5.1.1 Upload SDO ProtocCol........ccovvveiiiiiiiieeeeeeeeici e 66

5.1.2 SDO Block Upload ProtocColcccoeeeevvviiiiiiiiiiieeeceeeeans 75

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 2

513 Download SDO ProtoCOloouveiieeeeee e, 86

514 SDO Block Download..........ccoovviiieiiiiiiiiiiiceecei e, 91

5.1.5 Abort SDO Transfer ProtocColccccoeeviiiiiiiiiciiiineeeees 99

5.2 PDO Communication Setcccoviiiiiiiiiiiieeeeie e 102
521 PDO COB-ID Parametersccooeeeviiiiiiiiecieeceieeeeiees 102

522 TransSmiSSIioN TYPE .o 104

5.2.3 PDO Communication Rule........ccccooooiiiiiiiiiiiee, 105

5.3 EMCY Communication Setl.......ccccooiiiiiiiiiiiiiiiiie e 144
5.3.1 EMCY COB-ID Parameter........cccooeeviiiiiiiiiiiiieceiie e 144

5.3.2 EMCY Communicationc.cooevviiiiiiiiiii e 145

5.4 NMT Communication Setcccccvviiiiiiiiiiiiie e 153
54.1 Module Control Protocol..........cccoeeeeiiiiiiiiciien e, 153

5.4.2 Error Control ProtocColccooovvviiiiiiiiiii e, 156

5.5 Special Functions for CAN-8X23........ccoiviiiiiiiiiiiiiiiiiiiiiieeeeeeeee 161

6 Object Dictionary of CAN-8X23.........uuuiuimimiiiiiiiiiiiiiiiiiiiiiiiiieieiinieanenees 169
6.1 Communication Profile Area.......ccccooeeeiiiiiiiiiiiii i, 169

6.2 Manufacturer Specific Profile Area...........cccoeeii 176

6.3 Standardized Device Profile Area........cccccoeveuvviiiiieieiieeeiiinnnnn, 178

6.4 Object of Counter/Frequency Modulesccccoeeiviiii. 182

6.5 Object of PWM Module (Only for I-8088W)ccccceevvvvvvevnnnnnnn. 184
Appendix A: Type Code Table. ... 186
Appendix B: DIO Type Define of I-8050 Modulesccccccovvviiiriinnnnnnn. 199

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 3

1 Introduction

1.1 Overview

CANopen, a kind of communication protocols, is an intelligent field bus
(CAN bus). It has been developed as a standard embedded network with a
high flexible configuration. It provides a standard communication protocol
transmitting real-time data in PDO (Process Data Objects), configuration data
in SDO (Service Data Objects), and network management data (NMT
message, and Error Control), even supports the special functions (Time Stamp,
Sync message, and Emergency message). Nowadays, CANopen is used on
many applications and in specific fields, such as medical equipment, off-road
vehicles, maritime electronics, public transportation, automation and so on.

The main control units CAN-8123/CAN-8223/CAN-8423/CAN-8823
(CAN-8x23 in general) are specially designed for the slave device of the
CANopen protocols. In order to expand the I/O channel, and make it more
flexible, the CAN-8x23 supports up to 8 expansion slots for users to increase
applications by adding 1/0 channels. Users can choose either the 1-87K or the
[-8000 series DI/DO/AI/AO slot modules for their application purposes. The
CAN-8123/CAN-8223 has one and two expansion slots respectively, and the
CAN-8423/CAN-8823 supports four and eight expansion slots. Each
expansion slot can insert in one 1-87K or I-8000 series I/O module. All of these
main control units follow the CANopen Spec DS-301 V4.01 and DS-401 V2.1,
and supply a great deal of features to users, such as dynamic PDO, EMCY
object, error output value, SYNC cyclic and acyclic and so forth. In addition,
the CAN Slave Utility is also provided to allow users to create EDS files
dynamically. EDS files based on the CANopen DS-306 is compatible with other
CANopen master interface made by different manufacturers, also supporting
the EDS files. The general application for the CAN-8x23 CANopen slave
device architecture is as follows.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 4

CAN-8423

L
'+

I-8K/I-87K
series
modules

CAN-8123 CAN-8223

PISO-CAN200/400
(with CANopen master library)

PISO-CPM100

1-7231D J
DCON

~x
J [s

CANopen Device

(I-7000/1-87K series)

S
o
<
[
g
O
5
O

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 5

1.2 Hardware Features

CPU:80186, 80MHz

Philip SJA1000 CAN controller

Philip 82C250 CAN transceiver

SRAM:512 Kbytes

Flash Memory:512 Kbytes

EEPROM:2 Kbytes

NVRAM: 32 bytes

Real Time Clock

Built-in Watchdog Timer

16-bit Timer

Power LED, RUN LED, and ERR LED

Support 1/2/4 expansion 1/O slots

2500 Vrms isolation at CAN side

120Q) terminal resister selected by jumper(s)

CAN bus interface: ISO/IS 11898-2, 5-pin screw terminal with
on-board optical isolators’ protection.

Power Supply: 20W. Unregulated from +10VDC ~ +30VDC
Operating Temperature:-25°C ~ +75°C

Storage Temperature:-30°C ~ +85°C

Humidity:5%~95% RH

COM1
® RS-232: TXD,RXD,RTS,CTS,GND
® Communication speed: 115200 bps.
® Configure tool connection

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

1.3 CAN-8x23 Features

NMT: Slave

Error Control: Node Guarding - Heartbeat Producer

Node ID: Setting by Rotary Switch

No. of PDOs: 16 Rx, 16Tx

PDO Modes: Event-triggered, remotely requested, cyclic and acyclic
SYNC

PDO Mapping: variable

No of SDOs: 1 server, O client

Emergency Message: Yes

CANopen Version: CiA-301 v4.02

Device Profile: CiA-401 v2.1

Produce EDS file dynamically

Baud Rate Selection : 10K, 20K, 50K, 125K, 250K, 500K, 800K and
1M bps

Power LED, RUN LED, and ERR LED indicators

Support 1-8000 and I-87K I/O expansion slot:

B CAN-8123: 1 slot

B CAN-8223: 2 slots

B CAN-8423: 4 slots

B CAN-8823: 8 slots

Provide a friendly Utility to configure the 1-8000 and 1-87K series
modules

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

1.4 Utility Features

Support parameter configuration on the 1-8000 and 1-87K modules
Provide to show Application and Device Object information
Provide to show Rx and Tx PDO mapping

Support EDS file creation

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

2 Hardware Specification

2.1 Hardware Structure

CAN-8123:
Power LED CANopen
Status LED
Node ID and Baud
. CANopen
rate rotary switch
o Error LED
CAN-8123

CANopen

CAN Bus Connector

1 I/O Expansion Slot

CAN-8223:

CANopen

Power LED
Status LED
CANopen

Node ID and Baud
_ Error LED

rate rotary switch

CAN-8223
CANopen]

CAN Bus Connector

\ 2 1/0 Expansion Slot

CAN-8423:

CANopen CANopen
Error LED Power LED Status LED

Node ID and Baud
rate rotary switch

Power Pin

RS-232 Port
(connect to PC)

CAN Bus Connector 2 " o

4 1/0O Expansion Slots

CANopen

CAN-8823: Error LED

Power Pin

CANopen
, g ‘ Power LED Status LED

v 229 |
¢ N-8823 46 REV:1.7

CANopen
B oces0-30v

é;! q AN . NodI andaud

rate rotary switch

CAN Bus Connector \

RS-232 Port
(connect to PC)

8 1/0 Expansion Slots

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 10

2.2 Layout Structure

CAN-8123/CAN-8223:

| CAN Connector

Rotary Swtich I

CAN Controller

JPZE]

CAN
Transciver

[eesslors
[

CAN-8123/CAN-8223 connector

186 CPU

CAN-8423:

I Rotary Switch

186 CPU

CAN Connector

=]

JP1 CAN
Transciver

CAN Controller

CAN-8423

connector

CAN-8823:
L
— e M SW1 Rotary Switch CAN Connector
(]
JP1 : : :|
Transciver DC
SRAM to
186 CPU e
Flash
CPLD CAN-8823 Connector

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

11

2.3 Wire Connection

In order to minimize the reflection on the CAN bus line, the CAN bus line
has to be terminated at both ends by two terminal resistances as shown in the
following. According to the ISO 11898-2 spec, each terminal resistance is
120Q (or other between 108Q~132Q). The length related resistance has to
reach 70mQ/m. At this circumstance, users would better check the resistances
of the CAN bus before installing a new CAN network.

Device 1 Device 2 o o o Device N
LN L LN
CAN H
c ro
(@) (@)
N @)
CAN L

Moreover, to minimize the voltage drop, value of the terminal resistance
must be higher than the one defined in the ISO 11898-2. The following table is
for users’ reference.

Bus Cable Parameters]
Bus Length Terminal
Length Related ;
(meter) g _ Cross Section Resistance
Resistance
Q)
(Type)
(mQ/m)
0~40 70 0.25(23AWG)~ 124 (0.1%)
0.34mm?(22AWG)
40~300 <60 0.34(22AWG)~ 127 (0.1%)
0.6mm?(20AWG)
300~600 <40 0.5~0.6mm?2 150~300
(20AWG)
600~1K <20 0.75~0.8mm? 150~300
(18AWG)

In the CAN-8x23, the 120Q terminal resistance is supplied as a standard
accessory. About enable/disable the 120Q terminal resistance jumps, please
refer to section 2.5 “Terminal Resistor Jumper and Initial Switch”.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 12

The bus length determines the CAN bus baud rate. In the following the
table provides users a relationship between the baud rate and the bus length.

2.4 CAN

Baud rate (bit/s) Max. Bus length (m)

Y 25

800 K 50

500 K 100

250 K 250

125K 500

50 K 1000

20 K 2500

10K 5000

Note: When the bus length is greater than 1000m, the bridge

or repeater devices may be needed.

Connector

The pin descriptions of the CAN bus connectors on the CAN-8x23 are

shown below.

CAN-8123/CAN-8223:

CAN_GND - 1
CAN_L — 2
CAN_SHLD — 3
CAN_H o 4
CAN_V+ — 5
Pin No. Signal Description
1 CAN_GND Ground (0V)
2 CAN_L CAN_L bus line (dominant low)
3 CAN_SHLD Optional CAN Shield
4 CAN_H CAN_H bus line (dominant high)
5 CAN_V+ CAN external positive supply (+10V ~ +30V)

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

13

CAN-8423:

5 —N/A
4 —CAN_H
3 —CAN_SHLD
2 —CAN_L
1 —N/A
Pin No. Signal Description
1 N/A N/A
2 CAN_L CAN_L bus line (dominant low)
3 CAN_SHLD Optional CAN Shield
4 CAN_H CAN_H bus line (dominant high)
5 N/A N/A
CAN-8823:
O
i:g. CAN_SHLD
8@
3.?. CAN_H
2@
6@ | [CAN_L
Lo~
—O
Pin No. Signal Description
2 CAN_L CAN_L bus line (dominant low)
5 CAN_SHLD Optional CAN Shield
7 CAN_H CAN_H bus line (dominant high)
Others | N/A N/A

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

2.5 Terminal Resistor Jumper and Initial Switch

The jumpers enable/disable of the terminal resistor show as follow:

Device Jumper Enable Disable
CAN-8123 / CAN-8223 | JP2 2] H
CAN-8423 JP1 X [+9]

CAN-8823 JP1

e L

Before updating firmware or using the utility tool to configure the
CAN-8423 and the CAN-8823, the initial mode is needed. For more detail
configuration, please refer to the cheaper 4. Since the CAN-8123/CAN-8223
doesn’t support RS-232 COM Port, the utility tool in the off-line mode takes the
place to get the EDS file.

Following shows the initial switch of CAN-8423 and CAN-8823
(CAN-8123/CAN-8223 not support the initial function).

Device Switch Initial Mode Run Mode
Baud . .
CAN-8423 _ Switch to “9” Switch to “0” ~ “7”
Rotary Switch
CAN-8823 SWi1 Switch to “Init” Switch to “Run”

2.6 Power LED

The CAN series products (CAN-8x23) need 10 to 30 VDC power supplies,
(Please note that other slot modules, inserted in, will also consume part of the
inputted power). Under a normal connection, a good power supply and a
correct voltage selection, as the unit is turned on, the LED will light up in yellow.
If it can’t work, please check with local agents or resellers for more help.
CANopen Status LED

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 15

2.7 CANopen Status LED

Each one CAN-8x23 has two LED indicators. One is the Error LED

(lighting in red) and the other one is the RUN (Performing) LED (lighting in
green). The Error LED and the Run (Performing) LED information are
presented in the CANopen specifications. When the CANopen communication
carries out, these indicators will glitter in different time. The following
descriptions will show meanings of the glittering signal as these indicators are
being triggered.

2.7.1 The RUN LED

The RUN LED relates to the physical mechanism on the CANopen that

will be discussed later. The data state and the signal state description are
respectively shown in the following figure and table.

On
Blanking I—
Off
On
Single
Flash of
400 800 1200 1600 2000
200 600 1000 1400 1800
0 Time(ms)
No. | Signal State Description
1 No Light Non-operation Malfunction or Power Supply
/Connection not ready
2 Single Flash Stopped The device is in Stopped state
3 Blinking Pre-operation The device is in the
pre-operational state
4 Continuing Light | Operation The device is in the operational

state

Blinking rapidly

Module Error

I/O module is removed when
running or CAN-8x23 detects the
module different from before.
Users can use utility to reset it.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

16

2.7.2 The ERRLED

The ERR LED relates to the state of missing messages at the CAN
physical layer (These missing messages might be SYNC or Guard messages).
The data state and the signal state description are respectively shown in the
following figure and table.

On
Single Flash

Off

— (N
Double Flash

Off

— On
Triple Flash

Off

400 800 1200 1600 2000
200 600 1000 1400 1800

0 Time (ms)

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 17

No. | Signal State Description

1 No Light No error The device is in working
condition.

2 Single Flash Error Reminding | At least one of the error counters

when Warning of the CAN controller has
Level is Reached | reached or exceeded the warning
level (too many error frames).

3 Double Flash | Error Reminding | A guard event (NMT-Slave or
when Events NMT-master) or a heartbeat
happen. event (Medical Application) has

occurred.

4 Triple Flash SYNC Error The SYNC message has not
been received within the specific
communication cycle before time
out (see Object Dictionary Entry
0x1006).

5 Continuing Bus Off The CAN controller is in a bus off

Light condition.
Note: If several errors occur at the same time, the most severe error will have

high priority to show its signal first. For example, if NMT Error (No. =3)
and Sync Error (No. =4) occur, the SYNC error signal will indicate.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 18

2.8 The Node ID & the Baud rate Rotary Switch

BAUD

The first two rotary switches (MSB & LSB) control the CAN-8x23 node
ID. MSB (Most Significant Bit) means the high nibble of the node ID, and LSB
(Least Significant Bit).

ID Rotary Switch | Status
0x01 ~ Ox7F Normal CANopen ID
0x81 ~ OxFF I/O Pair-connection CANopen ID

The last rotary switch (BAUD) handles the CAN-8x23 baud rate. The
relationship between the rotary switch value and the practical baud rate is
presented in the following table.

Rotary Switch Value | Baud rate (K BPS)
10
20
50
125
250
500
800
1000
Initial Mode
(Only for CAN-8423)
Others N/A
Furthermore, when users apply the CAN-8x23 the CANopen firmware will
automatically check these rotary switches. Any illegal value for these rotary
switches will cause the boot-up failure.

N oga|~hiWIN|F|O

9

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 19

2.9 1/0 Pair-connection Mode

The CAN-8x23 provides the 1/O pair-connection function. Before using this
function, you need to prepare two CAN-8x23s with DI and DO I/O modules
(such as I-8057W and 1-8053W). When applying this function, the DI channels
and the DO channels are mapping with each other. That is to say that when the
DI channels of one CAN-8x23 get the ON signal, the corresponding DO
channels of the other one will be turned on.

When you completed the connection of these two CAN-8x23s by CAN bus,
you need to set the ID rotary switch of these two modules to 0x81 ~ OXFE by
the special rule. Set the node ID to be odd for one module, and set the node ID
of another module to be the value which is equal to the node ID increased one
of the former. Therefore, they are the couple as the following figure.

1st CAN-8x23 Node-ID 2nd CAN-8x23 Node-ID

0x81 < A Couple > 0x82
0x83 < A Couple = O0x84
0x85 < A Couple = 0x66
0xFD < A Couple = OxFE

For example, user uses a CAN-8123 with 1-8057W and a CAN-8123 with
[-8053W to do I/O pair-connection. The connection structure is as follows.

CAN-8123 | I-B057W CAN-8123 | 1-8053W
Node 1D 16-DO Node 1D 16-DlI
0x81 0x82
Baud Baud
125 kbps 125 kbps
CAN port CAN port
CAN_L
CAN_H

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 20

The node ID of left CAN-8123 is “0x81”, and the node ID of right
CAN-8123 is “Ox82”. Both of these two module’s node ID switch are selected
to I/O pair-connection mode node ID, and these two modules will into
Operational state automatically. When the DI module, right CAN-8123,
receives a DI ON-signal, the DO module, left CAN-8123, will output the
ON-signal at the corresponding DO channels.

2.10 Module Support

The CAN-8x23 supports many kinds of DI, DO, Al and AO types across
the 1-8000/1-87K series modules. When users want to apply these modules on
the CANopen network, they only insert these modules into the CAN-8x23 1/0
expansion slots. Then, the CANopen firmware built in the CAN-8x23 will
automatically search them, and apply the corresponding CANopen objects.
The following table shows the information of the 10 types and module names
which can be supported by the CAN-8x23.

IO Type Module Name 10 Type Module Name

[-8014/1-8014C/I-8017H/

[-8017HC/I-8017HS/I-8017HW 1-8024/1-8026/

A | 87005/1-87013/1-87015/ "0 I-8024U/-8028U
1-87015P/1-87016/1-87017/

1-87017R/I-87017RC/I-87017A5/

1-87018/1-87018R/I-870187/

[-87019R

[-87026/1-87026P

[-8037/1-8041/1-8041A/1-8041P
[-8056/1-8057/1-8057P/
[-8060/1-8064/1-8065/
[-8066/1-8068/1-8069

DO DI

[-8046/1-8048/1-8051/
[-8052/1-8053/1-8053P/
I8053A1/1-8058/

[-87022/1-87024/187024R/

[-8040/1-8040P/1-8040A1/

[-87041/1-87041P/1-87057/
[-87057P/1-87064/1-87065/
[-87061P/1-87066/1-87068
[-87068-2A/1-87069/1-87069P

[-87040/1-87040P/1-87046/
[-87051/ 1-87052/1-87053/
[-87053A2/1-87053P/
[-87053A5/1-87053E5/
[-87058/1-87059

DO&DI

[-8042/1-8050/1-8054/1-8055/
[-8063/1-8077

[-87042/1-87054/1-87055/1-87063

Counter
Frequency

[-8080/1-8084/1-8088

Note: All modules are supported with “High profile” (W) and “Low
profile”. But only the “High profile” 1-87K modules support hot-swap
function.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 21

3 CANopen Application

The CANopen is a kind of network protocols evolving from the CAN bus, used
on car control system in early days, and has been greatly used in various
applications, such as vehicles, industrial machines, building automation,
medical devices, maritime applications, restaurant appliances, laboratory
equipment & research.

3.1 CANopen Introduction

CANopen provides not only the broadcasting function but also the
peer-to-peer data exchange function between every CANopen node. The
network management function instructed in the CANopen simplifies the
program design. In addition, users can also implement and diagnose the
CANopen network, including network start-up, and error management by
standard mechanisms (CANopen device), i.e. the CANopen device can
effectively access the I/0O values and detect node states of other devices in the
same network. Generally, a CANopen device can be modeled into three parts.

® Communication
® Object Dictionary

® Application program

The functions and general concepts for each part are shown as follows.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 22

Object

Dictionary Applictaion

/" mopliation ™\
@
Entry 1

Entry 2 _/~ Application ™, _
object

L]
L]
L
~/Comm_ Application™, |

Communication

State mechanism

) J

Comm, ohject

_/ Comm.™

Y

Bus System Process

Communication

The communication part provides several communication objects and
appropriate functionalities to transmit CANopen messages via the network
structure. These objects include PDO (Process Data Object), SDO (Service
Data Object), NMT (Network Management Objects), SYNC (Synchronous
Objects)...etc. Each communication object has its relative communication
model and functionality. For example, the communication objects for accessing
the device object dictionary is SDO, using the Client/Server structure as its
communication model (section 3.2). Real-time data or I/O values can be
accessed quickly without any protocol by means of PDO communication
objects. The PDO’s communication model follows the Producer/Consumer
structure. It is also named the Push/Pull model (section 3.3). NMT
communication objects are used for controlling and supervising the state of the
nodes in the CANopen network, and it follows a Master/Slave structure
(section 3.5). No matter which kind of communication object is used, the
transmitted message will comply with the data frame defined in the CAN 2.0A
spec. Generally, it looks like the following figure.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 23

Data
ID RTR Length 8-byte Data

11-bit data is limited in the ID field. It is useful in the arbitration mechanism.
The RTR, limited in 1-bit data, is used for remote-transmitting requests as the
value is set to 1. The data length, limited in 4-bit data, shows the valid data
number stored in the 8-byte data field. The last field, 8-byte data, is applied to
store the message data.

In the CANopen specifications the 4-bit function code and 7-bit node ID
are assumed to combine the 11-bit ID of CAN message, and named the
communication object ID (COB-ID). The COB-ID structure is displayed below.

bit 10 bit O

- Function Code g Node ID >

The COB-IDs are used for recognizing where the message comes from or
where the message is sent to, as well deciding the priority of the message
transmission around node network. According to the arbitration mechanism
rule of the CAN bus, the CAN message with the lower COB-ID will get the
higher priority to be transmitted. In the CANopen specifications some COB-IDs
are reversed for specific communication objects, and can't be defined
arbitrarily by users. The following list shows these reversed COB-IDs.

Reversed COB-ID (Hex) Used by object
0 NMT
1 Reserved
80 SYNC
81~FF EMERGENCY
100 TIME STAMP
101~180 reversed
581~5FF Default Transmit-SDO
601~67F Default Receive-SDO
6EQ reversed
701~77F NMT Error Control
780~7FF reversed

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 24

In addition, the other COB-IDs shown in the following table can be used if
necessary.

(Bit10~Bit7)

_ (Bit6~Bit0) Communication object Name
(Function Code)

0000 0000000 NMT

0001 0000000 SYNC

0010 0000000 TIME STAMP

0001 Node ID EMERGENCY

0011/0101/0111/1001 Node ID TxPDO1/2/3/4
0100/0110/1000/1010 Node ID RxPDO1/2/3/4

1011 Node ID SDO for transmission (TxSDO)
1100 Node ID SDO for reception (RxSDO)
1110 Node ID NMT Error Control

Note: For the CAN-8x23, all communication objects are supported except the
TIME STAMP.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 25

Object Dictionary

The object dictionary collects a lot of important information which can
affect device’s reaction, such as the data accessing through I/O channels, the
communication values and the network states. Essentially, the object
dictionary consists of a group of entry objects, and these entries can be
accessed via the node network in a pre-defined method. Each object entry
within the object dictionary has its own function, for example communication
parameters, device profile, data type (ex. 8-bit Integer, 8-bit unsigned...), and
access type (read only, write only ...). All of them are addressed in a 16-bit
index and an 8-bit sub-index. The overall profile of the standard object
dictionary is shown below.

Index
0x0000
0x0001 - 0x001F

Object

Reserved

Static Data Types

0x0020 - 0x003F

Complex Data Types

0x0040 - 0x005F

Manufacturer Specific Complex Data Types

0x0060 - 0x007F

Device Profile Specific Static Data Types

0x0080 - 0x009F

Device Profile Specific Complex Data Types

0x00AO - OxOFFF

Reserved for further use

0x1000 - Ox1FFF

Communication Profile Area

0x2000 - Ox5FFF

Manufacturer Specific Profile Area

0x6000 - OX9FFF

Standardized Device Profile Area

0xA000 - OXBFFF

Standardized Interface Profile Area

0xCO000 - OXFFFF

Reserved for further use

Take the standardized device profile area as an example. Assume that a
CANopen device has 16 DI, 8 DO, 2 Al and 1 AO channels. The values of
these channels will be stored in the Standardized Device Profile Area,
especially the entries with indexes 0x6000, 0x6200, 0x6401, and 0x6411.
When the CANopen device obtains the input value, these values will be stored
in the 0x6000 and 0x6401 indexes. Furthermore, the values stored in the
0x6200 and 0x6411 indexes will also output to the DO and AO channels. The
basic concept is presented as follows.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 26

I

I DI Standardized Device
Dictionary Object (0x6000)
Subindex1 : DI Channel 0~7

Subindex2 : DI Channel 8~15

Practical DI

I
Channel 0~15 N
I
Practical DO |
Channel 0~7 m |

|
| Al Standardized Device
| Dictionary Object (0x6401)

Subindex1 : Al Channel 0
Subindex2 : Al Channel 1

DO Standardized Device
Dictionary Object (0x6200)
Subindex1 : DO Channel 0~7 |

Practical Al
Channel 0~1

| AO Standardized Device
| Dictionary Object (0x6411)

PracticalAOQﬁ? | Subindex1: AO Channel 0 |
Channel 0 I

Standardized Device
Profile Area

Hardware

Take the CAN-8423 as an example. There are some [-8000 or I-87K
series modules inserted in the CAN-8423 1/0O expansion slots. The related
information for each module is shown below.

Module Name | Slot No | DO (ch) | AO (ch) | DI (ch) Al (ch)
1-8063 0 4 0 4 0
1-87053 1 0 0 16 0
1-8053 3 0 0 16 0

When the CAN-8423 is powered on, all device modules inserted in the
CAN-8423 channels will be scanned, as well the 1/0 values of these channels
will be arranged into proper object entries one by one with the minimum data
size 1 byte, If the DI and DO channels, which can’t reach one byte, will be
automatically regarded as one byte.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 27

By objects with the index 0x6000, the CAN-8423 can store the input
values of DI channel, i.e. the I/O values of DO, Al, and AO channels are put
into the object with the indexes 0x6200, 0x6401, and 0x6411 respectively.
When values are resulted through these 1/0, and correspond to the specific
object, the device will follow the rules below.

® The I/O channel values of the 1-8000/I-87K series modules with lower
slot numbers will have priority to be placed into the object dictionary.
After the CAN-8423 has filled the all I/O channels in one module, then
the CAN-8423 will go to the next slot number to continue.
® Each analog channel will be stored in 2 bytes.
® The values of digital channels of one module, which can’t be divided
by 8, will be stored in 1 byte.
® After using the rule described above, the result of the object format is
as follows.
Index 0x6000 0x6200 0x6401 0x6411
sub-index (for DI) (for DO) (for Al) (for AO)
0x00 9 1 9 4
0x01 DIO~DI3 DO0~DO3
(Slot:0) (Slot:0)
0x02 DIO~DI7
(Slot:1)
0x03 DI8~DI15
(Slot:1)
0x04 DIO~DI7
(Slot:3)
0x05 DI8~DI15
(Slot:3)

The information described above can also be viewed by using the CAN
Slave Utility. For more details about the object dictionary and how to use the
CAN Slave Utility, please refer to the chapter 5 and chapter 6.

Application

The application objects control all of the device functions, related to the
interaction with the process environment. It's just like a medium between the
object dictionary and practical process, such as the analog I/O, digital I/O....

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 28

3.2 SDO Introduction

In order to access the entries in a device object dictionary, service data
objects (SDOs) are provided. By means of the SDO communication method, a
peer-to-peer communication bridge between two devices is established, and
its transmission follows the client-server relationship. The general concept is
shown in the figure below.

Client Server

request > data mdma’uo&

response

cogflrmatlon data

The SDO has two kinds of the COB-IDs, RxSDOs and TxSDOs. They can
be viewed in the CANopen device. For example, users send a SDO message
to the CAN-8x23 by using RxSDO. On the contrary, the devices CAN-8x23
transmit a SDO message by using TxSDOS.

Before the SDO has been used, only the client can take the active
requirement for a SDO transmission. When the SDO client starts to transmit a
SDO, it is necessary to choose a proper protocol.

If the SDO client has to get the information from the device object
dictionary and from the SDO server, the segment upload protocol or block
upload protocol will be applied.

It is worth to be mentioned, the front protocol is used for transmitting fewer
data; the latter protocol is used for transmitting larger data. Both the segment
download protocol and block download protocol will work when the SDO client
wants to modify the object dictionary to the SDO server. The differences
between the segment download protocol and the block download protocol are
similar to the differences between the segment upload protocol and the block
upload protocol. Because of the different access types in the object dictionary,
not all accessing action of the object dictionary via the SDO transmission is
allowed. If the SDO client trends to modify the entries of the SDO server object
dictionary which uses the read-only access type, the abort SDO transfer

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 29

protocol will be given, and the SDO transmission will also be stopped.

The CAN-8x23 only supports the SDO server. Therefore, it can be passive
and wait for requests from clients. The general concept figure of the upload
and download protocol with the CAN-8x23 is shown as follows.

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)

Request the data of the object dictionary

Response the data of the object dictionary
or the abort SDO message

g
Upload protocol
SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
Write the data of the object dictionary J
Response access OK
& or the abort SDO message

Download protocol

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 30

3.3 PDO Introduction

Based on the transmission data format of the CAN bus, the PDO can
transmit eight bytes of process data at one time. Because of the PDO
messages without overheads, it is more efficient than other communication
objects within CANopen and therefore used for real-time data transfer, such as
DI, DO, Al, AO, etc.

Communication Modes for the PDO

PDO reception or transmission is implemented via the producer/consumer
communication model (also called the push/pull model). When starting to
communicate in the PDO push mode, it needs one CANopen device to play
the role of PDO producer, and non device or more than one device to play the
role of PDO consumer.

The PDO producer sends out the PDO message after it reached the CAN
bus arbitration. Afterwards, each PDO consumer will receive this PDO
message respectively, and then message is processed by each device to
check whether it is needed or not (be dropped). In the PDO pull mode, one of
the PDO consumers needs to send out a remote transmit request to the PDO
producer. According to this remote request message, the PDO producer
responds the corresponding PDO message for each PDO consumer in the
CAN bus. The PDO communication structure figure is shown below.

Producer Consumers

request > data | 1n.d1c?1t10g.

indication
indication
—

Push model
Producer Consumers

1pd1cat1on « request

Remote Transmit Request ; . request

| request
[

response confirmation
D > > data — >
indication

—_— P

indication
i

Pull model

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 31

For the CANopen device, the TXPDO specializes in transmitting data, and
is usually applied on DI/Al channels. The COB-ID of the PDO for receiving
data is RxPDO COB-ID, and it is usually applied on DO/AO channels. Take the
CAN-8x23 as an example. If a PDO producer sends a PDO message to the
CAN-8x23, it needs to use the RxPDO COB-ID of the CAN-8x23 because it is
a PDO reception action viewed from the CAN-8x23. Inversely, when some
PDO consumers send remote transmit requests to the CAN-8x23, it must use
the TXPDO COB-ID of the CAN-8x23 because it is a PDO transmission action
viewed from the CAN-8x23.

Trigger Modes Of PDO

For PDO producers, PDO transmission messages can be trigged by three
conditions. They are the event driven, timer driven and remote request
conditions. All of them are described below.

Event Driven

PDO transmission can be triggered by a specific driven event, including
the following conditions. Under the cyclic synchronous transmission type, the
event is driven by the expiration of the specified transmission period,
synchronized by the reception of the SYNC message.

Moreover, under the acyclic synchronous or asynchronous transmission
type, the PDO transmission can also be triggered or driven by a
device-specified event in the CANopen specification DS-401 v2.1, i.e. by
following this spec, the PDO will be triggered by any change in the DI-channel
states when the transmission type of this PDO is set to acyclic synchronous or
asynchronous.

Timer Driven

PDO transmissions are also triggered by a specific time event, even if a
specified time elapsed without occurrence of an event. For example, the PDO
transmission of the CAN-8x23 can be triggered by the event timer of the PDO
communication parameters, which is set by users.

Remote Request

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 32

The PDO transmission can be triggered by receiving a remote request
from any other PDO consumer with under the asynchronous or RTR setting.

PDO Transmission Types

Generally there are two kinds of PDO transmission modes, synchronous
and asynchronous. For the PDO in a synchronous mode, it must be triggered
by the reception of a SYNC message.

The synchronous mode can be further distinguished into three kinds of
transmission(s), acyclic synchronous, cyclic synchronous and RTR-only
synchronous. The acyclic synchronous can be triggered by both the reception
of a SYNC message and the driven event mentioned above.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 33

Acyclic synchronous

For the TXPDO object, after receiving an object from the SYNC producer,
the CAN-8x23 will respond with a pre-defined TXxPDO message to the PDO
consumers. For the RxPDO object, the CAN-8x23 needs to receive the SYNC
objects to actuate the RxPDO object, which is received before the SYNC
object. The following figures indicate how the acyclic synchronous
transmission type works on the RxPDO and the TxPDO.

SYNC consumer & PDO producer

PDO consumer (CAN-8123/CAN-8223/
CAN-B8423)
Read DI/AI SYNC (transmitted by SYNC producer)
channels § —~ T - T T T T T T T T
))
< | TxPDC
Read D] Tx-PDO event
channels TxPDO is triggered
- S |a -
SYNC (transmitted by SYNC producer)
ReadDI/AT} ~ """ °"7"7TTTTTTTTTTTT
channels TxPDO
- 5 la X
acyclic synchronous TxPDO
SYNC consumer & PDO consumer
PDO producer (CAN-8123/CAN-8223/
CAN-8423)
RxPDO >
SYMNC (transmitted by SYNC producer)
_____________________ h
Actuate DO/AO
RxPDO

channels

I

SYNC (transmitted by SYNC producer)
____________ } _____p____-,. .--'-""'_'_Z_._._,_-.
Actuate DOAO

channels

acyclic synchronous RxPDO

Cyclic synchronous

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 34

Inversely, the cyclic synchronous transmission mode is triggered by the
reception of an expected number of SYNC objects, and the max number of
expected SYNC objects can be 240. For example, if the TxPDO is set to
response when receiving 3 SYNC objects, the CAN-8x23 will feed back the
TxPDO object according to the set. For the RxPDO, actuating the DO/AO
channels by the RxPDO is independent of the number of SYNC objects. These
concepts are shown in the figures below.

SYNC consumer & PDO producer
PDO consumer (CAN-8123/CAN-8223/
CAN-8423)

SYNC (transmitted by SYNC pmducm}

Read DI/AI SYINC (transmittcd by SYNC pmducci}
channels —— ____I_x_l’l_){_) ___________
- 5T =

SYWNC (transmitted by SYNC pmducm}

Read DIVAL SYNC (transmitted by SYNC pmdmzﬂ}
el oo

cyclic synchronous TxPDO

SYNC consumer & PDO consumer
PDO producer (CAN-8123/CAN-8223/
CAN-8423)

RxPDO

-

SYNC (transmitted by SYNC pr(:dLlLer]

S
Actuate DOAQ
channels

RxPDO

L
SYNC (transmitted by SYNC producer)

————————————————————— o2 >
Actuate DOAO
channels

cyelic svnchronous RxPDO

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 35

RTR-only synchronous

The RTR-only synchronous mode is activated when receiving a
remote-transmit-request message, i.e. SYNC objects. This transmission type
is only useful for TXPDO. In this situation, the CAN-8x23 will update the DI/AI
value when receiving any SYNC object. And, if the RTR object is received, the
CAN-8x23 will respond to the TXPDO object. The following figure shows the
mechanism of this transmission type.

SYNC consumer & PDO producer

PDO consumer (CAN-8123/CAN-8223/
CAN-R423)
SYNC (transmitted by SYNC producer
SYNC (transmitted by SYNC producer) —7
Update DI/AI
Read DIVAL RTR Object values
chanmnels |~~~ T T T T T L iomee T 7T >
])]
- | TxPDC
SYNC (transmitted by SYNC producer
SYNC (ramsmited b ySNCpodueen]
Update DI/AI
values
SYNC (transmitted by SYNC producer)
————————————————————— — Z_»
. Update DI/AI
Read DIYAI RTR Object values
channels h———————————%jP—D_—D ——————————— -
S |a -

RTR-only synchronous TxPDO

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 36

RTR-only asynchronous

The asynchronous mode is independent of the SYNC object. This mode
can also be divided into two parts. There are RTR-only asynchronous
transmission type and asynchronous transmission type. The RTR-only
transmission type is only for supporting TxPDO transmissions, only triggered
by receiving the RTR object from the PDO consumer. This action is depicted
below.

PDO producer
PDO consumer (CAN-B123/CAN-8223/
CAN-8423)
Read DIVAI RTR Object
chanpels le 0 >
Read DIAL RTR Object
channels fp---——-——""""""=""=""“—-"—"——"—"—————— -

RTR.-only asynchronous TxPDO

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 37

Asynchronous

The other part is the asynchronous transmission type. Under this type, the
TxPDO message can be triggered by receiving the RTR object and the
device-specified event mentioned in the event driven paragraph. Furthermore,
the DO/AO channels can act directly by receiving the RxPDO object. This
transmission type is the default value when the CAN-8x23 boots up. The
concept of the asynchronous type is shown as follows.

SYNC consumer & PDO consumer

PDO producer (CAN-8123/CAN-8223/
CAN-8423)
RxPDO >
SYMNC (transmitted by SYNC producer)
_____________________ h.
Actuate DOAO
RxPDO - channels

SYNC (transmitted by SYNC producer)
____________ } _____p____-,. .--'-""'_'_Z_._._,_-.
Actuate DOAO

channels

acyclic synchronous RxPDO

PDO consumer
PDO producer (CAN-8123/CAN-8223/
CAN-8423)

Actuate DOVAD

channels
RxPDO v
— -
Actuate DO/AO
RxPDO #ﬂg'ﬂ‘_’i

asynchronous RxPDO

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 38

Inhibit Time

Because of the arbitration mechanism of the CAN bus, the CANopen
communication object ID in small size has a higher transmission priority than
the bigger one. For example, there are two nodes on the CAN bus, the one
needs to transmit the CAN message with the COB-ID 0x181, and the other has
to transmit the message with COB-ID 0x182. When these two nodes transmit
the CAN message to the CAN bus simultaneously, only the message
containing COB-ID 0x181 can be successfully sent to the CAN bus because of
the higher transmission priority. So the message with COB-ID 0x182 will be
held to transmit until the message with COB-ID 0x181 is successfully
transmitted. This arbitration mechanism can guarantee the successful
transmission for one node when a transmission conflict occurs.

However, if the message with COB-ID 0x181 is continually transmitted,
the message with COB-ID 0x182 will be postponed to be transmitted. In order
to avoid the occupation of the transmission privilege by the message with the
lower COB-ID, the inhibit time parameters for each of the PDO objects are
supported to define a minimum time interval between each PDO message
transmission, which has a multiple of 100us. During this time interval, the PDO
message will be inhibited from transmission.

Event Timer

This parameter setting on the event timer is only used for TxPDO. If the
parameter of the event timer is not equal to O under the transmission type in
asynchronous mode, the expiration of this time value can be just considered to
be an event. This event will cause the TxPDO message transmission. The
event timer parameter is defined as a multiple of 1ms.

PDO Mapping Objects

The PDO mapping objects are provided to the interface which is for PDO
messages and real I/0 data in the CANopen device. They define the meanings
for each byte in the PDO message, and may be changed by using a SDO
message. All of the PDO mapping objects are arranged in the Communication
Profile Area. In the CANopen spec (see DS 401), RxPDO and TxPDO default
mapping objects will specify something as follows:

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 39

® There shall be up to 4 TXPDO mapping objects and up to 4 RxPDO
mapping objects with default mappings.

® The 1st RxPDO and TxPDO mapping objects are used for digital
outputs and inputs to each other.

® The 2nd, 3rd, and 4th RxPDO and TxPDO mapping objects are
respectively assigned to record the value of analog outputs and
inputs.

® |[f a device supports too many digital input or output channels over 8
channels, the related analog default PDO mapping objects remaining
the additional unused digital 1/0Os will use its additional objects. This
rule with the same concept is used on the additional analog channels.
Take the RXPDO as an example; there are 11 DO and 13 AO object
entries in the object dictionary. Generally in the CAN-8x23, the first 8
DO object entries will be mapped to the first RxPDO mapping object
because one DO object entry needs one byte space. The last 3 DO
object entries will be assigned to the 5th RxPDO according to the
above rules the 2nd and the 3rd. Furthermore, one AO object entry
needs 2 bytes of space. Therefore, the second RxPDO mapping
object has been occupied by the first 4 AO object entries. The
following 4 AO object entries will be assigned to the third RxPDO
mapping object, as well to the 4th RxPDO mapping object. Because
the 5th RxPDO mapping object has been occupied by the DO object
entries, the last AO object entry shall be assigned into the 6th RxPDO
mapping object.

Before applying the PDO communications, the PDO producer and the
PDO consumers must have mutual PDO mapping information. On the one
hand, the PDO producers need PDO mapping information to decide how to
assign the expected practical /0O data to PDO messages. Besides, PDO
consumers need the PDO mapping information to recognize each byte of
received PDO message, i.e. when a PDO producer transmits a PDO object to
PDO consumers, the consumers will contrast this PDO message with PDO
mapping entries, previously obtained from the PDO producer, and then
interpret the meanings of these values from the received PDO object. For
example, if a CANopen device has 16 DI, 8 DO, 2 Al, and 1 AO channels. The
input or output values of these channels will be mutually stored into several
specific entries.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 40

DI Standardized Device
Dictionary Object (0x6000)
Subindex1 : DI Channel 0~7 |«

Subindex?2 : DI Channel 8~15 |&——

DO Standardized Device
Dictionary Object (0x6200)
» Subindexl : DO Channel 0~7 |

Al Standardized Device
Dictionary Object (0x6401)
Subindex1 : Al Channel 0 SR
Subindex2 : Al Channel 1

¢ C
C
C

AO Standardized Device
Dictionary Object (0x6411)
» Subindexl: AO Channel 0 |

Yvy YYVYVYYVYY
01/2|3/4/5/6|7 0/1/2|3/4/5|6|7

RxPDO Mapping Object TxPDO Mapping Object

According to the PDO mapping objects in the figure above, if this
CANopen device gets the RxPDO message in three bytes, the first byte is for
the output value from the DO channels 0~7, and the following two bytes are for
the analog output value. After interpreting the data of the RxPDO message, the
device will actuate the DO and AO channels by the received RxPDO message.
It is worth to mention that TxPDO also operate in the same procedure as
RxPDO message. When the TxPDO trigger events occur, the CANopen device
will send the TxPDO message to the PDO consumers. The values of the bytes
assigned in the TxPDO message will follow the TXPDO mapping object as
shown in the above figure. The first two bytes of the TxPDO message are
respectively for the values from the DI channels 0~7 and channel 8~15. The
following third and forth bytes of the TxPDO message is for the value O of the
Al channel. And the fifth and sixth bytes are for the value 1 of the Al channel.
The relationships among the object dictionary, the PDO mapping object and
the PDO message are given below.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 41

Practical 1/0

1

TxPDO mapping objects

Object Dictionary

N
Q
o — N (32] < Lo © N~ o — N o < Lo (] N~
|2 & 22 2|2 |2 &2 2 2 2 2
S| S>> > 5> > S| S>> 5 5> >
M| O @O @ | @ o o o M| M @O o | @ @ ;o Mm
TxPDO RxPDO

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

42

3.4 EMCY Introduction

EMCY messages are triggered when a device internal error occurs, i.e.
after a CANopen device detects the internal error, an emergency message will
be transmitted to the EMCY consumers per time per error event. But the
EMCY message will not be transmitted again if the same error repeatedly
occurs. When error reasons are gone, an emergency message containing the
emergency error code “00 00” will only respond to the specific error fields. So,
by checking the EMCY message, users can understand what happened in the
CAN-8x23, and then do something about the error event.

Please note that only the emergency consumers can receive the EMCY
object, and only the CAN-8x23 can support functions of the emergency
producer.

The general concept regarding EMCY communications is shown below.

EMCY Producer
EMCY Consumer (CAN-B123/CAN-8223/
CAN-8423)

indication EMCY message lnrcnm! eITor OcCurs
indication or dissappears
, indication

An emergency message containing 8-byte of data is called emergency
object data. The abbreviated diagram is shown below, and all fields in the
emergency object data will be described in section 5.3.

Byte 0 1 2 3 4 5 6 7

Content | Emergency Error Code | Error register | Manufacturer specific Error Field

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 43

3.5 NMT Introduction

The Network Management (NMT) follows the node-oriented structure and
the master-slave relationship. In the same CAN bus network, only one
CANopen device is allowed to execute the function of NMT master. Each
CANopen node is regarded as a unique NMT slave identified by its node ID
from 1 to 127.

The NMT service supplies two protocols, the module control protocol and
the error control protocol. Through the module control protocol, the nodes can
be controlled to several kinds of status, such as installing, pre-operational,
operational, and stopped. According to the NMT slave can present in different
statuses, it has different privileges to carry out the communication protocol.
Through the error control protocol, users are enable to detect the remote error
in the network in order to confirm whether the node still works or not.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 44

3.5.1 Module Control Protocols

Before introducing the modules control protocols, the architecture of the
NMT state mechanism needs to be mentioned. The diagram shows the
process and the relationships among each NMT state and the mechanism.

Power on or
Hardware reset

yo
4{ Initialization)
v@
—Gre-Operational

(9) (5)
) (4)
(6)

—C Operational

State Mechanism Diagram

()

Stop)—

(2) Under “Power on” or “Hardware Reset”, the initialization state
will be loaded automatically.
(2) As the Initialization accomplished, Pre-Operational state will

be entered automatically

(3),(6) | Indication of starting remote node

(4),(7) | Indication of entering Pre-Optional State

(5),(8) | Indication of stopping remote node

(9) Indication of the “Reset Node” or the “Reset Communication”

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 45

Devices will directly lead to the Pre-Operational state after finishing the

device initialization. Then, the nodes will be switched into different state by

receiving a specific indication. By the way, each different NMT state will
consider a specific communication method. For example, the PDO message
can only do the transmission and receiving in the operational state. In the
following table, the relationship among each NMT state and communication
objects is given.

Installing | Pre-operational | Operational | Stopped

PDO O

SDO O O

SYNC Object O O

Time Stamp Object O O

EMCY Object O O

Boot-Up Object O

NMT O O O

3.5.2 Error Control Protocols

There are two kinds of protocols defined in the error control protocol.
According to the CANopen spec, one device is not allowed to use the following
error control mechanisms at the same time, Node Guarding Protocol and
Heartbeat Protocol. In addition, the CAN-8x23 provides the salve function of
the Node Guarding Protocol for practical applications. Therefore, only node

guarding protocols will be highlighted here, and described below.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

46

Node Guarding Protocol

The Node Guarding Protocol follows the Master/Slave relationship. It
helps users monitoring the node in the CAN bus. The communication method
of node guarding protocol is defined as follows.

NMT Master NMT Slave
request Remote transmit request indicatiop
A A i - T — = »
confirm Slave state » ¢ fesponse
Node |
Guard |
Time |
Node v request Remote transmit request indicatiop
Life . o — '
Time M<— Slave state g < [CSPONSC
v Node Guarding Event) Life Guarding Event
- Guarding error >
indication indication

The NMT master will inspect each NMT slave at regular time intervals.
This time-interval is called the node guard time, given by the “guard time * life
time factor”, and may be different from each NMT slave. And the response of
the NMT slave contains the state of that NMT slave, which may be in a
"Stopped”, "Operational”, or "Pre-operational” state. The node life time
factor can also be different for each NMT slave. If the NMT slave has not been
inspected during its life time, a remote node error will be given, and indicate
through the "Life Guarding Event" service.

In addition, the reported NMT slave state, which does not match the
expected state, will also produce the “Node Guarding Event”. This event may
occur in the DO and AO channels, and output the error mode value, recorded
in the object with index 0x6207 and index 0x6444. Moreover, the object with
index 0x6206 and 0x6443 can control the error mode value of the DO or AO
channels in enabling or disabling when the “Lift Guarding Event” has been
indicated. For more information about objects with index 0x6206, 0x6207,
0x6443, and 0x6444, please refers to the chapter 6.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 47

Heartbeat Protocol

The Heartbeat Protocol follows the Producer/Consumer relationship. It
provides a way to help uses monitor the node in the CAN bus. The
communication method of heartbeat protocol is defined as follows.

Heartheat Heartbheat
Producer 0 1 Consumer
7 6..0
f'\ request > > r S indic,aticm>
indication
indication. /A
! Heartbeat
. Producer Heartbeat
Time Consumer
N 7 6..0
request > > r s indication
indication AV
indication
A
Heartbeat
Consumer
Time
Heartbeat Event

The Heartbeat Protocol defines an Error Control Service without need for
remote frames. A Heartbeat Producer transmits a Heartbeat message
cyclically. One or more Heartbeat Consumer receive the indication. The
relationship between producer and consumer is configurable via the object
dictionary. The Heartbeat Consumer guards the reception of the Heartbeat
within the Heartbeat Consumer Time. If the Heartbeat is not received within the
Heartbeat Consumer Time a Heartbeat Event will be generated.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 48

4 Configuration & Getting Start

4.1 CAN-8123/CAN-8223 Configuration Flowchart

Select one or more of 1-8000/1-87K
AlI/AO/DI/DO modules for the user's

application

Plug these |1-8000/1-87K modules
into the available I/O expansion
slots of CAN-8123/CAN-8223

U

If users want to get the CAN-8123/
CAN-8223 EDS file, Use the CAN
Slave Utility to produce an EDS file
by using off-line mode.

1

Apply this EDS file with the
CANopen master interface and run
the CAN-8123/CAN-8223 on the
CAN network

Select the necessary
ICPDAS |-8000/I-87K
IO modules for users
CANopen application.

1. Execute the CAN Slave Utilﬁ\
in the off-line mode.

2. Select the proper module slot
No. and name for each 1-8000
or |-87K module plugged in
the CAN-8123/CAN-8223.

3. Produce the corresponding

EDS file. /

Turn off the CAN—8123HCAN—BE;}
Then set the proper node |D and
baud rate for CAN-8123/CAN-8223
by using the rotary switches,
Afterwards, reboot the CAN-8123/
CAN-8223, and configure the Al/
AQ channels by wusing SDO
protocol of CANopen speciﬁcatic_nrj/

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

The following procedure is the general concept for the off-line mode. This

procedure can be applied in the CAN-8x23.

Start

'

Configure the CAN-8123/
CAN-8223/CAN-8423 by
using CANopen_SL .exe

'

Connect the CAN-BI123/
CAN-RB223/CAN-8423
CAN port to CANopen
network

g

Y

Set the Baud rotary switch to
proper baud rate

Power on the CAN-8123/
CAN-8223/CAN-8423

Is the value of Baud

rotary switch 97

Y

Power off the CAN-8123/
CAN-B223/CAN-8423

Apply the CAN-8123/
CAN-8223/CAN-8423
on the CANopen network

!

Finish

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

50

4.2 CAN-8423/CAN-8823 Configuration Flowchart

application

Select one or more of 1-8000/I-87K
Al/AO/DI/DO modules for the user’s

Select the necessary
ICPDAS 1-8000/I-87K
IO modules for users
CANopen application.

Il

Plug these 1-8000/I-87K modules
into the available CAN-8423 1/0
expansion slots

1. Turn off the CAN-8423. \

2. Connect the COM1 of the CAN-8423 with
the PC’'s COM port via the RS-232 cable,

U

Use the CAN Slave Utility to
configure the AlI/AO channels of the
[-8000/I-87K modules and produce
an EDS file for the present state

CAO0910F.
3. Turn the “BAUD” rotary switch to ‘9’.
4. Turn on the CAN-8423.
5. Execute the CAN Slave Utility to configure
the AI/AO channels of the 1-8000/I-87K
modules and establish the EDS file. /

|l

After finishing the parametem
configuration and EDS file
production, turn off the C AN -

Apply this EDS file with the
CANopen master interface and run
the CAN-8423 on the CAN network

8423, set the proper node ID and
baud rate by using the rotary
switches, and turn on the CAN-

8423. -

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

51

The following procedure is the general concept for the on-line mode. This
procedure can be applied only in the CAN-8423 and CAN-8823.

Start

Connect the CAN-8423
CAN port with CANopen
network

r

Set the Baud rotary switch
to proper baud rate

'

Power on the CAN-8423

Yes

Is the value of Baud
rotary switch 9?

Connect the CAN-8423 COM
port to the PC available COM

Apply the CAN-8423 on port
the CANopen network ¢
Configure the CAN-8423 by
using CANSL.exe
Finish

Power off the CAN-8423

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

4.3 CANopen Slave Utility Overview

The CANopen Slave Utility is designed for the devices CAN-8x23. It
provides following functions.

® Allows configuring the input range of the 1-8000 and I-87K AI/AO
modules plugged in CAN-8423 and CAN-8823.

® Supports to create EDS files to match the scan result in the on-line
mode after scanning the 1-8000 or I-87K modules in CAN-8423 and
CAN-8823.

® Supports to produce the EDS file by using the off-line method for
CAN-8x23.

® Shows the important information which is useful in the CANopen
network. Such as the PDO communication objects, and the
standardized device objects and manufacturer specific objects
defined in the CAN-8x23.

Because all parameters configuration of the I-8000/I-87K AI/AO can be
done by using SDO protocol, complying with the CANopen specifications, the
CAN-8x23 can work directly without using the CANopen Slave Utility if users
don’t need the CAN-8x23 EDS file created under the on-line mode, i.e. users
can turn on the CAN-8x23 and directly apply it in the CANopen network. If the
EDS file is requested, users can get the EDS file by using CAN Slave Utility. If
the AI/AO channels configuration is also requested, users can apply SDO
protocol to modify the AI/AO parameter configurations. For more detall
information, please refer to the chapters 5.5 and 6.2.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 53

4.4 Configuration with the CANopen Slave Utility

CANopen Slave Utility

Step 1. Download the CANopen Slave Utility file from the web site
http://www.icpdas.com/products/Remote_[O/can_bus/can-8423.htm or
http://www.icpdas.com/products/Remote_[0/can-8123.htm or CD-ROM disk
via the following path of “CD:\CANopen\Slave\CAN-8x23\Utility\”.

Step 2: Execute the CANopen_SL.exe file to start the CANopen Slave Utility.

CAN-8x23 Utility, Version 5.00 [01X

Com Port CAN-S123 and CAN-SZ223 do
Connect not support Com Port connection.
COm1 w

Fleaze select none to build EDS file.

Hard ware States
Device MName CAN Baudrate

Firmware Ver. Node [D

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

54

http://www.icpdas.com/products/Remote_IO/can_bus/can-8423.htm
http://www.icpdas.com/products/Remote_IO/can-8123.htm

4.5 CAN-8123/8223 Configuration (Off-line mode)

Step 1: Select “None” in the “COM Port” area.

CAN-8x23 Utility, Version 5.00 [|01 [

Com Port CAN-8123 and CAN-E222 do
not support Com Port connection.
None - Flease select none to build EDS file.

Hardware States
Device Name |CANSBE23 » | CAN Baudrate | —————————-

Firmware Wer, | - Mode 1D 1]

Step 2: Take the CAN slave device (CAN-8823 with node ID 1) as an example,
Users have to fill in “NODE ID” with 1 and choose “Device Name” with
CAN-8823. Then, press “Next” button.

CAN-8x23 Utility, Version 5.00 [|01 [

Com Port CAN-8123 and CAN-E222 do
not support Com Port connection.
None - Flease select none to build EDS file.

Hardware States

Device Name ¢[CAN-8823 « AN Baudrate | oo -

Firmware Wer. | -—————- Node [D

Step 3: Then, select a specific device presented in the “Off line Setting” frame,
and choose a correct slot module inserted.

For example, if the 1-87057 and I-8051 modules are inserted in slot 0 and slot 1
respectively, please select 87057 in the list box, and click “Apply Module” to
save the configuration.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 55

E

. Apply
I: Module

| # Off-Line Setting

Neme

Create ED2

Apply
Module
Create EDS
file

Step 4: After finishing the configuration, users can one-left click on the slot
module in the “Off Line Setting” frame if need to change the configuration. If
the configuration is successful, users can see the correct module name when
mouse moving in, for example 87057 on the top of the slot module.

Off-Ling Setting

Save Setting

Create EDS
file

Step 5: Then, repeat the step 3~4 to configure the slot 1 to 1-8042 module.
Then, click “Save Setting” button to finish the off-line parameter settings.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 56

 Off-Line Setting - OX

§7057 Back

Apply
Module
Save Sethng

Create ED3
file

Step 6: Then users can press button “Create EDS Module” for create
CANopen slave EDS file.

Off_Line Setting - OX

Lpply
Module

Bave Setting

Create EDS
file

Step 7: The two fields, “description” and “create by”, can help users to do some
notes in EDS files. If these two fields are empty, the “ICPDAS CANopen 1/O
Slave Device” and “ICPDAS” will be used as the default value when creating
the EDS file.

EDS File Information M=]Fd
EDS File Information
Description
Created By:

‘ PO Info ‘ Dievice Info Module Info Back Fimizh ‘

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 57

Step 8: Users can select the “PDO Info”, the “Device Info“ and the “Module
Info” button for purpose to view the PDO objects, device profile and slot

module configuration information. These information dialogs are shown below.

PDO Setting Result g@

Setting Result

Pl s —

® Device Object Information : E‘E‘

Setting Result

TzPDO | RxPDO
PDO Mo, COE ID(Hex) | Transmission | Inhibit Tig
1 181 255]
281 255]

2
3
I S YR R N

81 255 0

[-8K PWM Obiect [-8K Counter Obisct
DVDO Object I AVAO Obiect :
Index Q6000 0z6200 0z6206
3 Description Read DI Write DO DO Ex
Sub-Tndex 0 2 2 2
Sub-Index 1 |8_18051_DI0~ . |8_087057_DO0... it
Sub-Index2 | S_18051_DIG~ . |S_0E7057_DOE... it

Module Information

kodule Information

slot No. Name DO Ch Mo, 40

87057 16
8051
8024

8017HE

Hone
Wone
None

A S I T

* |20 2 n e o ha —
[RN R RN S B e |
o oo o o O

L
w

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

58

If everything is ok, click the “Finish” button to create the EDS file.

EDS File Information

EDS File Information

Description This EDS file is for the CAN-8223 with -8024 and |-8042

Created Bv: |ICP DAS-RD?

PO Tinfo Device Info Module Info Back

Note: If users use off-line method to get the EDS file, the objects, used to
record the input/output range of the analog modules, will be described to
default value in the EDS file. However, the [-87K slot modules will keep the
input/output range parameter settings in their own EEPROM. As a matter of
fact, it may cause the mismatch between real input/output range setting and
EDS file. By the way, CAN-8123/CAN-8223 needs to configure the input/output
range settings by using CANopen SDO protocol. For more detail, please refer
to the section 5.5.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 59

4.6 CAN-8423/8823 Configuration (On-line mode)

Before using the CAN Slave utility in the On-line mode of the
CAN-8423/8823, please make sure that all connections are ready, from the
CAN-8423/8823 to your PC via COM port. The architecture figure is displayed
in the following. Take the following application as an example, the CAN-8423
and slot modules, 1-87057, 1-8051, 1-8024 and 1-8017 are inserted in the slot O,
1, 2, 3 respectively.

' Available

- .COM port
_:”; = P COM 1
& RS-232
PC

Step 1: To turn off the CAN-8423 is the beginning. Then, users can set the
“Baud” rotary switch of CAN-8423 to 9. Then, turn on the CAN-8423.

BAUD

Step 2: Please use the “Baud” rotary switch again to set the baud rate for the
CAN-8423, i.e. if users want to set baud rate in 1000Kbps, they have to adjust
the “Baud” rotary switch to 7.

BAUD

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 60

Step 3: To execute the CAN_SL.exe file, and to display the figure, users have
to connect a PC COM port and the CAN-8423 or CAN-8823 well. Here, take
the PC COM 1 as an example. Click “Connect” button to get the information
stored in the CAN-8823.

i

Fort

COML

Connect

Har

Dewice Name

Firmware Ver.

on 5.00 |- |C1[X]

CANE123 and CAN-S223 do
mpt support Com Port connection.
eqze select none to build EDS file.

CaN Baudrate

Node ID

Step 4: Then, users can set the slot information of CAN-8823 in the below of

“CAN-8x23 Configure” frame.

CHO
CHI
CH2
CH3
CH4
CHS>
CH&
CHY

00:-10.00 V v
00:-1000 ¥ ~ +10.00 V v
00:-1000 V ~ +10.00 V v
00:-1000 ¥ ~ +10.00 V v
00:-1000 V ~ +10.00 V v
00:-10.00 ¥ ~ +10.00 V v
00:-1000 V ~ +10.00 V v
00:-1000 V ~ +10.00 V v

G

| CAN-8x23 Configure B|EI®

CAN-Ex23 /0 Module

Module Type: S
® Al
Maodule Channel:
Mext

0. 87057 1. 8051 | 2.

Step 5: Please select the slot module 3 in the control tab area, and choose the

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

61

output range in the channel area. Here, take the selection -5.00V~+5.00V as
an example. Because of the feature of 1-8017H8 slot module, output range on
each channel will be changed in the same way after users select the output
range in one of the channels.

= CAN-8x23 Configure L OX

CAN-Sx23 [0 Module

0. 87057 1. 8051 | 2. 8024/ 3. 80L7HS 4.
CHO [00:-10.00 V ~ +10.00 V v

Module Type: sl

Al

Module Channal:
2 Wext

La
el
-

CH! |
I[ZIl S500 Vo~ + 500 W
CcH3 |02 250 Vo~ + 250 ¥
03:- 125 V ~+ 125 ¥
CHE e 20.00m A ~ +20.00mé

CHS [00:-10.00 V ~ +10.00 V |
CHG [00:-10.00 V ~ +10.00 V |
CH? [00:-1000 V ~ +10.00 V |

Step 6: After setting the proper output range, users can click “Set” button to
store the configuration. If all of slot module configurations are finished, click
“Next” button to next step.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 62

F1 EDS File Information

ED¢S File Information
Description
Created By:
EDS file Created!!
HEE
PO Infa Dievice Info Madule Info Back Finizh

Step 7: Then, “EDS File Information” window will pop out. Users can fill the
“Description” and “Create by” fields for the EDS file. Also, users can see the
CANopen objects information and modules information by clicking the buttons.
For more detail information, please refer to the Step 7 and 8 in section 4.5.

If User wants to set dynamic PDO COB-ID, input the COB-ID into the field of
“PDO setting Result” window.

EDS File Information

EDS File Information

Description

Created By:

FPDQ Setting Result

Set Dymarndic PDO

Setting Eesult

............... ™ T=FDO | ExPDO |
PDOInfo | FDO No. COB [D(Hex) | Transmission Inhibit Tin
1 181 255 i
3 2 281 355 0
E 3 255 0
4 4 255 0
5 5 255 i
A & 255 0
#*
¢ | »

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 63

Then press button “ Set Dynamic PDO” to store the dynamic PDO COB-ID.

= PDO Setting Result E‘@‘E‘

=" S
G}
Setting Eesult
TxFDO ExPDO
PDC Mo. COEB ID(Hex) | Transmission Inhibit Tig
1 1 181 55 u]
o 2 281 255 0
3 3 8l 55 u]
4 4 A7 255 0
f f 50000000 255 0
*
< >

Notel: The CAN-8423/8823 can also create the EDS file by using off-line
mode, and set the analog input range or analog output range by using the
CANopen SDO protocol.

Note2: The function, dynamic PDO setting, is only supported on-line mode.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 64

5 CANopen Communication Set

In the following section, several CANopen communication protocols are
described. Each protocol description has one corresponding example.
Because the communication methods in the CAN-8123/CAN-8223/CAN-8823
are similar to the one in CAN-8423, only the example for CAN-8423 is given.
Before the example, users must have one CAN interface to send out the CAN
command. Therefore, the PISO-CAN200/400 CAN interface card with a 2/4
CAN port PCI will be requested. It provides an easy-to-use utility tool to
sending the CAN 2.0A or 2.0B command. The relationship between the
software and the hardware is shown as follows.

Tuit |
Hosls D L1} Diow TOM DAM0 POM DM Dal0 DO DOBJ OO0 Terimd
bl =| W M oW o=l (M [H (M [(B0 (D0 (R o

ICARCT 1] TR om0 1 0%] 00 | OF] B] % 0 0%] 07] Twmer | _bwem ki
I W] = [

PISO-CAN200/400
Utility Tool

T B3 L PetTeem Dasbe el Baw OH WCC Cole D000 WEC Mk PR

Available
CAN port

CAN port

Please refer to the PISO-CAN200/400 user manual to know how to use its
Utility Tool.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 65

5.1 SDO Communication Set

5.1.1 Upload SDO Protocol

Initiate SDO Upload Protocol
Before transferring the SDO segments, the client and server need to

communicate with each other by using the initiate SDO upload protocol. Via
the initiate SDO upload protocol, the SDO client will inform the SDO server
what object the SDO client wants to request. As well, the initiate SDO upload
protocol is permitted to transmit up to four bytes of data. Therefore, if the data
length of the object, which the SDO client can read, is equal to or less than the
permitted data amount, the SDO communication will be finished only by using
the initial SDO upload protocol, i.e. if the data upload is less enough to be
transmitted in the initiate SDO upload protocol, then the upload SDO segment
protocol will not be used. The communication process of this protocol is shown
as follows.

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
I 1-bit COB-ID (bit)|RTR [Len K-hyte Data (hyte)
L0-7 -~ 0 -3 4-7
1100 | Noded | 0 | 8 Ft— ed
] Dle] 3 1 EVErS . . .
request | | . ees2| x [T ~a] indication
—_— = ————»
11-bit COB-1D (bit}|RTR [Len K-byte Data (byte)
confirmation T0-7 60 0] 7 response
‘ AN 7~5 [4]3~2]1]0 r'd *
it Mode 1D 0 B _’ m d
BCE=L | X n [-]

Initiate SDO Upload Protocol

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 66

CCs

SCS

X
reserved

client command specified

2: initiate upload request

server command specified

2: initiate upload response

Only valid if e =1 and s = 1, otherwise 0. If valid, it indicates the

number of bytes in d that do not contain data. Bytes [8-n, 7] do

not contain segment data.

transfer type

0: normal transfer

1: expedited transfer

If the e=1, it means that the data of the object are equal or less

than 4 bytes, and only initiate SDO upload protocol is needed. If

e=0, the upload SDO segment protocol is necessary.

size indicator

0: Data set size is not indicated.

1: Data set size is indicated.

multiplexer

It represents the index/sub-index of the data to be transfer by

the SDO. The first two bytes are the index value and the last

byte is the sub-index value.

data

e=0, s=0: d is reserved for further use.

e=0, s=1: d contains the number of bytes to be uploaded, and
byte 4 contains the least significant bit, and byte 7
contains the most significant bit.

e=1, s=1: d contains the data of length 4-n to be uploaded, the
encoding depends on the type of the data referenced
by index and sub-index.

e=1, s=0: d contains unspecified number of bytes to be
uploaded.

not used, always 0

reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 67

Upload SDO Segment Protocol

When the upload data length is over 4 bytes, the upload SDO segment
protocol will be needed. After finishing the transmission of the initiate SDO
upload protocol, the SDO client will start to upload the data. The upload SDO
segment protocol will comply with the process shown below.

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
I 1-bit COB-ID (bit)|RTE [Len H-byte Data (byte)
10-7 G0 0 1-7
1100 | Nodeld | 0 |8 =5 4 30 d
e h raversa: . . 5
request ces=3 |t x \ indication
— = ————=
11-bit COB-1D (bit)(RTE [Len B-byte Data (byle)
confirmation 10-7 60 0 -7 respanse
y 7-5 [4] 3-1 [0] -
1011 | Node ID [1 sep-data
ses=01 n C =

Upload SDO Segment Protocol

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

68

CCs

SCS

seg-data

X
reserved

. client command specified

3: upload segment request

. server command specified

0: upload segment response

. toggle bit

This bit must alternate for each subsequent segment that is
uploaded. The first segment will have the toggle bit set to 0. The
toggle bit will be equal for the request and the response
message.

indicates whether there are still more segments to be uploaded
0: more segments to be uploaded.

1: no more segments to be uploaded.

It is at most 7 bytes of segment data to be uploaded. The
encoding depends on the type of the data referenced by index
and sub-index.

It indicates the number of bytes in seg-data that do not contain
segment data. Bytes [8-n, 7] do not contain segment data. n =0
if no segment size is indicated.

not used, always 0

reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 69

SDO Upload Example

The practical application of the SDO upload is illustrated as below.

SDO Server
(CAN-8123/CAN-8223/

SDO Client CAN-8423)

Initial SDO Upload Protocol (e=0)

-

Upload SDO Protocol (t=0, c=0) _

SDO Server
SDO Client (CAN-8123/CAN-8223/ -t
CAN-8423)

Upload SDO Protocol (t=1, c=0)

Initial SDO Upload Protocol (e=1)

-)

Upload SDO Protocol (t=0, c=0)

SDO Upload with expedited transfer

Upload SDO Protocol (t=?, c=1)

SDO Upload with normal transfer

In the following paragraph, both expedited transfer and normal
transfer are given according to the procedure described above. In addition, the
method of how to get the value stored in the object dictionary is also presented.
As to the initiate SDO upload protocol, users can obtain how many
sub-indexes the object with index 0x1400 can support. This information is in
the object with index 0x1400 with sub-index 00. As well, users can get the
string in the object with index 0x1008 via the initiate SDO upload protocol and
the upload SDO segment protocol.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 70

® Example for expedited transfer

Step 1. SDO message will be sent to the CAN-8423 to obtain the object entry
with index 0x1400 and sub-index 00 stored in the communication profile area.
The message structure is as follows. Moreover, the node ID of the CAN-8423
set to 1, and the information about the object entry with index 0x1400 will be
described in the chapter 6.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9|8|7|6|5(|4|3|2|1|0 0 1 2 3 4 5 6 7
1(1/{0(0|0|0|O0O|O|O]|O]|1]| O 8 |[40|00|14| 00 | OO | OO | OO | OO
i SDO server
SDO client
(CAN-8x23)
ccs D2
m : 001400

According to the low byte has the higher transferred sequence, the
first byte “00” will get the priority than the second byte “14”. Here the
last byte “00” means the sub-index 00.

Step 2. The CAN-8423 will reply to the data stored in the object entry with
index 0x1400 and sub-index 00.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5(4|3|2]|1]|0 oO|1|2]| 3|4 |5]| 6|7
1/0/1|1|/0|0|0]|0O|O|O]|2]| O 8 |4F|00|14| 00 | 02 | 00 | OO | 0O
. SDO server
SDO client <<
(CAN-8x23)
SCS 2
n 3
e 1
S 1
m 00 14 00
d 02 00 00 00
Because of the n=3, only the 4th byte is valid. Therefore, the
feedback value is 02.
]

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 71

® Example for normal transfer

Step 1. Send the RxSDO message to the CAN-8423 to obtain the object entry
with index 0x1008 and sub-index 00 stored in the communication profile area.
The message structure is as follows. Moreover, the node ID for the CAN-8423
set to 1, and the information about object entry with index 0x1008 will be
described in the chapter 6.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7(6|5|4|13|2(1]|0 o|1]2|3|4|5]|]6/|7
1/1j]0(0[0|0|JO|O|O]O|1]|] O 8 40|08 |10(00 |00 |00/ |O00|O00
i SDO server
SDO client
(CAN-8x23)
ccs D2
m : 081000

Step 2. The CAN-8423 will respond to the SDO message with the indication of
how many bytes will be uploaded from the CAN-8423.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10,9 (8|7|6|5|4|3|2|1]|0 0|12 |3|4|5]|6]|7
i1 /0(1(1/0(0|lO0O|O|O|O|2]| O 8 [41(08(10(00 |09 |00 |O00]|O00
. SDO server
SDO client <
(CAN-8x23)
SCS 2
n 0
e 0
S 1
m 08 10 00
d 09 00 00 00

Because of the e=0 and s=1, the d means how many data users
will upload from the CAN-8423. The byte “09” is the lowest byte in
the data length with a long format. Therefore, the data “09 00 00
00” means that users will upload 9 bytes data from CAN-8423.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 72

Step 3. The CAN-8423 is requested to start the data transmission.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7(6|5|4|13|2(1]|0 o|1]2|3|4|5|6/|7
1(/1/0(0[|0|0|JO|O|O]O|1] O 8 |60|00|00|00|00|00|O00]|O0O0
i SDO server
SDO client
(CAN-8x23)
ccs o3
t 0

Step 4. The CAN-8423 will respond to the first 7 bytes in the index 0x1008 and
sub-index 00 object entries.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5|4|3|2|1|0 O|1|2|3|4]|5]|6]|7
i1 /0(1|1|0|0|0O|O|O|O|2]| O 8 |00|43|41|4E | 2D |38 |34 |32
. SDO server
SDO client <
(CAN-8x23)
SCS 0
t 0
n 0
c 0

seg-data : 43414E 2D 38 34 32
Users can check the chapter 6 to know that the object entry with
index 0x1008 and sub index 00 has the data type
“VISIBLE_STRING”. Therefore, users need to transform these
data values into the corresponding ASCIl character. After
transformation, they become “CAN-842".

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 73

Step 5. The CAN-8423 is requested to transmit the rest of the data.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10|98 |7|6|5|4|3|2|1]|0 0O(1|2|3|4|5]|6]|7
1|/1|{0(0|0|0O|O|O|O|O|1]|] O 8 |70(00|00|00|00|00]|O00]|O00
i SDO server
SDO client
(CAN-8x23)
ccs o3
t 1

Step 6. Tthe rest of the data will be received from the SDO server.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5|4|3|2|1]|0 o123 |4 |5|6/|7
1 /0(1|1|0|0|0O|O|O]|O|1]| O 8 |1B|[33|00|00|00|00|O00|O00
. SDO server
SDO client <
(CAN-8x23)
SCS 0
t 1
n 5
C 1

seg-data : 3300 00 00 00 00 00
Because of the n=5, and only the first two bytes are valid, the
value of 0x33 and 0x00 will be transferred to the corresponding
ASCII character. After transformation, it became “3

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 74

5.1.2 SDO Block Upload Protocol

Initiate SDO Block Upload Protocol

The SDO Block Upload is usually used for the large data transmission. At the
beginning of the SDO Block Upload, the Initiate SDO Block Upload protocol is
needed. This protocol is described below.

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
L1-bit COB-1D (bit R TR |Len H-byte Data (byte)
10~7 (] 0 1-3] 4 5 [6~7
1100 | Node> | 0 | 8 Pt 2P0 biksi
SwOe m S1Ze at X . . .
request | * ces=5| x_[ec|es=0 P indication
—_— ———
. | 1=bit COB-1D {hat)|RTE |Len f-byte Data (bvte)
confirmation 10-7 -0 0 1-3 4-7 response
“ 7-5 W-3[271] 0 “
1011 Node [n & m size
scs=0| x |sc|s [ss=i0
11-bit COB-1D {hit)|R TR |l.en 8-byte Data (byte)
10--7 G- 0 1--7
-5 | 42 [1-0
1100 | NodeID | 0 | & - " reserved e
request ces 3| X |esd indication
— T e T e
Initiate SDO Block Upload Protocol
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 75

CCs

SCS

Cs

SS

cc

SC

pst

size

blksize
X
reserved

. client command specified

5: block upload

. server command specified

6: block upload.

. client subcommand

0: initiate upload request
3: start upload

. server subcommand

0: initiate upload response

: multiplexor

It represents the index/sub-index of the data to be transfer by the
SDO.

. client CRC support

cc=0: Client does not support generating CRC on data.
cc=1: Client supports generating CRC on data.

. server CRC support

sc=0: Server does not support generating CRC on data.
sc=1: Server supports generating CRC on data.

. Protocol Switch Threshold in bytes to change the SDO transfer

protocol

pst=0: change of transfer protocol not allowed

pst>0: If the size of the data in bytes that has to be uploaded is
less or equal pst, the server can optionally switch to the ‘SDO
Upload Protocol’ by transmitting the server response of the ‘SDO
Upload Protocol’.

. size indicator

0: Data set size is not indicated.
1: Data set size is indicated.

. upload size in byes

s=0: size is reserved for further use, always O.
s=1: size contains the number of bytes to be uploaded. Byte 4
contains the LSB and byte 7 is the MSB.

: number of segments per block with O < blksize < 128
: not used, always O
. reserved for further use , always O

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 76

Upload SDO Block Segment Protocol

After finishing the Initiate SDO Block Upload protocol, the SDO server

starts to respond to the data by using the Upload SDO Block Segment protocol.

Each block contains 1 segment for the minimum and 127 segments for the
maximum. One segment consists of 1~7 bytes. And only one block can be
transmitted during an Upload SDO Block Segment protocol. The SDO server
can send a maximum of 127 blocks by using 127 Upload SDO Block Segment
protocols. The following figure is the structure for the Upload SDO Block

Segment protocol.

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
1 1-bit COB-ID (bit)|RTR |[Len 8-byte Data (byte)
107 -0 0 17
1011 | Nodetn | 0 |8 4 d
. n . e i sef-cata
n < seqno - request
ndication | .| | eq q
|
I 1-bit COB-ID (bit){RTR [Len f-byte Data (byte) .
response 0-7 Fay 1 7 3.7 confirmation
e e
A 7-5 [4-2[1-0 /f
1100 | Nodelld | O | 8 — J— askseq| blksize | reserved

Upload SDO Block Segment Protocol

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

77

CCs

Cs

seqno
seg-data
ackseq

blksize

X
reserved

. client command specifier

5: block upload

. client subcommand

2: block upload response

It indicates whether there are still more segments to be

uploaded.

0: more segments to be uploaded

1: no more segments to be uploaded , enter ‘End block upload’
phase

. sequence number of segment, 0 < seqno < 128

It is at most 7 bytes of segment data to be uploaded.

. sequence number of last segment that was successfully

received during the last block upload

If ackseq is set to 0, the client will indicate that the segment with
the sequence number 1 was not received correctly and all
segments have to be retransmitted by the server.

number of segments per block that has to be used by server for
the following block upload with O < blksize <128

not used, always 0

reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 78

End SDO Block Upload Protocol

The End SDO Block Upload protocol is used for finishing the SDO Block
upload, and is shown in the following figure.

End SDO Block Upload Protocol

) SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
L 1-bit COB-1D (bit)|RTR [Len B-bvte Data (hyte)
10~-7 G-() 0 1--3 47
_ 75 [42] 10
indication (011 | NodelD | 0 (8 0ot | n |ss1 cre reserved I'E‘CILIESt
-
[L=bit COB-ID (bit)|R TR [Len| f-byte Data (byte) .
response -7 | 60 0 57 confirmation
- " 75 [4-1] 0 ——*
1100 | NodelDd | O [8 — - — reserved
ccs=5| x | es=l

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

79

CCs

SCS

Cs

SS

crc

X
reserved

. client command specifier

5: block upload

. server command specifier

6: block upload

. client subcommand

1: end block upload request

. server subcommand

1: end block upload response

. It indicates the number of bytes in the last segment of the last

block that do not contain data. Bytes [8-n,7] do not contain
segment data.

: 16 bit Cyclic Redundancy Checksum (CRC) for the whole data

set.
The algorithm for generating the CRC is as follows.

XNL6+XM2+X"5+1

CRC is only valid if in Initiate Block Upload cc and sc are set to
1. Otherwise <c¢rc has to be set to 0. For
CAN-8123/CAN-8223/CAN-8423, it is not support CRC check
mechanism.

. not used, always 0
. reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 80

SDO Block Upload Example

SDO Client

The following figure shows the general procedure of applying the SDO
Block upload.

SDO Server
CAN-8423)

Initial Block Upload Protocol

)

-
-

L]
*Uplcmd Block Protocol (normal) / Upload Segment n

Upload Block Protocol (normal)
-

-

L

Upload Block Protocol (last)

)

-

End Block Upload Protocol

L

SDO Block Upload

(CAN-8123/CAN-8223/

SDO Server
SDO Client (ICAN-8123/CAN-8223/
CAN-8423)
Upload Segment 0
> (bit ¢=0, seqno=0)
Upload Segment 1
< (bit ¢=0, seqno=1)

(bit ¢=0, seqno=n)

Confirm block

-

Upload Block Protocol (normal)

S5DO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
Upload Segment 0
bit ¢=0, s =0
> (b1t ¢=0, seqno=(})
Upload Segment 1
bit ¢=0, 8 =1
> (bit ¢=0, seqno=1)
L]
Upload Segment n
< (bit ¢=1, seqno=n)

Confirm block

oo

Upload Block Protocol (last)

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

81

By the following procedure, an example is provided to obtain a value of
the index 0x1008 and sub-index 00 object entries.

Step 1. The CAN-8423 is requested to transmit the data by using the SDO
Block Upload method.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5[4[3|2|1|0 0|12 |3|4|5|6]|7
1(1|/o0|l0|l0|l0O]|O|O|O|O|2]| O 8 |A0O|08|10|00|7F |00 |00 |00
i SDO server
SDO client
(CAN-8x23)
CCS . 5
cc 0
cS 0
m : 081000
blksize : 7F
Each block contains 127 segments.
pst ;00

Step 2. The CAN-8423 will confirm the requirement with the Initiate SDO Block
Upload protocol.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9(8|7|6|5[4|3]|2|1]0 O|1|2|3|4|5]|6]|7
1]/0(1]|1|/0]|0|0O|0O|O]|O|1]| O 8 |[C2|08|10|00 |09 |00|00|O00
. SDO server
SDO client <
(CAN-8x23)
SCS 6
sc 0
S 1
SS . 0
m . 081000
size . 09000000
The CAN-8123 will response 9 bytes data during the SDO Block
Upload.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 82

Step 3. The message is sent to finish the Initiate SDO Block Upload protocol,
and will actuate the CAN-8423 to start the data transmission.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10,98 |7|6(5[4|3]|2 o112 |3| 4|5]|6/|7
1]/1|0|0|0|0O|J0O|O0O]|O 0 8 |A3|/00|00|00| 00 |00|O00]O00
. SDO server
SDO client
(CAN-8x23)
ccs 5
(oS 3

Step 4. The CAN-8423 will responds to the first 7 bytes of data by using the
Upload SDO Block Segment protocol.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5|4|3]|2 0/1(2 |3 |4 |5]|6/|7
1 /0(1(12|0|0|0|O]|O 0 8 | 1|43 |41 |4E|2D |38 34|32
. SDO server
SDO client <
(CAN-8x23)
C 0
segno 1
seg-data 43 41 4E 2D 38 34 32
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 83

Step 5. The CAN-8423 will transmit the rest of the data.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7(6|5|4|13(2(1]|0 o|1(2 | 3|4 |5 |6]|7
1 /0|1(12/{0]j]0|0O|0O|0O]|O|1] O 8 |82|33|[00|00|00/|00(00]O00
i SDO server
SDO client <
(CAN-8x23)
(o) 1
seqgno 2

seg-data : 3300 00 00 00 00 00
Because this segment is the last one, not all of the data in the
seg-data filed is useful. The valid data length will be indicated
when the CAN-8423 send a message to finish the Block Upload
protocol. Please refer to the value of n in the step 7.

Step 6. Then, users will send a message to confirm the received data
transmitted from the CAN-8423.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6[5|4|3|2|1]|0 o(1|2 3|4 |5 |6]|7
1/12/0|0|j0O|J0OlO]|O0O|O|O|2]| O 8 |A2|02|7F | 00|00 |00]|O00]| 00
. SDO server
SDO client
(CAN-8x23)
CCSs . 5
(o5 2
ackseq : 2
blksize : 7F

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 84

Step 7. When the reception is confirmed, the CAN-8423 will send a message
to enter the End SDO Block Upload protocol.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5(4|3|2|1]|0 o|1|2|3|4 |5 |67
1/10(1|{1|0|0|JO|O|O|O}2] O 8 | D500 |00|00|00|00|O00¢|O00
) SDO server
SDO client <<
(CAN-8x23)
SCS 6
n . 5

This value means the invalid data in the last segment are from
[8-5] to 7, i.e. only the first 3 bytes are valid.

SS 01

crc > 0000

Step 8. Users will send a message to finish the End SDO Block Upload
protocol.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|/6|5|4|3|2|1]|0 o123 |4 |5|6/|7
i1 /1/0|0|0|0O|O|O|O|O|1] O 8 |A1L|00|00|00|00|00]|O00]|O00
. SDO server
SDO client
(CAN-8x23)
CCSs . 5
(o 01

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 85

5.1.3 Download SDO Protocol

Initiate SDO Download Protocol

The download modes are similar to the upload modes, but different in
some parameters of the SDO messages. They are also separated into two
steps. If the download data length is less than 4 bytes, the download action will
finish in the download initialization protocol. Otherwise, the download segment
protocol will be needed. These two protocols are shown below.

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
I L-bat COB-ID (bit)|RTR [Len S-byte Data (byte)
10-7 6-0 0 -3 4-7
1100 | Noded | o |8 73 (42l 1o d
e h m - . .
request | ¥ ces=L|x|n |efs ™a] indication
—— - e
1=kt COB-1D (bit)(RTE [Len d-bvie Data (bytle)
confirmation T0-7 60] T3 37 response
* A 73 4-0 *
1011 | Node ID 0|8 m reserved
s05=3 X

Initiate SDO Download Protocol

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 86

CCs

SCS

X
reserved

. client command specified

1: initiate download request

. server command specified

3: initiate download response

: Only valid if e =1 and s = 1, otherwise 0. If valid, it indicates the

number of bytes in d that do not contain data. Bytes [8-n, 7] do
not contain segment data.

. transfer type

0: normal transfer

1: expedited transfer

If the e=1, it means that the data of the object are equal or less
than 4 bytes, and only initiate SDO download protocol is needed.
If e=0, the download SDO protocol is necessary.

. size indicator

0: data set size is not indicated

1: data set size is indicated

multiplexer

It represents the index/sub-index of the data to be transfer by the
SDO.

: data

e=0,s=0: d Is reserved for further use.

e=0,s=1: d contains the number of bytes to be downloaded, and
byte 4 contains the least significant bit, and byte 7
contains the most significant bit.

e=1,s=1: d contains the data of length 4-n to be downloaded, the
encoding depends on the type of the data referenced
by index and sub-index.

e=1,s=0: d contains unspecified number of bytes to be
downloaded.

not used, always 0

reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 87

Download Segment Protocol

SDO Client

request
T e

confirmation
-

CCs

SCS

seg-data

X
reserved

SDO Server
(CAN-B123/CAN-8223/
CAN-8423)
| L-bit COB-ID (bit)|RTR [Len B-byte Data (byte)
10-7 o1 0 4-7
7-5 |4] 3-1 [0
,’ 1100 | NodeID | @ | & ces—01t] n le seg-data \ Indication
———— =
L1-bit COB-1D (bit)[RTR [Len B-bvie Data (byie)
10~7 61 0 37 response
w_ 75 [4] 30 T
1011 | NodeID | O | B U . reserved

Download SDO Segment Protocol

client command specified
0: download segment request

. server command specified

1: download segment response

It is at most 7 bytes of segment data to be downloaded. The
encoding depends on the type of the data referenced by index
and sub-index.

It indicates the number of bytes in segment data that do not
contain segment data. Bytes [8-n, 7] do not contain segment
data. n = 0 if no segment size is indicated.

It indicates whether there are still more segments to be
downloaded.

0 more segments to be downloaded

1. no more segments to be downloaded

. toggle bit

This bit must alternate for each subsequent segment that is
downloaded. The first segment will have the toggle-bit set to O.
The toggle bit will be equal for the request and the response
message.

not used, always 0

reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 88

SDO Download Example

When the SDO download example has been applied, the procedure in the

below figure may be applied.

SDO Server

(CAN-8123/CAN-8223/

SDO Client CAN-8423)

SDO Server
SDO Client {CAN-8123/CAN-8223/
CAN-8423)

Initial SDO Download Protocol (hit e=1)

<l
-

SDO Download with expedited transfer

Initial SDO Download Protocol (bit ¢=0)

Download SDO Protocol (bit =0, bit ¢=()

i

—

-

Download SDO Protocol (bit t=1, bit ¢=0)

il
-

Download SDO Protocol (bit t=0, bit ¢=0)
-

B
[]
[]
]

Download SDO Protocol (bit t=7?, bit ¢=1}

_—
-

SDO Download with normal transfer

Since all of those object entries, which can be written,
CAN-8123/CAN-8223/CAN-8423 are equal or less than 4 bytes, we can only
provide the example for expedited transfer.

in the

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

89

® Example for expedited transfer

Step 1. The Rx SDO message is sent to the CAN-8423 to access the object
entry with index 0x1400 and sub-index 02 stored in the communication profile
area. For example, the value of this object entry is changed to 5, as the node
ID for the CAN-8423 is set to 1.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5[4|3|2|1|0 o|1|2 |3 | 4|5 |6|7
1|1|/0(0|0|0|0O|OfO|O|1]| O 8 |2F|00|14| 02| 05| 00 | 00 | OO
_ SDO server
SDO client
(CAN-8x23)
ccs 1
n 3
e 1
S 1
m 00 14 02
d 05 00 00 00
Because the n=3, only the 4th byte is valid. Therefore, the feedback
value is 05.

Step 2. The CAN-8423 will reply with the message to finish the data download.
Then, users can use the upload methods to read back the value.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0|12 3 4 5 6 7
1(0(12j12j0|0|0|O0O|O|O]|1]| O 8 |60|00|14| 02| 00 | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS o3
m : 001400

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 90

5.1.4 SDO Block Download

The procedure of SDO Block Download is similar to the SDO Block
Upload. There are three steps during the SDO Block Download. The Initiate
SDO Block Download protocol is the beginning protocol for SDO Block
Download. In this protocol, the SDO server and SDO client will mutually
communicate. Afterwards, the SDO Block Download protocol will also be used.
And, data will be sent to SDO server by SDO client. After finishing the data
transmission, the client and server will use the End SDO Block protocol to
terminate the SDO Block Download. The following figures are the structures
for the three protocols.

Initiate SDO Block Download Protocol

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
I L-bat COB-ID (bit)|RTR [Len S-byte Data (byte)
10-7 60] [—3 47
1100 | Node D | 0 | & =N BT i
odle h m SIFe - . .
request | ¥ ces=6| x |ec|s jes=0 ™a] indication
R =
11-bit COB-ID (bit)|RTR [Len S-byte Data (byte)
nfirmation = - - 57 response
co 0 ‘\ 107 -0 . 4__3 — 1-3] 4 5~7 P
1011 | NodeID | 0 |8 — 1 m |blksize |reserved
s05=5] x [sc|ss=0

Initiate SDO Block Download Protocol

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 91

CCs

SCS

Cs

SS

cc

SC

size

blksize
X
reserved

. client command specified

6: block download

. server command specified

5: block download

. size indicator

0: Data set size is not indicated.
1: Data set size is indicated.

. client subcommand

0: initiate download request

. server subcommand

0: initiate download response

. client CRC support

cc=0: Client does not support generating CRC on data.
cc=1: Client supports generating CRC on data.

. server CRC support

sc=0: Server does not support generating CRC on data.

sc=1: Server supports generating CRC on data.

multiplexor

It represents the index/sub-index of the data to be transfer by the
SDO.

. download size in byes

s=0: Size is reserved for further use, always 0.
s=1: Size contains the number of bytes to be downloaded. Byte
4 contains the LSB and byte 7 is the MSB.

: number of segments per block with 0 < blksize < 128

not used, always 0
reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 92

Download SDO Block Segment Protocol

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
I1=bit COB-1D (hit)(RTR [Len R-byte Data (byte)
0-7 | _6-0 0 =7
1100 | Nodetp | 0 |8 [— o |
) 5]) . ep-dats . , .
request | e ¢ | seqno seaan indication
B T e
[
1 1-hit COB-1D (bit)|RTE [Len R-byte Data {byte)
confirmation 107 fi--0) 0 [] 37 respanse
- = =
L 75 [4-2]1-0 _ ‘/"'
100l | ModeID | O [8 - |ackseq |blksize | reserved
SCE=0) X |55—a
Download SDO Block Segment Protocol
Scs . server command specified
5: block download
Ss . server subcommand
0: initiate download response
C : It indicates whether there are still more segments to be

downloaded.
0: more segments to be downloaded

1: no more segments to be downloaded , enter ‘End block

download’ phase
seqno : sequence number of segment, 0 < seqno < 128
seg-data : Itis at most 7 bytes of segment data to be downloaded.

ackseq : sequence number of last segment that was received

successfully during the last block download

If ackseq is set to O, the server indicates the client that the
segment with the sequence number 1 was not received correctly

and all segments have to be retransmitted by the client.

blksize : number of segments per block that has to be used by client for

the following block download with 0 < blksize < 128
X : not used, always O
reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

93

End SDO Block Download Protocol

SDO Server
SDO Client (CAN-B123/CAN-8223/
CAN-8423)
I 1-bat COB-ID (bit)|RTR [Len H-byte Data (byte)
10~7 -] 0 -3 47
1100 | Nodelnd | 0 | % 3 32l d
ode : cre reserye e e
request | ¥ ces=6| n [x|es=I ™~a] indication
— -
1 1-hit COB-1D (bit)|RTE [Len R-byte Data {byte)
confirmation T0-7 0] 0 -7 response
- =
| 75 [4-2] 10 1T
101l | NodelD | O [8 - reserved
scs-3| X g5 1

End SDO Block Download Protocol

ccs . client command specified.
6: block download
Scs . server command specified.
5: block download
cs . client subcommand
1: end block download request
Ss . server subcommand

1: end block download response
n . It indicates the number of bytes in the last segment of the last
block that do not contain data. Bytes [8-n,7] do not contain
segment data.
crc . 16 bit Cyclic Redundancy Checksum (CRC) for the whole data
set.
The algorithm for generating the CRC is as follows.

XML6+XM2+XM5+1

CRC is only valid if in Initiate Block Download cc and sc are set
to 1. Otherwise, crc has to be set to 0. For
CAN-8123/CAN-8223/CAN-8423, it is not support CRC check
mechanism.
X : not used, always O
reserved : reserved for further use , always 0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 94

SDO Block Download Example

In this example, the value of the object entry with index 0x1400 and
sub-index 0x02 will be changed to 5 by using the SDO Block Download
communication method. When the SDO Block Download is actuated, the
procedure will be as follows.

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)

Download Segment 0

SDO Server (bit ¢=0, seqno=0)
SDO Client (CAN-8123/CAN-8223/
CAN-8423) Download Segment 1

(bit ¢=0, seqno=1)

Initial Block Download Protocol

Bl > [
L]
[]
Download Block Protocol (normal) Download Segment n
-
- (bit c=(}, seqno=n)
-
Confirm block
Download Block Protocol (normal)
- ot
. Download Block Protocol (normal)
* SDO Server
) SDO Client (CAN-8123/CAN-8223/
Download Block Protocol (last) CAN-8423)
-

-

Download Segment 0
(bit =0}, seqno=0)

End Block Download Protocol
-t > Download Segment |
(bit =0, seqno=1)

SDO Block Download

Download Segment n
(bit ¢=1, seqno=n)

Confirm block

Download Block Protocol (last)

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 95

Step 1. When the Initiate SDO Block Download protocol is carried out, the
CAN-8423 will be informed with the value of the object entry with index 0x1400
and sub-index 02 modified by the method of the SDO Block Download,

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5(4|3|2]|1]|0 o|1|2]| 3| 4|5 | 6|7
1/1|0|0|l0|0O|lO|O|0O|0O|2]| O 8 |Co|00|14| 02 | 00 | 00 | 00O | OO
) SDO server
SDO client
(CAN-8x23)
ccs 6
(o] 0
S 0
CS 0
m : 001402
size : 00000000
Because the value of s is 0, the size is not used.
Step 2. The CAN-8423 will reply to the message by using the Initiate SDO
Block Download protocol. Then, the SDO client will download the object’s data
with index 0x1400 and sub-index 02 to CAN-8423.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5(4|3|2]|1]|0 O|1|2]| 3| 4|5 | 6|7
1/o0|1|12|/0|l0|l0|0O]0O]|0O]|21]| O 8 |A0|00|124| 02 | 7F | 00 | 00 | 0O
. SDO server
SDO client <<
(CAN-8x23)
SCS 5
scC 0
S 0
Ss 0
m : 001402
blksize : TF
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 96

Step 3. The SDO client will transmit the data of the object entry index 0x1400
and sub-index 02 by using the Download SDO Block Segment protocol. The
following description shows that the data length of the value is less than the
maximum data length of one block, the SDO Block Segment Download
protocol is just implemented once.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9|8|7|6|5(|4|13|2|1|0 0 1 2 3 4 5 6 7
1(1/{0(0|0|0|O0O|O|O]|O]|1]| O 8 |8L|05|/00| 00| OO | OO | OO | OO
) SDO server
SDO client
(CAN-8x23)
c 01
seqgno : 1

seg-data : 0500 00 00 00 00 00
Because this segment is the last one, not all of the data in the
seg-data filed is useful. The valid data length will be indicated when
the users send a message to finish the Block Download protocol.
Please refer to the value of n in the step 5.

Step 4. The CAN-8423 will reply to the message in order to check whether the
transmission is successful or not. If not, this block transmission will be
requested again. After finishing the data transmission, the Download SDO
Block Segment protocol will be terminated.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9|8|7|6|5(|4|3|2|1|0 0 1 2 3 4 5 6 7
1/0|/1]1|0|l0|0|O]|O|lO|1]| O 8 |A2|01|7F| 00 | OO | OO0 | 00 | 00
) SDO server
SDO client <<
(CAN-8x23)
SCS 5
Ss D2
ackseq : 01
blksize : TF

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 97

Step 5. The SDO client will send the ending message to finish the SDO Block
Download.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9(8|7(6|5|4[3]2 O|1|2| 3| 4|5 |67
1/1/0|/0j|0|l0|0|0O]|O 0 8 |D9|00|00| 00 | 00|00 |00 | OO
_ SDO server
SDO client
(CAN-8x23)
ccs 6
n 6
This value means the useless data in the last segment are from [8-6]
to 7, i.e. only the first 2 bytes are valid.
cSs 1
crc 00 00

Step 6. The CAN-8423 will reply to the message, and terminate the End SDO

Block Download protocol.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5[4|3|2 0| 11|2 3 4 5 6 7
1/0(1|1|0|0|0]|0]O 0 8 |A1|00|00| 00 | OO | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 5
SS 1
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 98

5.1.5 Abort SDO Transfer Protocol

In some conditions, the SDO client or SDO server will terminate the SDO
transmission. For example, the value of entries that users want to modify does
not exist or is read-only, even users wouldn’t continue the uncompleted SDO
protocol under some special situations. When these conditions occur, both the
client and the server can be activated to send the Abort SDO Transfer
message. The Abort SDO Transfer protocol is shown below.

SDO Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
1 1-bit COB-1D (bit)|R TR Len H-byte Data (byte)
107 |60 0 -3 47
_request g o f 1100 | Nodemn | 0 |8 - 4;0 m d |y} indicatiog.
Abort SDO Transfer Protocol
5D0 Server
SDO Client (CAN-8123/CAN-8223/
CAN-8423)
11-Bit COB-11 (ki |RTR |Len &-byte Data {hyte)
10-7 [60 0 -3 -7
indicati 1
ﬂwi— 1011 | NodeID | O | B ng 4.‘-‘ m d *‘—M
Abort SDO Transfer Protocol
cS : command specified
4: abort transfer request
X : not used, always O
multiplexer
It represents index and sub-index of the SDO
d . contains a 4-byte “Abort Code” about the reason for the abort

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 99

Abort Code Description

0503 0000h Toggle bit not alternated.

0504 0000h SDO protocol timed out.

0504 0001h Client/server command specified not valid or unknown.

0504 0002h Invalid block size (block mode only).

0504 0003h Invalid sequence number (block mode only).

0504 0004h CRC error (block mode only).

0504 0005h Out of memory.

0601 0000h Unsupported access to an object.

0601 0001h Attempt to read a write only object.

0601 0002h Attempt to write a read only object.

0602 0000h Object does not exist in the object dictionary.

0604 0041h Object cannot be mapped to the PDO.

0604 0042h The number and length of the objects to be mapped would exceed
PDO length.

0604 0043h General parameter incompatibility reason.

0604 0047h General internal incompatibility in the device.

0606 0000h Access failed due to an hardware error.

0607 0010h Data type does not match, length of service parameter does not
match

0607 0012h Data type does not match, length of service parameter too high

0607 0013h Data type does not match, length of service parameter too low

0609 0011h Sub-index does not exist.

0609 0030h Value range of parameter exceeded (only for write access).

0609 0031h Value of parameter written too high.

0609 0032h Value of parameter written too low.

0609 0036h Maximum value is less than minimum value.

0800 0000h General error.

0800 0020h Data cannot be transferred or stored to the application.

0800 0021h Data cannot be transferred or stored to the application because of
local control.

0800 0022h Data cannot be transferred or stored to the application because of
the present device state.
Object dictionary dynamic generation fails or no object dictionary is

0800 0023h present (e.g. object dictionary is generated from file and generation

fails because of an file error).

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

100

Abort SDO Transfer Example

The object index 0x1008 doesn’t support the sub-index 01 entry.
Therefore, if users read the object entry with index 0x1008 and sub-index 01,
the CAN-8x23 will reply the Abort SDO Transfer message. The example is
figured as follows.

Step 1. The Rx SDO message will be sent to the CAN-8423 in order to get the
object entry with index 0x1008 and sub-index 01. The following example is
assumed that the node ID for the CAN-8423 is set to 1.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0| 1] 2 3 4 5 6 7
i1(1/0|0|0|0O|O|O|O|O]|2]| O 8 [40|08|10| 01 | OO | OO | OO0 | OO
i SDO server
SDO client
(CAN-8x23)
ccs D2
m . 081001

Step 2. The CAN-8423 will reply to the Abort SDO message as shown below.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0|12 3 4 5 6 7
1({0(1|1|0|0|0O|O|O|O]|2]| O 8 |8|08|10| 01 | 11 | 00 | 09 | 06
. SDO server
SDO client <
(CAN-8x23)
(o) D4
m : 081001
d : 11000906

According to the low byte data have the transferring priority, the data
will be converted to “06 09 00 11”. Therefore, after searching the Abort
Code table described above, this Abort Code can be interpreted as
“Sub-index does not exist”.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 101

5.2 PDO Communication Set

52.1 PDO COB-ID Parameters

Before the real-time data are transmitted by the PDO, it is necessary to
check the COB-ID parameter of this PDO in the PDO communication objects.
This parameter setting controls the COB-ID of the PDO communication, which

is in 32 bits, and each bit with its meaning is given in the table follow.

Bit Number | Value Meaning
31 (MSB) 0 PDO exits (PDO is valid)
1 PDO does not exist (PDO is not valid)
30 0 RTR allowed on this PDO
1 No RTR allowed on this PDO
29 0 11-bit ID (CAN 2.0A)
1 29-bit ID (CAN 2.0B)
28-11 0 If bit 29=0
X If bit 29=1: 28-11 bits of 29-bit COB-ID
10-0 (LSB) X 10-0 bits of COB-ID

Note: Only CAN-8123/CAN-8223/CAN-8423 supports CAN 2.0A.

In the following table, it's regarding the default PDO COB-ID

parameters.

Default COB-ID of PDO

Number of PDO Bit10~Bit7 _ _
_ Bit6~Bit0

(Function Code)

TxPDO1 0011 Node ID
TxPDO2 0101 Node ID
TxPDO3 0111 Node ID
TxPDO4 1001 Node ID
RxPDO1 0100 Node ID
RxPDO2 0110 Node ID
RxPDO3 1000 Node ID
RxPDO4 1010 Node ID

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

102

Note: 1. Users can also define the PDO COB-ID by themselves. Actually, all
COB-ID can be defined by users except the reserved COB-ID
described in the table of the section 3.1. It is important to avoid the
conflict with the defined COB-ID used in the same node.

2. The PDO COB-ID parameters cannot be changed if the PDO is valid
(bit 31 =0).

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 103

5.2.2 Transmission Type

The transmission type is one of the several parameters defined in PDO
communication objects with sub-index 02. Each PDO has its own transmission
type. The transmission type can indicate the transmission or reception
character for its corresponding PDO. The following table describes the
relationship between the value of the transmission type and the PDO character.
For example, if users used transmission type 0 for the first TXPDO, the
CANopen device will follow the rule of the acyclic and synchronous PDO
transmission.

Transmission PDO Transmission method
Type cyclic | acyclic | synchronous | asynchronous Sr-:-s
0 0o 0
1-240 o) o
e st S N — FEVErSeQ--m-mm-mmmmemmemmeee _
252 o 5
253 o 5
254 o
255 o

Note:

1. The transmission type 1-240 indicates how many SYNC objects the TxPDO
will be triggered. The RxPDO is always triggered by the following SYNC
upon reception of data independent of the transmission types 0-240.

2. The transmission type 252 and 253 are only used for TxPDO. The
transmission type 252 means that the data is updated (but not sent)
immediately after reception of the SYNC object. For these two transmission
types, the PDO is only transmitted on remote transmission requests.

3. For the transmission types 254 and 255, the event timer will be used in the
TxPDO. The PDO, including the DI value, will be sent when the DI value is
changed. And both transmission types will directly trigger an update of the
mapped data when receiving the RxPDO.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 104

5.2.3 PDO Communication Rule

The PDO related objects are indicated from index 0x1400 to Ox1BFF. For
the CAN-8x23, RxPDO communication objects are from index 0x1400 to index
0x140F, and RxPDO mapping objects are from index 0x1600 to index 0x160F.
The ranges of the TXPDO communication objects and the mapping objects are
from index 0x1800 to index 0x180F and from index Ox1AO00 to index Ox1AOF
respectively. Moreover, each PDO communication object has its own PDO
mapping object.

For example, the first RxPDO communication object is stored in the entry
with index 0x1400, and the corresponding mapping object is stored in an entry
with index 0x1600. The object with index 0x1401 and the object with index
0x1601 are a group, and so on. The TxPDO also follows the same rules. The
first TXPDO communication object is stored in the entry with 0x1800, and the
corresponding mapping object is in the 0x1A00 entry, and so on. Therefore,
before users access the practical I/O channels via PDO communication, each
parameter for the PDO communications and mapping objects must be
controlled.

Besides, only PDO communications can be used in the NMT operational
state. Users can use the NMT module control protocol to change the NMT
state of the CAN-8x23. It is described in the section 5.3. Besides, during
communication via the PDO messages, the data length of the PDO message
must match with the PDO mapping object. If the data length ‘L’ of the PDO
message exceeds the total bytes ‘n’ of the PDO mapping object entries, only
the first 'n' bytes of the PDO message are used by the PDO consumer. If ‘L is
less than 'n', the PDO message will not be disposed by the PDO consumer,
and an Emergency message with error code 8210h will be transmitted to the
PDO producer. The PDO communication set is shown as follows.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 105

PDO Producer PDO Consumers

11-bit COB-ID (bit)|RTR|Len 8-byte Data (byte)
10~0 0~7
Indication
request) o oD 0L PDO-msg I Mt

indication

B
indication
—_— P

Write PDO Protocol

COB-ID : the default PDO COB-ID, or the PDO COB-ID can be defined by
user
L . the data length about how many bytes the PDO message has
PDO-msg : the real-time data or the data which can be mapped into the
PDO mapping objects

PDO Consumer PDO Producer
Remote Transmit Request
11-bit COB-ID (bit)|RTR|Len 8-byte Data (byte)
10~0 0~7
4>reque8t —> COB-ID 110 reserved — 4>request
11-bit COB-ID (bit)|RTR|Len 8-byte Data (byte)
10~0 0~7
Indication
<+ — COB-ID 0 |L PDO-msg g [equest

Read PDO Protocol

COB-ID : the default PDO COB-ID, or the PDO COB-ID defined by users
L . the data length about how many bytes the PDO message has
PDO-msg : the real-time data or the data which can be mapped into the
PDO mapping objects

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 106

PDO Communication Example

To take a look at a PDO communication demo, some [-8000 slot modules
will be needed. They are 1-8057, 1-8053, 1-8024 and [-87017. Connect each I/O
channels for these modules as following figure.

DOO DIO lout 0 Vin 0+
DO1 DI1 AGND — Vin O-
DO2 DI2 lout 1 Vin 1+
DO3 DI3 AGND Vin 1-
DO4 DI4 lout 2 Vin 2+
DO5 DI5 AGND Vin 2-
DO6 DI6 lout 3 Vin 3+
DO7 DI7 AGND Vin 3-
DO8 DI8 Vout 0 [— Vin 4+
DO9 DI9 AGND Vin 4-
DO10 DI10 Vout 1 Vin 5+
DO11 DI11 AGND Vin 5-
DO12 D12 Vout 2 Vin 6+
DO13 DI13 AGND Vin 6-
DO14 DI14 Vout 3 Vin 7+
DO15 DI15 AGND Vin 7-
1-8057 1-8053 1-8024 I-87017
Slot 0 Slot 1 Slot 2 Slot 3

Please use the CAN-8423 rotary switch to set the node ID to 1, and CAN
bus baud rate to 125Kbps. Moreover, use CAN Slave Utility to set the 1-8024
and 1-87017 input/output range to -10V~+10V. When using the CAN Slave
Utility, the following information can be as a reference. (Note:
CAN-8123/CAN-8223 can’t be used with the on-line mode to set the channel
input/output range. Therefore, users have to refer to the section 5.5 to know
how to use the SDO protocol to set the channel input/output range)

PDONO. |COB-ID (Hex)| Transmission [Inhibit Time | Event Timer | Mapping 0 |Mapping1 [Mapping 2 |
1 201 255 0 0 s 0c00~07 s0c08™15 s-c-
2 301 255 0 0s2cO s2cO s2ci
3 401 255 0 0 s-c-- §--C- §--C-
4 501 255 0 0 s--c- §--C-- §--C--

I Mapping 2 l Mapping 3] Mapping 4 I Mapping 5 I Mapping & I Mapping 7
$--C-- $--C-- $--C-- §--C-- §--C-- §--C--
s2c1 s2ci s2c?2 s2c2 s2c3 $2c3
§-C §-C §-C §-C §-C §C
e §--C §--C §-Co §-C §-C

RxPDO Information

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 107

PDO NO. |C[JB-ID [Hex][Transmission Ilnhibit Time IEvent Timerl Mapping 0 IMapping1 IMapping 2 |
1 181 255 0 0 s1c0007 £1c08715 s-c-
2 281 255 0 0s3cO s£3cO s3c1
3 381 255 0 0s3cd s3cd $3ch
4 431 255 0 0 s-c- §--C- §--C-
| Mapping 2 I Mapping 3 I Mapping 4 | Mapping 5 I tapping 6 I Mapping 7
§C §C §-C §-C §-C §-C
s3c1 s£3c1 §3c2 §3c2 $£3c3 $3c3
$3ch $3ch s3ck s3ch s3c? s3c?
§--Co §--Co §--Co §--Co §--Co §--Co
TxPDO Information
Index 0x6000 026200 0:6206 0x6207
Description |Read DI Wiite DO DO Err Mode |DO EnValue
Sub-lndex 0 | 2 2 2 2
Sub-Index 1 8053 DIO~DI7 8057_DO0O~DO 7 FF 0
Sub-Index 2 8053 DI 8~ DIF 8057 DO 8~ DOF FF 0
Index 0x6401 0x6411 0x6443 0x6444
Description |Read Al Wiite AQ AD EnMode |[AD EnValue
Subindex0 | 8 4 4 4
Sub-Index 1 87017 Al 0 8024 A0 0 1 oy
Sub-Index 2 87017 Al 1 8024_A0 1 1 oy
Sub-index 3 87017 Al 2 8024_A0 2 1 oy
Sub-Index 4 87017 Al 3 8024_A0 3 1 oy
Sub-Index 5 87017 _Al 4
Sub-Index 6 87017_ A1 5
Sub-index 7 87017 Al 6
Sub-index 8 87017 Al 7 v

Standardized Device Profile Area Information

After concluding the above preparations, the several functions of PDO
communication will be introduced as follows.

PDO.

The function of accessing digital I/O & analog I/O with asynchronous

The function by using Event Timer to obtain the input value.

The function of the acyclic and synchronous RxPDO.

The function of the acyclic and synchronous TxPDO.

The function of the cyclic and synchronous TxPDO.

The function of the synchronous and RTR-only TxPDO.

The function of the asynchronous and RTR-only RxPDO.

The function of the dynamic PDO mapping for DI/AI/DO/AO channels

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

- 108

Before describing the example, the stepO0 must be checked. And the
default COB-ID for each communication object is assumed to be being used.

Step0: The following message must be sent in order to change the NMT state
of the CAN-8423 first, because only the PDO communication can run under

the NMT Operational state.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9/8|7|6|5[4|3|2]|1 o|1|2| 3| 4|5 |6 |7
0|0j0O|O|O|O|0O|O|O]|O 0 8 |01|/01|00| 00 |00 | OO0 | OO | OO
NMT slave
NMT master
(CAN-8x23)
CSs o1
NodeID : 1
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 109

® Access Digital /0 & Analog I/0

Step 1. In order to change the DO value of the I-8057 to be 0x1234, users must
send the PDO message by using the first RxPDO.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7 5|4 132 Ol 1|2 3 4 5 6 7
0)]2/0|0 0j|0|0|O 0 8 |34(|12,00| 00 | 00 | OO | OO | OO
PDO PDO consumer
producer (CAN-8x23)
COB-ID 0x201
L 8
PDO-msg 34 12 00 00 00 00

Only the first two bytes are valid, even if the L is set to 8, because
the data in the first RxPDO contains only two bytes. According to the
PDO mapping table shown above, the first byte is for the DO0~DO7
channel values of the 1-8057. The second byte is for the DO8~DO15
channel values of the 1-8057.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

110

Step 2. Because of the change of the DI-channel status, the TxPDO is
transmitted automatically when the transmission type is 255, based on the
CANopen spec 401. Then, users will receive the 1st TXPDO message.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7 5/4|13(2]1]0 Ol 1|2 3 4 5 6 7
00|11 o|0oj0ojo0j0|2| O 2 |34)|12|00| 00O | OO | OO | OO | OO
PDO PDO consumer
consumer (CAN-8x23)
COB-ID 0x181
L 2
PDO-msg 34 12 00 00 00 00 00 00

Because the data length is 2, only the first two bytes are valid. The
DI value will be 1 if the DI is OFF, according to the character of the
[-8053 DI channels. Therefore, the first byte indicates that the DI2,
DI4, and DI5 of the 1-8053 are in ON state. The second byte shows
that the DI9 and DI12 of the 1-8053 are in ON state.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

111

Step 3. In order to output 5V to the AOO of the 1-8024, users must send the
PDO message by using the 2nd RxPDO.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5]4|3|2|1]|0 0 1] 2 3 4 5 6 7
oji1(1(0|0|j0|0Oj0Oj0O|O|21}| O 8 |FF|3F|00| 00 | OO | OO | OO | OO
PDO PDO consumer
>
producer (CAN-8x23)
COB-ID : 0x301
L . 8

PDO-msg : FF 3F 00 00 00 00 00 00

The first two bytes are for AO channel 0, and the others are for AO
channel 1, 2 and 3. Users need to transfer the float value to hex
format because only the CAN-8123/CAN-8223/CAN-8423 supports
the hex format. The output range of the [-8024 is -10V~10V.
According to the transformation table stored in the appendix table,
the mapping hex-format range is from 0x8000 (-32768) to Ox7FFF
(32767). Therefore, the 5V is mapped to the Ox3FFF by applying
following equation.

V- (V)
10V — (-10V)
—16383.25 ~ 16383 = OX3FFF

HexValue = (J* (32767 — (-32768)) + (—32768)

The first two bytes of the PDO message will be filled with “FF” and
“3F”. All the other Al channels are set to OV. Then, the value “00 00”
will be given for these channels. For more details about how to
transfer the value between the hex and float, please refer to the
section 6.3.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 112

Step 4. Even the Al input value has been changed according the AO value, the
RxPDO will not respond automatically in the CAN-8423. Therefore, users need
to use the RTR message from the 2nd TxPDO to read back the Al value.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
109 (8|7 5/4(3[2|1]0 0O|1|2| 3| 4|5 |6 |7
01|01 ojojo|o|O|1] 1 O |00(00(00| 00 |00 | OO |00 | OO
PDO PDO consumer
consumer (CAN-8x23)
COB-ID 0x281
Step 5. The feedback value for Al is 5V.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
109 (8|7 5/4(3[|2|1]0 oO|1|2 |3 | 4 |5 | 6|7
0|1]0]|1 ojojojojof1| O 8 |00|40|FD| FF | FD | FF | FD | FF
PDO PDO consumer
consumer (CAN-8x23)
COB-ID 0x281
L 8
PDO-msg 00 40 FD FF FD FF FD FF

The first two bytes are for Al channel 0. The others are for Al channel
1, 2, and 3. The feedback AIO value is 0x4000. All the other Al
channels are OXFFFD. Users need to transfer this AlO value to float.
The 1-87017’s input float range is set to -10V ~ +10V and the input
hex range is from 0x8000 (-32768) to Ox7FFF (32767). The value
0x4000 (16384) can be transferred by using the following equation.
16384 —(—32768)
32767 (-32768)
~5.00V

FIoatVaIuez(J*(lOV —(-10v))+(-10v)

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 113

® Event Timer Functionality

Step 6. Users can use the SDO to change the event timer of the 2nd RxPDO to
1000, stored in index 0x1801 with sub-index 5. In addition, the value 1000
means 1 second according to the event timer is ms,

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9|8|7|6|5(|4|13|2|1|0 0 1 2 3 4 5 6 7
1(1/{0(0|0|0|O0O|O|O]|O]|1]| O 8 |2B|00|18| 05 | E8 | 03 | 00 | 0O
) SDO server
SDO client
(CAN-8x23)
ccs 1
n 2
e 1
S 1
m 00 18 05
d E8 03 00 00

The value 0x03ES8 is equal to 1000. Because the n=2, the last two
bytes “00 00” is useless.

Step 7. The CAN-8423 will response the message to finish the data download.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0|12 3 4 5 6 7
1(0(12j12j0|0|0|O0O|O|O]|1]| O 8 |60|00|18| 05 | 00O | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS o3
m : 001805

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 114

Step 8. After changing the value of the event timer, the Al value will be
automatically transmitted per second. The example below shows that at the
first time the 2n TXPDO message is received.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|/8|7|6|5|4|3]|2 o|1|2 |3 | 4|5 |6 |7
0[1]0]|1 o(o|0|oO 0 8 |00|40|FD| FF | FF | FF | FF | FF
PDO PDO producer
consumer (CAN-8x23)
COB-ID 0x281
L 8
PDO-msg 00 40 FD FF FF FF FF FF
Step 9. The following example shows that at the second time the 2nd TxPDO
message is received.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|/8|7|6|5|4|3]|2 0o|1|2| 3| 4|5 |6|7
0[1]0]|1 o(o|o0]oO 0 8 |06|40 |FF | FF | FF | FF | FF | FF
PDO PDO producer
consumer (CAN-8x23)
COB-ID 0x281
L 8
PDO-msg 06 40 FF FF FF FF FF FF

The value of 0x4006 is equal to 5.002V. The Al value is changed
because of the noise disturbance or other factors.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

115

Step 10. It shows that at the third time for the 2nd TXPDO message is received.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5(4|3|2|1]|0 0| 1] 2 3 4 5 6
0O|1|0|1|0|0|O|O|O|O|1| O 8 |00|40|FF| FF | FD | FF | FF
PDO < PDO producer
consumer (CAN-8x23)
COB-ID : 0x281
L : 8

PDO-msg : 0040 FF FF FD FF FF FF

Step 11. Users can set the event timer to O to finish the event timer test.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 Oo|1|2]| 3| 4| 5| 6
1(1/j0/(0|0|0|O0O|O|O|O]|1]| O 8 |2B|00|18| 05 | OO0 | 00 | OO
. SDO server
SDO client
(CAN-8x23)
CCSs 1
n 2
e 1
S 1
m 00 18 05
d 00 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9|8|7|6|5(|4|13|2|1|0 0 1 2 3 4 5 6
1(0(12j12j0|0|0|O0O|O|O]|1]| O 8 |60|00|18| 05 | 00 | OO | OO
) SDO server
SDO client <
(CAN-8x23)
SCS o3
m : 001805

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 116

® Transmission Type O for the first RxPDO
Step 12. Users can set the transmission type of the first RxPDO to 0.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5]4|3|2|1]|0 0 1|2 3 4 5 6 7
1(12|0|0(0j0|O0O|OfO}jO|2]| O 8 |2F|00|14| 02 | OO | OO | OO | OO
_ SDO server
SDO client
(CAN-8x23)
ccs 1
n 3
e 1
S 1
m 00 14 02
d 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5]4|3|2|1]|0 Ol 1|2 3 4 5 6 7
1/0f1|1]|0|0|0O|O|O]|O|1| O 8 |60|00|14| 02 | 00 | OO | 00 | OO
. SDO server
SDO client <
(CAN-8x23)
SCs 3
m : 001402
Step 13. Change the DO value of the 1-8057 to be 0x5678 by using the 1st
RxPDO.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7(6|5|4(3[|2|1]|0 o|1|2| 3| 4|5 |6 |7
o|1/0|0|0O|0O|O|O|O|O|1] O 8 |78(56(00| 00 | 00 | OO | OO | OO
PDO > PDO consumer
producer (CAN-8x23)
COB-ID . 0x201
L . 8

PDO-msg : 7856 00 00 00 00 00 00
Step 14. The DO value isn’t changed immediately according to the character of
the transmission type 0. Meanwhile, the SYNC message is needed to trigger
the action of the 1st RxPDO.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 117

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5(4|3]2|1]|0 0 1 2 3 4 5 6 7
0(0|0Oj2|0O|O|0O|O]|O}jO|O]| O 0O |00Oj0OO|OO| OO | OO | OO | OO | OO
SYNC > SYNC consumer
producer (CAN-8x23)
COB-ID . 0x80

The message of the SYNC object is always fixed as the format
described above. The COB-ID of the SYNC object can be changed
arbitrarily. It complies with the producer/consumer relationship.

Step 15. After transmitting the SYNC object, the 1st RxPDO is triggered. The
DI value is also changed at the same time. Hence, users can receive the 1st
TxPDO from CAN-8423.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4(3|2|1|0 0O|1|2| 3| 4|5 |6 |7
o|o|1|1|0|0|0O|O|lO|O|1] O 2 | 78|56 |00 00 |00 |00 /| 00 | OO
PDO < PDO producer
consumer (CAN-8x23)
COB-ID : 0x181
L .2

PDO-msg : 7856 00 00 00 00 00 00

Step 16. Users can set the transmission type of the first RxPDO to 255 to finish
the test.

11-bit COB-ID (bit) Data

RTR 8-byte Data (byte)
Func Code Node ID Length

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 118

10({9|8|7|6|5(|4|3]|2 0 1 2 3 4 5 6 7
1(1{0{0|0|0|0]|0O]|O 0 8 |2F|00|14| 02 | FF | 00 | OO0 | 0O
i SDO server
SDO client >
(CAN-8x23)
(ofofS) 1
n 3
e 1
S 1
m 00 14 02
d FF 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|12 3 4 5 6 7
1(0(1|12|0|0]0|0]|O 0 8 |60|00|14| 02 | 00 | OO | OO0 | OO
i SDO server
SDO client <
(CAN-8x23)
SCS 3
m 00 14 02
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 119

® Transmission Type O for the first TxPDO

Step 17. Users can set the transmission type of the first TxPDO to 0.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0| 1] 2 3 4 5 6 7
1(1/0|0|0|0|0O|0O]|O 0 8 |2F|00|18| 02 | 00 | OO | OO0 | OO
. SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 3
e 1
S 1
m 00 18 02
d 00 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|12 3 4 5 6 7
1(0(1{12]0]0]0]|0]|O0 0 8 |60(00|18| 02 | OO | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)

SCS
m

3
00 18 02

Step 18. Users can change the DO value of the 1-8057 to be 0x90AB by using

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

120

the first RxPDO.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5|4|3|2|1]|0 o|1|2| 3| 4|5 |67
o|[1|0|0|0OfO|O|O|O|O|1| O 8 |AB|90|00| 00 |00 |00 | 00| OO
PDO > PDO consumer
producer (CAN-8x23)
COB-ID : 0x201
L : 8
PDO-msg : AB 90 00 00 00 00 00 00
Step 19. The first TXPDO will not be transmitted immediately even if the DI
value is changed according to the character of the transmission type 0. In
addition, the SYNC message is needed to trigger the action of the first TxPDO.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5|4|3|2|1]|0 o|1|2| 3| 4|5 /|6 |7
o|o|o|1|0|l0|0O|O|O|O|O| O O |00|00|00| 00 |00 |00 | OO0 | OO
SYNC > SYNC consumer
producer (CAN-8x23)
COB-ID : 0x80
Step 20. After transmitting the SYNC object, the 1st TxPDO is triggered, and
users can receive the 1st TxPDO from CAN-8423.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5|4(3|2|1]|0 o|1]2|3 | 4|5 |6 |7
o|o|1|1|0fl0|0O|O|O|O|1| O 2 |90|AB|00| 00 | OO | OO | OO | OO
PDO < PDO producer
consumer (CAN-8x23)
COB-ID : 0x181
L : 2

PDO-msg : 90AB 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 121

Step 21. Users can send the SYNC message again.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5(4|3]2|1]|0 o|1(2]| 3| 4 | 5| 6 |7
0(0|0Oj2|0O|O|0O|O]|O}jO|O]| O 0O |00Oj0OO|OO| OO | OO | OO | OO | OO
SYNC > SYNC consumer
producer (CAN-8x23)
SYNC . 0x80
COB-ID

Step 22. Nothing happened because the DI values were not changed. This is
the main difference between transmission type 0 and 1. (Under the
transmission type 1, the TxPDO is always transmitted no matter whether the
DI values are changed or not, when the CAN-8423 receives the SYNC object.)

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 122

® Transmission Type 3 for the first TxPDO

Step 23. Users can set the transmission type of the first TxPDO to 3.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0| 1] 2 3 4 5 6 7
1(1/0|0|0|0|0O|0O]|O 0 8 |2F|00|18| 02 | 03 | OO | OO0 | OO
. SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 3
e 1
S 1
m 00 18 02
d 03 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|12 3 4 5 6 7
1(0(1|12|0|0|0|0]|O 0 8 |60|00|18| 02 | OO | OO | OO | OO
SDO server

SDO client <

SCS
m

3
00 18 02

(CAN-8x423)

Step 24. Users can change the DO value of the 1-8057 to be OXCDEF by using
the first RxPDO.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

123

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5|4|3|2|1]|0 o| 1|23 | 4|5 |6 |7
o|[1|0|0|0OfO|O|O|O|O|1| O 8 |EF|CD|00| 00 | 00 | 00 | 00 | 00
PDO PDO consumer
producer (CAN-8x23)
COB-ID : 0x201
L : 8
PDO-msg EF CD 00 00 00 00 00 00
Step 25. The SYNC message has to be transmited in 3 times according to the
character of transmission type 3.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5|4|3|2|1]|0 o|1|2| 3| 4|5 /|6 |7
o|o|o|1|0fl0|0O|O|O|O|O| O O |00|00|00| 00 |00 |00 | OO0 | OO
SYNC » SYNC consumer
producer > (CAN-8x23)
COB-ID : 0x80
Step 26. After finishing the transmission of the three SYNC objects, the first
TxPDO will be triggered, and users will receive the first TXPDO from
CAN-8423.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5|4(3|2|1]|0 0|1 |2| 3| 4|5]|6]|7
o|o|1|1|0fl0|0O|O|O|O|1| O 2 |EF|CD|00| 00 | 00 | 00 | 00 | 00
PDO < PDO producer
consumer (CAN-8x23)
COB-ID : 0x181
L : 2
PDO-msg EF CD 00 00 00 00 00 00
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 124

® Transmission Type 252 for the first TXPDO

Step 27. Users can set the transmission type of the first TxPDO to 252.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0| 1] 2 3 4 5 6 7
1(1/0|0|0|0|0O|0O]|O 0 8 |2F|00|18| 02 | FC | 00 | OO | OO
i SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 3
e 1
S 1
m 00 18 02
d FC 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|12 3 4 5 6 7
1(0(1|12|0|0|0|0]|O 0 8 |60|00|18| 02 | OO | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 00 18 02
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 125

Step 28. Users can change the DO value of the 1-8057 to be 0x1234 by using
the first RxPDO.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5]4|3|2|1]|0 Ol 1|2 3 4 5 6 7
oji1(0(0j0O|jO0O|OjOj0O|O|21| O 8 |34(|12,00| 00 | 00 | OO | OO | OO
PDO PDO consumer
producer (CAN-8x23)
COB-ID : 0x201
L . 8

PDO-msg : 341200 00 00 00 00 00

Step 29. The fist TXPDO will not be transmitted immediately according to the
transmission type 252. Meanwhile, it will send the RTR message of the first
TxPDO.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2]|1]|0 Ol 1|2 3 4 5 6 7
o|o|1|1|0|0|0OfO|O|O|1] 1 O |00(00(00| 00 |00 | OO | OO | OO
PDO > PDO producer
consumer (CAN-8x23)
COB-ID : 0x181

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 126

Step 30. The feedback DI values are out-of-date. (Users can see the LEDs
status on the 1-8053 to confirm the practical DI values).

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5[4|3|2|1|0 0o(1](2| 3| 4|5]| 6|7
0O|O0|1|1|0|0|0OfO|O|O|2| O 2 |34]12|00| 00 | 00 | 00 | OO | OO
PDO < PDO producer
consumer (CAN-8x23)
COB-ID : 0x181
L .2
PDO-msg : 341200 00 00 00 00 00
Step 31. Transmit a SYNC message.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5[4|3|2|1|0 o(1](2| 3| 4|5]| 6|7
o|ojo|1|0|0O|lO|O|O|O|O| O O |00|00|00| OO0 |00 |00 | OO0 | OO
SYNC > SYNC consumer
producer (CAN-8x23)
COB-ID : 0x80

Step 32. Users can send the RTR message of the first TXPDO again.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5|4|3|2|1]|0 o|1|2| 3| 4|5 |6 |7
0O|0|1|1|0|0|O|O|O|O|1]| 1 0O |00|00|00| 00 | OO | 00 [OO | 0O
PDO > PDO producer
consumer (CAN-8x23)
COB-ID : 0x181

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 127

Step 33. The feedback DI values will be the real DI values.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
109|187 5(4(3|2 0o|1]|2 3 4 5 6 7
0|0f1]|1 o|0|0f|oO 0 2 |34|12|00| 00 | OO | OO | OO | 00
PDO PDO producer
consumer (CAN-8x23)
COB-ID 0x181
L 2
PDO-msg 34 12 00 00 00 00 00 00
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 128

® Transmission Type 253 for the first TXPDO
Step 34. Users can set the transmission type of the first TxPDO to 253.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 oO|1]|2]| 31| 4 |5]| 6
i1(1/0|0|0|0O|O|O|lO|O]|2]| O 8 |2F|00|18| 02 | FD | 00 | OO
) SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 3
e 1
S 1
m 00 18 02
d FD 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0| 1] 2 3 4 5 6
1(0(12j12j0|0|0|O0O|O|O]|1]| O 8 |60(00|18| 02 | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS . 3
m : 001802

Step 35. Users can change the DO value of the 1-8057 to be 0x5678 by using
the first RxPDO.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7(6|5|4(3[|2|1]|0 0O|1|2| 3| 4|5]| 6
o|1/0|0|0O|0O|O|O|O|O|1] O 8 |78|56(00| 00 | 00 | OO | OO
PDO > PDO consumer
producer (CAN-8x23)
COB-ID . 0x201
L . 8

PDO-msg : 7856 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 129

Step 36. According to the transmission type 253, only the first TXPDO can be
transmitted when receiving the RTR message. So, users can send the RTR
message to get DI values. Then, the CAN-8423 will reply with the 1-8053 digital

input status.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5[4|3[2|1]0 0o|1]|2 3 4 5 6 7
0|0j12|1|0|0O|0O|0O|0O|Of2]| 12 0O |O0O|0O0O|0O0| OO | OO | OO | OO | OO
PDO PDO producer
consumer (CAN-8x23)
COB-ID » 0x181
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|87|6|5[4|3[|2|1]0 0o|1]|2 3 4 5 6 7
ojofi1f1j0|j0|j0j0j0|0|12}| O 2 | 78|56 00| OO | OO | OO | OO | OO
PDO PDO producer
consumer (CAN-8x23)
COB-ID : 0x181
L C 2
PDO-msg 78 56 00 00 00 00 00 00
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 130

Step 37. Set the transmission type of the 1st TxPDO to 255 to finish the test.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5[4|3|2 0 1 2 3 4 5 6 7
l1|1|/{0|0|0|0O|0OfO]|O 0 8 2F 00 |18 | 02 | FF | 00 00 00
_ SDO server
SDO client >
(CAN-8x23)
ccs 1
n 3
e 1
S 1
m 00 18 02
d FF 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5[4|3|2 0 1] 2 3 4 5 6 7
1|/0|1|1|0|0|0OfO0O]|O 0 8 60 |[00|18| 02| 00 | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 00 18 02
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 131

® Dynamic PDO Mapping for DI/AI/DO/AO Channels

Step 38. Users can use the 5th TXxPDO to create a new PDO communication
with PDO COB-ID 0x182, which is useless for the CAN-8423. Before setting
the COB-ID of a PDO, users have to check the bit 31 of the COB-ID first. Only
the COB-ID with the value 0 on the bit 31 can be changed. So the COB-ID can
be configured directly according to the 5th TxPDO is invalid.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0| 1] 2 3 4 5 6 7
i1(1/0|0|0|0O|O|O|O|O]|2]| O 8 |[23|05|18| 01 | 8 | 01 | 00 | OO
i SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 0
e 1
S 1
m 051801
d 82 01 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0|12 3 4 5 6 7
1(0(12j12j0|0|0|O0O|O|O]|1]| O 8 |60(05|18| 01 | 00O | OO | OO | OO
. SDO server
SDO client <<
(CAN-8x23)
SCS : 3
m : 051801

Step 39. Users can create a new PDO mapping object for the 5th TxPDO.
Before getting the device objects into the index 0x1A05, users have to check
the value of the index 0x1A05 with sub-index 00. If the value is not equal to 0O,
any modification will be rejected. In this case, it is necessary to have the value
in 0. Therefore, users have to fill the DIO~DI7 of the [-8053 into the index
0x1A05 with sub-index 01.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 132

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9 (8|7 5143|210 0 1 2 3 4 5 6 7
1(1(0(0 0ojo0ojojojoj1| O 8 |23|05|1A| 01 |08 | 01| 00 | 60
) SDO server
SDO client
(CAN-8x23)
ccs 1
n 0
e 1
S 1
m 05 1A01
d 08 01 00 60

The value “08 01 00 60" means the mapped object is stored in the
index 0x6000 with sub-index O1. It is an 8-bit data unit. Users can
check this object in the Standardize object mapping table described
above. It is mapped according to the DIO~DI7 of the I-8053.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7 5/4(3|2|1|0 0|1 2 3 4 5 6 7
1/0|1]|1 o|0o|l0|j0OjO|1]| O 8 |60|05|1A| 01| 00 | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 05 1A01

Step 40. According to the purposes, users have to fill the DI8~DI15 of the

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

133

[-8053 and AIO of the 1-87017 into the index 0x1A05 with sub-index 02 and 03
respectively.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|11 2 3 4 5 6 7
1(1/0|0|0|0|0O|0O]|O 0 8 |23|05|1A| 02 | 08 | 02 | 00 | 60
. SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 0
e 1
S 1
m 05 1A 02
d 08 02 00 60
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|1 2 3 4 5 6 7
1(0(1|1|1|0(1|1|1 0 8 |60|05|1A| 02 | 00O | OO | OO0 | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 05 1A 02
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 134

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9 (8|7 5143|210 0 1 2 3 4 5 6 7
1(1(0(0 0ojo0ojojojoj1| O 8 |23|05|1A| 03 |10 | 01| 01 | 64
) SDO server
SDO client
(CAN-8x23)
ccs 1
n 0
e 1
S 1
m 05 1A 03
d 1001 01 64

The value “10 01 01 64” means that the mapped object is stored in the
index 0x6401 with sub-index O1. It is a 16-bit data unit. User can
check this object in the Standardize object mapping table described
above. It is mapped according to AlO of the 1-87017. In CAN-8123/
CAN-8223/CAN-8423, all analog channels are presented by 16-bit
value.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7 5/4(3|2|1|0 0|1 2 3 4 5 6 7
1/0|1]|1 o|0o|l0|j0Oj0O|1]| O 8 |60|05|1A| 03 | 00O | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 05 1A03

Step 41. In order to use this PDO mapping object normally, the value of the

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 135

index Ox1AO05 with sub-index 00 must be changed to 3. The value 3 means
there are 3 objects mapped to the 5th TxPDO. They are the index 0x6000 with
sub-index 01, index 0x6000 with sub-index 02, and index 0x6401 with
sub-index 01.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0| 1] 2 3 4 5 6 7
1(1/0|0|0|0|0O|0O]|O 0 8 |2F|05|1A| 00 | O3 | OO | 00 | OO
i SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 3
e 1
S 1
m 05 1A00
d 03 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|1 2 3 4 5 6 7
1(0(1{12]0]0]0]|0]|O0 0 8 |60[05|1A| 00 | OO | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)

SCS
m

3
05 1A 00

Step 42. Users can use the 5th RxPDO to create a new PDO communication

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

136

with PDO COB-ID 0x202, and create the RxPDO mapping object in the index
0x1605 because the COB-ID 0x202 is not available for the CAN-8423. This
procedure is similar to the steps 37 to 40.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|12 3 4 5 6 7
1(1/0|0|0|0|0O|0O]|O 0 8 [23|05|14| 01|02 | 02| 00 | OO
i SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 0
e 1
S 1
m 051401
d 02 02 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|12 3 4 5 6 7
1(0(1|12|0|0|0|0]|O 0 8 |60|05|14| 01| 00 | OO | OO0 | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 051401
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 137

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5(|4|3]|2 0 1 2 3 4 5 6 7
1(1{0{0|0|0|0]0O]|O 0 8 |23|05|16| 01 | 08 | 01 | OO | 62
) SDO server
SDO client
(CAN-8x23)
ccs 1
n 0
e 1
S 1
m 0516 01
d 08 01 00 62

The value “08 01 00 62" means the mapped object is stored in the
index 0x6200 with sub-index O1. It is an 8-bit data unit. Users can
check this object in the Standardize object mapping table described
above. It is mapped to the DO0~DQ?7 for 1-8057.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5[4|3|2 0| 1] 2 3 4 5 6 7
1/0(1|1|0|0|0]|0]O 0 8 |60|05|16| 01 | 00 | OO | OO | 00
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 0516 01
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 138

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0|12 3 4 5 6 7
1(1/0|0|0|0|0O|0O]|O 0 8 |23|05|16| 02 | 08 | 02 | 00 | 62
i SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 0
e 1
S 1
m 0516 02
d 08 02 00 62
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0| 1] 2 3 4 5 6 7
1(0(1|1|0|0|0|0]|O 0 8 |60|05|16| 02 | OO | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 0516 02
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 139

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9|8|7|6|5(|4|13|2|1|0 0 1 2 3 4 5 6 7
1(1/0(0|0|0|O0O|O]|O|O]|1]| O 8 |23|05|16| 03 |10 | 01 | 11 | 64
) SDO server
SDO client
(CAN-8x23)
ccs 1
n 0
e 1
S 1
m 05 16 03
d 1001 11 64

The value “10 01 11 64” means the mapped object is stored in the
index 0x6411 with sub-index O1. It is a 16-bit data unit. Users can
check this object in the Standardize object mapping table described
above. It is mapped according to the AOO of the [-8024.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0|12 3 4 5 6 7
1/0|1|1(0|0|0O|OfO]|O|2]| O 8 |60|05|16| 03 | OO | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 0516 03

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 140

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0| 1] 2 3 4 5 6 7
1(1/0|0|0|0|0O|0O]|O 0 8 |2F|05|16| 00 | 03 | OO | 00 | OO
. SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 3
e 1
S 1
m 0516 00
d 03 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0| 1] 2 3 4 5 6 7
1(0(1|1|0|0|0|0]|O 0 8 |60|05|16| 00 | OO | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 0516 00
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 141

Step 43. Transform the DO0~DO15 of 1-8057 and AOOQ of 1-8024 to be 0x90AB
and OV respectively.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5(4|3|2|1]|0 0 1|2 3 4 5 6 7
0(1/0/0|0|0j0O]|O|O|2|0O0]| O 8 |AB|9 |00 | 00 | OO | OO | OO | OO
PDO > PDO producer
consumer (CAN-8x23)
COB-ID : 0x202

PDO-msg : AB 90 00 00 00 00 00 00
The first two bytes are assigned to the value Ox90AB of the
DOO0~DO15 of the 1-8057. The 3rd and 4th bytes are assigned to the
value 0x0000 for the AOO of the 1-8024. Total bytes of this PDO
message are 4.

Step 44. Users will receive the 1st TxPDO and 5th TxPDO simultaneously
because the DI values have been changed.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4(3|2|1|0 0O|1|2| 3| 4|5 |6 |7
o|o|1|1|0|0|0O|O|O|O|1] O 2 |AB|90 (00| 00 |00 |00 | OO | OO0
PDO < PDO producer
consumer (CAN-8x23)
COB-ID : 0x181
L .2

PDO-msg : AB 90 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 142

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5(4|3|2|1]|0 0 1|2 3 4 5 6 7
0|(0j1j1|0|0j0O]jOf1|0|2| O 4 |AB |90 |FF| FF | 00 | 00 | OO0 | OO
PDO < PDO producer
consumer (CAN-8x23)
COB-ID : 0x185
L 4

PDO-msg : AB 90 FF 3F 00 00 00 00
The first two bytes are assigned to the value Ox90AB for the
DIO~DI15 of the 1-8053. The 3rd and 4th bytes are assigned to the
value OXFFFF for the AIO of the 1-87017. After transferring, the input
value of the AIO is -0.001V.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 143

5.3 EMCY Communication Set

53.1 EMCY COB-ID Parameter

The EMCY COB-ID is similar to the PDO COB-ID. It can be a default value
or can be the value defined by users via SDO communication methods. This
COB-ID is stored in the object 0x1014, and the data format is shown in the
following table. Before using the EMCY mechanism, bit 31 of the EMCY
COB-ID needs to be confirmed.

Bit Number | Value Meaning
31 (MSB) 0 EMCY exits (EMCY is valid)
1 EMCY does not exist (EMCY is not valid)
30 0 reserved (always 0)
29 0 11-bit ID (CAN 2.0A)
1 29-bit ID (CAN 2.0B)
28-11 0 If bit 29=0
X If bit 29=1: 28-11 bits of 29-bit COB-ID
10-0 (LSB) X 10-0 bits of COB-ID

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

144

5.3.2 EMCY Communication

The EMCY message is triggered when some internal error occurs. After
the transmission of one EMCY message, the object with index 0x1003 will
record this EMCY event. Therefore, users can track the error’s occurrences.
The CAN-8x23 supports the maximum of 5 records stored in the index 0x1003
object. The sub-index 1 of this object will store the last EMCY event, and
sub-index 5 will record the most previous EMCY event. The EMCY
communication set is given below.

EMCY Producer

(CAN-8123/CAN-8223/ EMCY Consumer
CAN-8423)
| 1-bit COB-ID {bit)|RTR |Len 8-byte Data (byte)
H~10 07 . .
—I'-request —— COB-11Y 0|5 EMCY-msg - —Flndlcatmn

indication

—_—
indication
—_—

Emergency Object Protocol

COB-ID . the EMCY COB-ID
The EMCY COB-ID can be defined by users. This situation is
similar to the PDO COB-ID. The default value is 4-bit function
code “0001” with 7-bit node ID.
EMCY-msg : record the type or the class of the occurrence error

The data format of the emergency object data complies with the structure
bellows.

Byte 0 1 2 3 4 5 6 7

Content | Emergency Error Code | Error register | Manufacturer specific Error Field

Each bit on the error register is defined as follows. Only the CAN-8x23
supports bit 0, bit 4 and bit 7.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 145

Bit | Meaning
generic error

current

voltage

temperature

communication error (overrun, error state)
device profile specific

reserved (always 0)

~N~Nojol~lWOW|NIFL|O

manufacturer specific

The emergency error codes and the error register are specified in the
following table.

Emergency Error Manufacturer Specific Error | Description

Error Code Register | Field

High | Low First Two Last Three

Byte | Byte Byte Byte

00 00 00 00 00 00 00 00 Error Reset or No Error

10 00 81 01 00 00 00 00 CAN Controller Error Occur

50 00 81 02 00 00 00 00 EEPROM Access Error

50 00 81 03 00 00 00 00 COM Port Access Error

81 10 11 04 00 00 00 00 Soft Rx Buffer Overrun

81 10 11 05 00 00 00 00 Soft Tx Buffer Overrun

81 10 11 06 00 00 00 00 CAN Controller Overrun

81 30 11 07 00 00 00 00 Lift Guarding Fails

81 40 11 08 00 00 00 00 Recover from bus off

82 10 11 09 00 00 00 00 PDO Data length Error

FF 00 80 O0A 00 00 00 00 Request to reset Node or
communication

After producing the EMCY message, the emergency object data will be saved
to the object with index 0x1003, and the error register of the emergency object
data will be mapped to object 0x1001. Therefore, users can use these two
objects to view what happened in the CAN-8x23 and check the error history.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 146

EMCY Communication Example

Before starting the example, CAN-8423 with 1-8057, 1-8053, 1-8024 and
[-87017 slot module are needed. Here, the same hardware configuration
shown in the PDO example is used for the EMCY communication.

Step 1. In order to generate the emergency event, it's necessary to send the
data to RxPDO1 with data length 1.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5|4|3|2|1]|0 o|1|2| 3| 4|5 /|6 |7
o|[1|0|0|OfO|O|O|O|O|1| O 1 |00|00|00| 00 | 00 | 00 | 00 | 00
PDO > PDO producer
consumer (CAN-8x23)
COB-ID : 0x201
L 1
PDO-msg : 00
Step 2. Then, the CAN-8423 will reply to an emergency message based on the
PDO data length of TxPDO1 doesn’t correspond to the value defined in the
PDO mapping object.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9/8|7|6|5|4|3|2|1]|0 o|1|2|3]| 4|5]| 6|7
o|o|jo|1|0fl0|O|O|O|O|1| O 8 [10/82|11| 09 | 00O | 00O | 00 | OO
EMCY < EMCY producer
consumer (CAN-8x23)
COB-ID . 0x81

EMCY-msg : 10821109 00 00 00 00

The first two bytes “10 82” are for the emergency error codes. The
3rd byte “11” is for the error register, i.e. the CAN-8423 has either a
communication or a generic error. The last five bytes “09 00 00 00
00” are for the manufacturer specific errors. This emergency
message means that the data length of TxPDO doesn’t

correspond to the value defined in the PDO mapping object.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 147

Step 3. After recognizing the 0x1003 object with sub-index 01, users will get
emergency error codes of the emergency object data recording in this object.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0|12 3 4 5 6
i1(1/0|0|0|0O|O|O|lO|O]|2]| O 8 [40(03|10| 01 | OO | OO | OO
i SDO server
SDO client
(CAN-8x23)
ccs D2
m 031001

Step 4. The CAN-8423 will reply to the ending message.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0| 1] 2 3 4 5 6
1(0(1|1|0|0|0O|O|O|O]|2]| O 8 |43|03|10| 01 | 10 | 82 | 09
. SDO server
SDO client <
(CAN-8x23)
SCS 2
n 0
e 1
S 1
m 031001
d 10 82 09 00

Step 5. Users have to check the object 0x1001, and make sure that the
communication and generic errors on the error register are indicated.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9|8|7|6|5(|4|13|2|1|0 0 1 2 3 4 5 6
1(12/0(0|0|0|O0O|O|O|O]|1]| O 8 |[40|01|10| 00 | OO | OO | OO
) SDO server
SDO client >
(CAN-8x23)
ccs D2
m 011000

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 148

Step 6. The communication and generic errors on the error register are

indicated in the received message.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9(8|7|6|5|4(3|2|1]|0 o|1|2|3 | 4|5]| 6|7
1/0f1|1]|0|l0|0O|O|0O|O|1| O 8 |4F|01|10| 00 | 11 | 00O | 0O | 00
_ SDO server
SDO client <
(CAN-8x23)
scs 2
n 3
e 1
S 1
m 011000
d 11 00 00 00
Step 7. Users can send the data to RxPDO1 with data length 2. Then, the
EMCY message containing the error reset information will be received.
Because the value of TxPDO is the same with the previous one, the DO
channels will not change.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(/9(8|7|6|5|4(3|2|1]|0 o|1|2| 3| 4|5 |6 |7
o[1]|0|0|0O|O0|O|O|O|O|1| O 2 |00|00|00| 00 |00 |00 | OO | OO
PDO > PDO producer
consumer (CAN-8x23)
COB-ID : 0x201
L D2

PDO-msg : 00 00 00 00 00 00 00 00

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 149

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10|{9(8|7|6|5|4|3|2|1]|0 0(1|2)| 3| 4|5 |6 |7
0O|0jO|l1|0|O|O|O|O|O]|2]| O 8 |(00|00|0O0| OO | OO | OO | OO | OO
NMT slaver
NMT master <
(CAN-8x23)

EMCY-msg : 00 00 00 00 00 00 00 00
The data “00 00 00 00 00 00 00 00” are for the error reset EMCY
message, i.e. CAN-8423 has no error now.

Step 9. Users have to check the index 0x1003 with sub-index 01 again. Then,
the error reset emergency code should be recorded.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0| 1] 2 3 4 5 6 7
i1(1/0|0|0|0O|O|O|O|O]|2]| O 8 |[40|03|10| 01 | OO | OO | OO0 | OO
. SDO server
SDO client
(CAN-8x23)
CCSs . 2
m 031001
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0| 1] 2 3 4 5 6 7
1({0(1|1|0|0|0O|O|O|O]|2]| O 8 |[43|03|10| 01 | 00 | OO | OO0 | OO
) SDO server
SDO client <
(CAN-8x23)
(of o1 1
n 0
e 1
S 1
m 031001
d 00 00 00 00

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 150

Step 10. Users have to check the index 0x1003 with sub-index 02. Then, the
received emergency error code had been recorded in the emergency object

data.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5(|4|3]|2 0 1 2 3 4 5 6 7
1(1{0{0|0|0|0]0O]|O 0 8 40|03 |10| 02 | 00O | OO | OO | OO
) SDO server
SDO client
(CAN-8x23)
CCS 2
m 031002
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5(|4|3]|2 0 1 2 3 4 5 6 7
1/0/1/1|0|0|0]0]O 0 8 |43|03|10| 02| 10 | 82 | 09 | 00
. SDO server
SDO client <<
(CAN-8x23)
ccs 1
n 0
e 1
S 1
m 031002
d 10 82 09 00
Step 11. Users have to confirm the error register stored in index 0x1001. The
value should be 0 now.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5|4|3]|2 0 112 3 4 5 6 7
1/11/0/0|l0|0|0]0]O 0 8 40 |01|10| 00 | 00 | OO | OO 00
) SDO server
SDO client >
(CAN-8x23)
ccs 2
m 011000

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

151

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5[4|3[2|1]0 0 112 3 4 5 6 7
i1/0/1|1|0fl0|0O|O0O|O|O|1]| O 8 4F 01|10 | OO | OO | OO | OO |00
_ SDO server
SDO client <«
(CAN-8x23)
ccs 1
n 2
e 1
S 1
m 01 10 00
d 00 00 00 00
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 152

5.4 NMT Communication Set

5.4.1 Module Control Protocol
The NMT communication set can be applied for changing the NMT slave
status. The following figure shows how to change the different NMT statuses

for the CAN-8x23.

Start Remote Node Protocol

NMT Master NMT Slave
I 1-bit COB-ID (bit){R TR |Len 8-byte Data (byte) . .
10-7 6-0 0 | R I Indication
CAN-8x23
request e 0000 | 0000000 | O |8 | cs=1 | NodelD | MNotuse {—--)
indication
R —
indication
————
Start Remote Node Protocol
cs : NMT command specified
1: start
Node ID : the node ID of the NMT slave device
Stop Remote Node Protocol
NMT Master NMT Slave
Indication
1 1-bit COB-ID (bit)|RTR [Len| #-byte Data (byte) (CAN-8123/
10-7 f-A) 7] | 1.7 CAN-B8223/
Luem-—h oooo | ooooooo | 0 | & | cs=2 | NodelD | Notuse _..M”}
indication
—
indication
———

Stop Remote Node Protocol

cS : NMT command specified
2: stop
Node ID : the node ID of the NMT slave device

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 153

Enter Pre-Operational Protocol

NMT Master NMT Slave
Indication
1 1<hit COB-1D (bit)|RTR |[Len A-byte Data (byte) {CAN'B123“’
10~7 60 0 i 7 CAN-8223/
request]] CAN-8423)
—_— el 0000 | 0000000 | O | 8 | es=128 | Node ID | Notuse i

indication

B —
indication
—_—

Enter Pre-Operational Protocol

cS : NMT command specified
128: enter PRE-OPERATIONAL
Node ID : the node ID of the NMT slave device

Reset Node Protocol

NMT Master NMT Slave
Indication
[1-bit COB-ID {bit)|[RTR |Len 8-byte Data (byte) (CAN-8123/
10-7 6-0 0 1 37 CAN-8223/
wﬁ —| Q000 | Q000000 0 8] es=129 | Node D | Not use —- Mzﬁt]

indication
indication
B e

Reset Node Protocol

cs : NMT command specified
129: Reset_Node
Node ID : the node ID of the NMT slave device

Reset Communication Protocol

NMT Master NMT Slave
Indication
[1-bit COB-ID {bit)|[RTR |Len 8-byte Data (byte) (CAN-8123/
10-7 6-0 0 1 37 CAN-8223/
wﬁ —| O000 | OOO0000 0 8 | es=130 | Node 1D | Not use —- Mzﬁt]

indication
indication
B e

Reset Communication Protocol

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 154

Node ID

Cs

NMT command specified

130: Reset_ Communication

Module Control Protocol Example

would be...

Stepl. Turn off the CAN-8423.

. the node ID of the NMT slave device

If the CAN-8423 node ID is set to 5 as an example, the following steps

Step2. Then, turn it on. After the initialization, the CAN-8423 will automatically
enter the Pre_Operational state. Users will note the RUN LED flashing twice
per second.

Step3. Users can send the NMT module control protocol, and control the

CAN-8423 to enter the operational state.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9(8|7|6|5[4|3|2 0| 1] 2 3 4 5 6 7
0|0j0O|0O|O|OfO|0O]|O 0 8 |01|/05|00| 00 | 00 | OO | OO | OO
NMT slave
NMT master
(CAN-8x23)
CSs 1
NodeID : 5
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 155

5.4.2 Error Control Protocol

Error Control Protocol is a kind of the solution to check whether the
CANopen device is still alive or not. And its related objects include 0x100C and
0x100D. The 0x100C is the guard time, and the 0x100D is the life time factor.
The node life time is the guard time multiplied by the life time factor. The Node
Guarding timer of the CAN-8x23 will start to count after receiving the first RTR
message for the guarding identifier. The communication set of the Error
Control protocol is displayed below.

NMT Slaver
NMT Master (CAN-B123/CAN-8223/
CAN-8423)
I 1-bit COB-ID (bit)|RTE [Len B-byte Data (byte)
107 [07
1110 | Node 11 | 1] reserved e .
request | ™~a] indication
11-bit COB-1D (bit)|RTR [Len K-byte Data (byte)
confirmation 07 Py 0 =7 response
- = -
\ ! G-} /
1110 | NodeID | 0 |8 [N x
Node Guarding Protocol
t . toggle bit

The value of this bit will be alternatively changed between two
consecutive responses from the NMT slave. After the node
Guarding protocol becomes active, the value of the toggle-bit of
the first response will be 0.

S . the state of the NMT Slave
4: STOPPED
5: OPERATIONAL
127: PRE-OPERATIONAL

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 156

Error Control Protocol Example

The default EMCY function code and the node ID 1 for the CAN-8423 are
used as an example on the error control protocol. The steps will be as follows.

Step 1. Turn off the CAN-8423. Then, turn it on. The CAN-8423 will be in the
pre_operational state.

Step 2. Users can set the guard time value to 250. This value will be stored in

index 0x100C with sub-index 00.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7 51413210 0 1 2 3 4 5 6 7
1(1/0]0 ojo0j0fl0|0|2| O 8 |2B|0C|10| 00 | FA | OO | OO | OO
_ SDO server
SDO client >
(CAN-8x23)
ccs 1
n 2
e 1
S 1
m 0C 1000
d FA 00 00 00
Step 3. The CAN-8423 will reply with the ending message.
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8 |7 5/4|13(2|1]|0 0 1 2 3 4 5 6 7
10|11 o|jo0ojo0ojojo|1| O 8 |60(0C|10| 00O | OO | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
scs 3
m 0C 1000
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 157

Step 4. Users can set the life-time factor value to 4. This value will be stored in
the index Ox100D with sub-index 00. Then, the ending message from

CAN-8423 will be received.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0 1|2 3 4 5 6 7
1(1/0|0|0|0|0O|0O]|O 0 8 |2F|0OD|10| 00 | 04 | OO | OO | OO
i SDO server
SDO client
(CAN-8x23)
(ofofS) 1
n 3
e 1
S 1
m 0D 1000
d 04 00 00 00
11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5|4|3]|2 0| 112 3 4 5 6 7
1(0(1|12|0|0|0|0]|O 0 8 |60|0D|10| OO0 | OO | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS 3
m 0D 1000
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 158

Step 5. Users can send the node guarding protocol to start the mechanism of
the node guard. The life time here is equal to 1000 ms (guard time * life time
factor =250*4=1000),

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 o|1}2| 3| 4|5 |6 |7
i1(1(1|0|0|0|O|O|O|O]|2]| 1 O |(00|0O0O|0O0O| OO | OO | OO | OO | OO
NMT slaver
NMT master
(CAN-8x23)

COB-ID : 0x701

Step 5. Then, users will receive the message, recording the NMT state of the
CAN-8423. For the reason that life time is equal to 1000 ms (guard time * life
time factor =250*4=1000), users will transmit the node guarding protocol
again.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5[4|3|2|1|0 o(1(2|3]| 4|5 |6 |7
1|{1|1|0/0|0|lO|lO|O|0O|1]| O 8 |7F|00|00| 00 | OO | OO | 00 | OO
NMT slaver
NMT master <
(CAN-8x23)
COB-ID : 0Ox701
t S
S 7F
The value 7F means that the CAN-8423 is in the NMT pre_operational
state.

Step 6. Since the life time is equal to 1000 ms (guard time * life time factor
=250*4=1000), users will transmit the node guarding protocol again.

Step 7. If the transmission is not available, an error event will be triggered, and
an EMCY message for guarding failure will be received. Moreover, all values
from the output channels will be changed according to index 0x6206, index
0x6207, index 0x6443, and index 0x6444.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 159

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
109 |87 51413 0|1]2 3 4 5 6 7
000|121 0j{0]|0 0 8 308111 | 07 | OO | OO | OO | QO
EMCY EMCY producer

consumer (CAN-8x23)

EMCY-msg 30 81 11 07 00 00 00 00

The first two bytes “30 81" are for the emergency error code. The
3rd byte “11” is for the error register. The last five bytes “07 00 00
00 00" are for the manufacturer specific error values. This
emergency message indicates a life guard error.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

160

5.5 Special Functions for CAN-8x23

Analog Modules Input/Output range Entry

The CAN-8x23 Manufacturer in the Specific Profile Area defines some
entries, which are useful for the analog input/output range. On the other hand,
the object with index 0x2004~0x200B will map to the input/output range for the
slot 0 to 8, and the entry is dynamic. For the entries information in the
Manufacturer Specific Profile Area, it will be described as follows. If users use
the CAN-8123, there is only one entry, “0x2004” provided. If users the use
CAN-8423, there are 4 entries, “0x2004”, “0x2005”, “0x2006” and “0x2007”
provided. And each index of these entries only has two subindex, such as
subindex 00, and subindex 01.

The subindex 00 is used to distinguish in which one slot the module
inserted. If there is no module or digital module inserted in the slot, the
subindex 00 will indicate a number 0. If a slot has been inserted by any module,
the subindex 00 will indicate a number more than one. Furthermore, if a slot
module supports 4 analog output channels, there should be 4 subindexes, “01”,
“02”, “03”, and “04”. They have different, but simply functions, for example the
subindex 01 records the channel 1 output range code. The subindex 02
records the channel 2 output range code, and so forth. If users use CAN-8x23
without any slot module, no entry will appear in the Manufacturer Specific
Profile Area.

For example, there are 4 slot modules inserted in the CAN-8423, such as
[-8057, 1-8053, 1-8024 and 1-87017, and they are respectively inserted in the
slot 0, slotl, slot2 and slot3. Then, CAN-8423 will automatically create the
following 4 entries, index 0x2004, 0x2005, 0x2006 and 0x2007. The values of
the subindex O for the first two entries, 0x2004 & 0x2005, are 0 because the
first two slot modules belong to the digital /O modules, and the values for the
last two entries, 0x2006 & 0x2007, are 1. Moreover, the values of subindex 1
for 0x2006 are 4 because of 4 analog output channels of [-8024. Under the
default situation, the values for the subindex 1 to 4 are 00. These values
indicate that all AO channel output ranges of the 1-8024 are -10V~+10V. The
values of subindex 1 for 0x2007 are 8 because of 8 analog input channels of
[-87017. Under the default situation, the values for the subindex 1 to 8 are 00.
These values indicate that all Al channel input ranges of the 1-87017 are
-10V~+10V. Users can refer to the appendix B for more detail information

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 161

about the input/output range of different analog 1/0 modules. In the following
paragraph, a simple example will be given. Please note that the hardware and
wire connection are the same as the situation used in the PDO example.

Stepl: Users can send the NMT message to set the NMT operational state on
the CAN-8423.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0O|1]2)| 3| 4| 5| 6
O|0jO0O|lO|O|O|O|O|O|O|O]| O 8 |(01(01|00| 00 | OO | OO | OO
NMT slave
NMT master
(CAN-8x23)
(ofS} 1
NodeID : 1

Step 2. Users can send the SDO message to confirm the output range value of
the 1-8024 AO channel 0.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0|12 3 4 5 6
i1({1/0|0|0|0O|O|O|O|O]|2]| O 8 |40|06|20| 01 | OO | OO | OO
. SDO server
SDO client >
(CAN-8x23)
ccs D2
m : 062001

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 162

Step 3. The CAN-8423 will reply with the output range. For example, when the
[-8024 is under the default situation, and the value is 0, the output range of the
1-8024 AO channel O will be -10V~+10V.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|/8|7|6|5|4|3]|2 o|1|2 |3 | 4|5 |6|7
1011 0|0|0]|O 0 8 |4F|06(20| 01 | 00 | OO | 00 | OO
_ SDO server
SDO client <
(CAN-8x23)
scs 2
n 3
e 1
S 1
m 06 20 01
d 00 00 00 00
Because of the n=3, only the 4th byte is valid. Therefore, the feedback
value is 00.

Step 4. Users can send the SDO message to confirm the input range value of

the 1-87017 Al channel O.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8 |7 51432 0| 1] 2 3 4 5 6 7
1(1(0]0 o|0|0f|oO 0 8 40|07 |20| 01 | 00 | OO | OO | 0O
. SDO server
SDO client >
(CAN-8x23)
ccs 2
m 07 2001
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 163

Step 5. The CAN-8423 will reply with the input range. For example when the
[-87017 is under the default situation, and the value is 0, the input range of the
[-87017 Al channel 0 is -10V~+10V.

11-bit COB-ID (bit)

Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 o|1|12)| 3| 4|5 |6 |7
i1(0(1|12|0|0|0O|O|O|O]|2]| O 8 |4F|07|20| 01 | 00O | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)

SCS

o 3 nw o >

R Rk WN

07 2001
00 00 00 00

Because of the n=3, only the 4th byte is valid. Therefore, the feedback

value is 00.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

164

Step 6. In order to output 7V to the AOO of the 1-8024, users must send the
PDO message by using the 2nd RxPDO.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7 5/4|13(2]1]0 Ol 1|2 3 4 5 6 7
0Oj12/1(0 o|0oj0ojo0j0|2| O 8 98|59 00| 00| 00| 00| 00| OO0
PDO PDO consumer
producer (CAN-8x23)
COB-ID 0x301
L 8
PDO-msg 98 59 00 00 00 00 00 00

The first two bytes are valid for AOO. The other bytes are for AO1 to
AQO3. And the output range of the 1-8024 is -10V~10V. According to
the transformation table stored in the appendix table, the 7V is
mapped to the 0x5998 by applying following equation.

7V - (-10V)
10V — (—-10V)
= 22936.75 ~ 22936 = 0x5998

HexValue = (J* (32767 — (-32768))+ (—32768)

The first two bytes of the PDO message will be filled in “98” and “59”.
For more details about how to transfer the value between the hex
and float, please refer to the section 6.3.

Step 7. Although the Al input value has been changed according the AO value,
the RxPDO will not automatically reply in the CAN-8423. Therefore, users
have to use the RTR message from the 2nd TxPDO to read back the Al value.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9 (8|7 514(3|2|1]0 0| 1|2 3 4 5 6 7
01|01 0/({0(0|0|0]|1 1 0 00|00 |00| OO | OO | OO | OO | OO
PDO PDO consumer
consumer (CAN-8x23)
COB-ID 0x281

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 165

Step 8. The feedback value for Al is 6.992V.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7 5/4|13(2]1]0 0|1 2 3 4 5 6 7
0|1]0]|1 ojo|ojojof1| O 8 |80 |59 |FD| FF | FD | FF | FD | FF
PDO PDO consumer
consumer (CAN-8x23)
COB-ID 0x281
L 8
PDO-msg 8059 FD FF FD FF FD FF

The feedback AIO value is 0x5980. Users have to transfer this value
to be a float one with the input range from -10V to +10V, and a hex
one with the input range from 0x8000 (-32768) to Ox7FFF (32767).
The value 0x5980 (22912) can be transferred by using the following
equation.

FloatValue = 22912 (~32768) *(10V —(-10V))+(-10V)
32767 —(-32768)

~ 6.992V

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 166

Step 9. Users can send the Rx SDO message to the CAN-8423 to access the
object entry with index 0x1400 and sub-index 02 stored in the communication
profile area. Here, users can also change the value of this object entry to 5. For
example, the node ID for the CAN-8423 is set to 1.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10({9|8|7|6|5(|4|13|2|1|0 0 1 2 3 4 5 6
1(1/0(0|0|0|O0O|O]|O|O]|1]| O 8 |2F|07|20| 01 | O1 | OO | OO
] SDO server
SDO client
(CAN-8x23)
ccs 1
n 3
e 1
S 1
m 07 2001
d 01 00 00 00

Step 10. The CAN-8423 will reply with the message to finish the data download.
Then, users can use upload methods mentioned before to read back the value
for confirmation.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10(9|8|7|6|5[4|3|2|1]|0 0|12 3 4 5 6
1(0(12j12j0|0|0|O0O|O|O]|1]| O 8 |60(07|20| 01 | OO | OO | OO
. SDO server
SDO client <
(CAN-8x23)
SCS o3
m : 072001

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 167

Step 11. Although the Al input value has been changed according the AO value,
the RxPDO will not automatically reply in the CAN-8423. Therefore, users
have to use the RTR message from the 2nd TxPDO to read back the Al value.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9|8|7|6|5]4|3|2|1]|0 Ol 1|2 3 4 5 6 7
oj12(0f1j0|0|0OjOj0O|O|1| 1 0O |00|00|00| OO | OO0 | OO | OO | OO
PDO > PDO consumer
consumer (CAN-8x23)
COB-ID : 0x281

Step 12. The feedback value for Al is 5V.

11-bit COB-ID (bit)
Data 8-byte Data (byte)
Func Code Node ID RTR
Length
10/9(8|7(6|5|4[3|2|1]|0 o123 | 4|5]| 6|7
o|1|0|1]|0|0O|O|O|O|O|1| O 8 |FF|7F|FF|FF | FD | FF | FF | FF
PDO < PDO consumer
consumer (CAN-8x23)
COB-ID . 0x281
L . 8

PDO-msg : FF7F FF FFFD FF FF FF
The feedback AIO value is 0x7FFF, i.e. this value is in max limit for
the range. The AIO value will still be 5V, even the input 7V is over the
max input range,

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 168

6 Object Dictionary of CAN-8x23

6.1 Communication Profile Area

The following tables are regarding each entry of the communication profile
area is defined in CAN-8x23. For the convenient purpose, all communication
entries are divided into several tables. They are “General Communication
Entries”, “RxPDO Communication Entries”, “RxPDO Mapping Communication
Entries”, “TxPDO Communication Entries”, and “TxPDO Mapping Communication
Entries”.

Please note that In the table header with “Idx”, “Sidx” and “Attr” represent
‘index”, “sub-index”, and “attribute” respectively. The sign “---” in the default field
means that the default is not defined or can be defined conditionally by the
firmware built in CAN-8x23. In the table, the number accompanying letter “h”

indicates that this value is in the hex format.

General Communication Entries

Idx Sidx Description Type Attr Default
1000h Oh | device type UNSIGNED 32 RO
1001h Oh | error register UNSIGNED 8 RO
1003h Oh | largest sub-index supported for UNSIGNED 8 RO Oh

“predefine error field”
1h | actual error (the newest one) UNSIGNED 32 RO
5h | actual error (the oldest one) UNSIGNED 32 RO
1005h Oh | COB-ID of Sync message UNSIGNED 32 RW 80h
1008h Oh | manufacturer device name VISIBLE_STRING RO CAN-8123/
CAN-8223/
CAN-8423/
CAN-8823/
1009h Oh | manufacturer hardware version VISIBLE_STRING RO
100AhN Oh | manufacturer software version VISIBLE_STRING RO
100Ch Oh | guard time UNSIGNED 16 RW 0
100Dh Oh | life time factor UNSIGNED 8 RW 0
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ---- 169

1010h Oh | largest sub-index supported for UNSIGNED 8 RO 3h
“store parameters”
1h | Save all parameter UNSIGNED 32 RW
2h | Save communication parameter UNSIGNED 32 RW
3h | Save application parameter UNSIGNED 32 RW
1011h Oh | largest sub-index supported for UNSIGNED 8 RO 3h
“‘restore parameters”
1h | Restore all default parameters UNSIGNED 32 RW
2h | Restore communication default UNSIGNED 32 RW
parameters
3h | Restore application default UNSIGNED 32 RW
parameters
1014h Oh | COB-ID of EMCY UNSIGNED 32 RW 80h+Node-ID
1015h Oh | Inhibit time of EMCY UNSIGNED 16 RW 0
1018h Oh | largest sub-index supported for UNSIGNED 8 RO 1
“identity object”
1h | Vendor ID UNSIGNED 32 RO 0x0000013C
2h | Product code UNSIGNED 32 RO
3h | Revision number UNSIGNED 32 RO
4h | Serial number UNSIGNED 32 RO

Note: 1. The object with index 0x1000 has the following data format:

Additional information

General Information

bit 31~ bit 24

bit 23 ~ bit16

bit 15 ~ bit 0

Specific functionality

1/0O functionality

Device profile number

For CAN-8x23, the specific function is always in 0. The 1/O function defines what kind of
device the CAN-8x23 is. Bit 16, 17, 18, 19 present the DI, DO, Al, AO respectively. For
example, if bit 16 is 1, it means that the CAN-8x23 has DI channels. If both bit 16 and 17
are 1, the CAN-8x23 will have both DI and DO channels. Bit 23 ~ bit 19 is always in 0.
The general information is 0x191 (0x191=401), it means that the CAN-8x23 complies
with the CANopen spec DS401.

2. About the objects with index 0x1001 and 0x1003, please refer to the section 5.3.2.

3. The object with index 0x1005 stores the SYNC COB-ID. In the CAN-8x23, this object is

used to receive the SYNC COB-ID. The following table shows the data format of the

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 170

SYNC.

Bit Number | Value Meaning
31 (MSB) X do not care
30 0 Device does not generate SYNC message
1 Device generates SYNC message
29 0 11-bit ID (CAN 2.0A)
1 29-bit ID (CAN 2.0B)
28-11 0 If bit 29=0
X If bit 29=1: 28-11 bits of 29-bit COB-ID
10-0 (LSB) X 10-0 bits of COB-ID

The CAN-8x23 doesn’t support the SYNC generation, therefore 29-bit ID, bit 30 and bit
31 are always in 0.

4. The object with index 0x1008, 0x1009 and O0x100A records the CAN-8423 product

information. When interpreting these objects, the ASCII table will be needed.

5. The range of the 0x100c is from 0 to 32767 in CAN-8x23. For more information of the
object with index 0x100C and 0x100D, please refer to the section 5.4.2.

6. The object 0x1010/0x1011 supports the saving/restoring of parameters in EEPROM.
There 3 parameter groups are distinguished:
Subindex 1 saves/restores all PDO communication and I/O application parameters.
Subindex 2 saves/restores all PDO communication parameters.

Subindex 3 saves/restores all I1/O application parameters (ex: safe value, Al inverter,
PWM setting, and so on).

7. For the object with index 0x1014, please refer to the section 5.3.1.

8. The object with index 0x1015 stores the inhibit time period between two EMCY message.
The function of this object is similar to the PDO communication object with sub-index 04.
It is valid for avoiding the large loading on the CAN bus when transmitting a lot of EMCY

messages. This parameter range is from 0 to 32767 for the CAN-8x23, and the unit of
EMCY inhibit time is ms.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 171

SDO Communication Entries

ldx Sidx Description Type Attr Default
1200h Oh | largest sub-index supported for UNSIGNED 8 RO 2
“server SDO parameter”
1h | COB-ID form client to server UNSIGNED 32 RO | 600h+Node-ID
(RxSDO)
2h | COB-ID form server to client UNSIGNED 32 RO | 580h+Node-ID
(TxSDO)
RxPDO Communication Entries
Idx Sidx Description Type Attr Default
1400h Oh | largest sub-index supported for UNSIGNED 8 RO 2
“receive PDO parameter”
1h | COB-ID used by PDO (Rx) UNSIGNED 32 RW | 200h+Node-ID
2h | transmission type UNSIGNED 8 RwW FFh
1401h Oh | largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1h | COB-ID used by PDO (Rx) UNSIGNED 32 RW | 300h+Node-ID
2h | transmission type UNSIGNED 8 RW FFh
1402h Oh | largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1h | COB-ID used by PDO (Rx) UNSIGNED 32 RW | 400h+Node-ID
2h | transmission type UNSIGNED 8 RW FFh
1403h Oh | largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1h | COB-ID used by PDO (Rx) UNSIGNED 32 RW | 500h+Node-ID
2h | transmission type UNSIGNED 8 RW FFh
1404h Oh | largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1h | COB-ID used by PDO (Rx) UNSIGNED 32 RW 80000000h
2h | transmission type UNSIGNED 8 RW FFh
141Fh Oh | largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1h | COB-ID used by PDO (Rx) UNSIGNED 32 RW 8000 0000h
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 172

2h | transmission type UNSIGNED 8 RW FFh
RxPDO Mapping Communication Entries
ldx Sidx Description Type Attr Default
1600h Oh | largest sub-index supported for UNSIGNED 8 RO 8
“receive PDO mapping”
1h | write digital output 1h to 8h UNSIGNED 8 RW 6200 0108h
2h | write digital output 9h to 10h UNSIGNED 8 RW 6200 0208h
3h | write digital output 11h to 18h UNSIGNED 8 RW 6200 0308h
4h | write digital output 19h to 20h UNSIGNED 8 RW 6200 0408h
5h | write digital output 11h to 28h UNSIGNED 8 RW 6200 0508h
6h | write digital output 19h to 30h UNSIGNED 8 RW 6200 0608h
7h | write digital output 11h to 40h UNSIGNED 8 RW 6200 0708h
8h | write digital output 19h to 48h UNSIGNED 8 RW 6200 0808h
1601h Oh | largest sub-index supported for UNSIGNED 8 RO 4
“receive PDO mapping”
1h | write analog output 1h UNSIGNED 16 RwW 6411 0110h
2h | write analog output 2h UNSIGNED 16 RwW 6411 0210h
3h | write analog output 3h UNSIGNED 16 RwW 6411 0310h
4h | write analog output 4h UNSIGNED 16 RwW 6411 0410h
1602h Oh | largest sub-index supported for UNSIGNED 8 RO 4
“receive PDO mapping”
1h | write analog output 5h UNSIGNED 16 RwW 6411 0510h
2h | write analog output 6h UNSIGNED 16 RW 6411 0610h
3h | write analog output 7h UNSIGNED 16 RW 6411 0710h
4h | write analog output 8h UNSIGNED 16 RW 6411 0810h
1603h Oh | largest sub-index supported for UNSIGNED 8 RO 4
“receive PDO mapping”
1h | write analog output 9h UNSIGNED 16 RW 6411 0910h
2h | write analog output Ah UNSIGNED 16 RW 6411 0A10h
3h | write analog output Bh UNSIGNED 16 RW 6411 0B10h
4h | write analog output Ch UNSIGNED 16 RW 6411 0C10h
1604h Oh | largest sub-index supported for UNSIGNED 8 RO
“receive PDO mapping”
1h | --- RW
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 173

RW

161Fh Oh | largest sub-index supported for UNSIGNED 8 RO
“receive PDO mapping”
i1h | - RW
S - RW -
TxPDO Communication Entries
Idx Sidx Description Type Attr Default
1800h 0 largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1 COB-ID used by PDO (Tx) UNSIGNED 32 RW | 180h+Node-ID
2 | transmission type UNSIGNED 8 RW FFh
3 inhibit time UNSIGNED 16 RW 0
4 | reversed
5 | eventtimer UNSIGNED 16 RW 0
1801h 0 largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1 | COB-ID used by PDO (Tx) UNSIGNED 32 RW | 280h+Node-ID
2 transmission type UNSIGNED 8 RwW FFh
3 inhibit time UNSIGNED 16 RW 0
4 reversed
5 event timer UNSIGNED 16 RW 0
1802h 0 largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1 COB-ID used by PDO (Tx) UNSIGNED 32 RW | 380h+Node-ID
2 | transmission type UNSIGNED 8 RW FFh
3 inhibit time UNSIGNED 16 RW 0
4 | reversed
5 | eventtimer UNSIGNED 16 RW 0
1803h 0 largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1 | COB-ID used by PDO (Tx) UNSIGNED 32 RW | 480h+Node-ID
2 | transmission type UNSIGNED 8 RW FFh
3 inhibit time UNSIGNED 16 RW 0
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 174

4 | reversed
5 event timer UNSIGNED 16 RW 0
1804h 0 largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1 | COB-ID used by PDO (Tx) UNSIGNED 32 RW 80000000h
2 | transmission type UNSIGNED 8 RW FFh
3 inhibit time UNSIGNED 16 RW 0
4 | reversed
5 event timer UNSIGNED 16 RW 0
181Fh 0 largest sub-index supported for UNSIGNED 8 RO 5
“receive PDO parameter”
1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 80000000h
2 transmission type UNSIGNED 8 RwW FFh
3 inhibit time UNSIGNED 16 RW 0
4 reversed
5 | eventtimer UNSIGNED 16 RW 0
TxPDO Mapping Communication Entries
Idx Sidx Description Type Attr Default
1A00h Oh | largest sub-index supported for UNSIGNED 8 RO 8
“transmit PDO mapping”
1h | read digital input 1h to 8h UNSIGNED 8 RW 6000 0108h
2h | read digital input 9h to 10h UNSIGNED 8 RW 6000 0208h
3h | read digital input 11h to 18h UNSIGNED 8 RW 6000 0308h
4h | read digital input 19h to 20h UNSIGNED 8 RW 6000 0408h
5h | read digital input 11h to 28h UNSIGNED 8 RW 6000 0508h
6h | read digital input 19h to 30h UNSIGNED 8 RW 6000 0608h
7h | read digital input 11h to 40h UNSIGNED 8 RW 6000 0708h
8h | read digital input 19h to 48h UNSIGNED 8 RW 6000 0808h
1A01h Oh | largest sub-index supported for UNSIGNED 8 RO 4
“transmit PDO mapping”
1h | read analog input 1h UNSIGNED 16 RW 6401 0110h
2h | read analog input 2h UNSIGNED 16 RW 6401 0210h

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

175

3h | read analog input 3h UNSIGNED 16 RW 6401 0310h
4h | read analog input 4h UNSIGNED 16 RW 6401 0410h
1A02h Oh | largest sub-index supported for UNSIGNED 8 RO 4
“transmit PDO mapping”
1h | read analog input 5h UNSIGNED 16 RW 6401 0510h
2h | read analog input 6h UNSIGNED 16 RW 6401 0610h
3h | read analog input 7h UNSIGNED 16 RW 6401 0710h
4h | read analog input 8h UNSIGNED 16 RW 6401 0810h
1A03h | Oh | largest sub-index supported for UNSIGNED 8 RO 4
“transmit PDO mapping”
1h | read analog input 9h UNSIGNED 16 RwW 6401 0910h
2h | read analog input Ah UNSIGNED 16 RwW 6401 0A10h
3h | read analog input Bh UNSIGNED 16 RwW 6401 0B10h
4h | read analog input Ch UNSIGNED 16 RwW 6401 0C10h
1A04h Oh | largest sub-index supported for UNSIGNED 8 RO
“transmit PDO mapping”
1h | --- RW
_— _— _— RW _—
1A1Fh | Oh | largest sub-index supported for UNSIGNED 8 RO
“transmit PDO mapping”
l1h | --- --- RW ---
— — — RW —

6.2 Manufacturer Specific Profile Area

In the following table, there is information about some special functions for
the CAN-8x23. The index from 0x2004 to 0x200B records the analog input/output
range parameters. The number of these entries will be automatically confirmed
when the CAN-8x23 boot up. For example. If the CAN-8423 is used and at least
one module is inserted, there are only 4 entries created by CAN-8423
automatically. They are 0x2004, 0x2005, 0x2006, and 0x2007. For more detalil
about these objects, please refer to the section 5.5.

Analog Modules Input/Output range Entry

ldx

Sidx

Description

Type

Default

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

176

2004h Oh | largest sub-index supported for UNSIGNED 8 RO According to
“Analog Modules Input/Output AI/AO channel
Range Control” number in the
slot 0 module
1h | Input/Output range of the AI/AO UNSIGNED 8 RW
channel 0
2005h Oh | largest sub-index supported for UNSIGNED 8 RO According to
“‘Analog Modules Input/Output Al/AO channel
Range Control” number in the
slot 1 module
1h | Input/Output range of the AI/AO UNSIGNED 8 RW
channel 0
200Bh | Oh | largest sub-index supported for UNSIGNED 8 RO According to
“‘Analog Modules Input/Output Al/AO channel
Range Control” number in the
slot 8 module
1h | Input/Output range of the AI/AO UNSIGNED 8 RW
channel 0
2014h Oh | largest sub-index supported for UNSIGNED 8 RO According to
“Analog Input Max/Min Inverter” Al channel
number in the
slot 1 module
1h | Input value of the Al channel O UNSIGNED 8 RwW
0: normal
1: OxX7FFF - 0x8000
2: 0x8000 - Ox7FFF
201Bh Oh | largest sub-index supported for UNSIGNED 8 RO According to
“Analog Input Max/Min Inverter” Al channel
number in the
slot 8 module
1h | Input value of the Al channel O UNSIGNED 8 RW

0: normal
1: OX7FFF > 0x8000

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

177

2: 0x8000 - OX7FFF

6.3 Standardized Device Profile Area

When the CAN-8x23 is powered on, all of device profile entries are
automatically generated by the firmware built inside the CAN-8x23. These device
entries will match the channel types and numbers of the slot modules inserted
into the CAN-8x23. For the convenient purpose, these entries are divided into
four tables, “Digital Input Devices Entries”, “Digital Output Devices Entries”,
“Analog Input Devices Entries” and “Analog Output Devices Entries”. They are as
follows.

Digital Input Devices Entries

Idx Sidx Description Type Attr Default

6000h Oh | largest sub-index supported for UNSIGNED 8 RO 8
“read digital input 8-bit”

1h | read digital input 1h to 8h UNSIGNED 8 RO

Digital Output Devices Entries

Idx Sidx Description Type Attr Default
6200h Oh | largest sub-index supported for UNSIGNED 8 RO
“write digital output 8-bit”
1h | write digital output 1h to 8h UNSIGNED 8 RW
6206 Oh | largest sub-index supported for UNSIGNED 8 RW
“error mode digital output 8-bit”
1h | error mode digital output 1h to UNSIGNED 8 RW 0
8h
6207 Oh | largest sub-index supported for UNSIGNED 8 RW
“error value digital output 8-bit”
1h | error value digital output 1h to UNSIGNED 8 RW 0
8h

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 178

Note: When the bus-off is detected or the node guarding fails, the CAN-8x23 will check the value

of the object with index 0x6206. If the bit of this value is set to 1, the CAN-8x23 will output

the error mode digital output value to the corresponding DO channel. For example, if the

sub-index 01 in the object with index 0x6206 and 0x6207 are 0x31 and OxF8 respectively,

and when the error events occurs, only the DO5, DO4, DOO will be changed to error mode
output value because the bit 5, bit 4 and bit 1 of the value 0x31 is 1. So, the DO5, DO4, and
DOO0 will be change to 1, 1, and 0 respectively. Other channels except DO5, DO4, and DOO

will do nothing.

Analog Input Devices Entries

Idx Sidx Description Type Attr Default
6401h Oh | largest sub-index supported for | UNSIGNED 8 RO 8
“‘read analog input 16-bit”
1h | read analog input 1h UNSIGNED 16 RO
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 179

Note: 1. Because the CAN-8x23 only supports the hex format, all Al channels have to transfer to

the hex format when storing into this object. The transformation equation is shown below.

HexValue— H min
H max— H min

FloatValue = (]* (F max— F min)+ F min

The Float Value is the result after transformation. The Hex Value is the value which wants
to be transferred. The Hmax and Hmin is the maximum and minimum values of the 2's
complement hex range. The Fmax and Fmin is the maximum and minimum value of the
float range. User can find out the Hmax, Hmin, Fmax, and Fmin in the appendix B. For
example, The input range of the module [-87017 is set to -10V ~ +10V. According to the
table in the appendix B, we can find out the range for hex format is from OX7FFF (+36767)
to 0x8000 (-32768). Therefore, if the value got from the Al channel of the [-87017 is

0x1234(+4660), the Al value with float format will be calculated as follows.

4660—(—32768
() *(10V —(-10V)+ (-10v) = 1.422/

32767 —(—32768)
By the way, any Al value which is great than the maximum value of the input range will be
automatically set to the maximum value of the input range. And, the Al value which is less
than the minimum value of the input range will be automatically set to the minimum value

of the input range.

Analog Output Devices Entries

Idx Sidx Description Type Attr Default
6411h Oh | largest sub-index supported for UNSIGNED 8 RO
“write analog output 16-bit”
1h | write analog output 1h UNSIGNED 16 RW
6443 Oh | largest sub-index supported for UNSIGNED 8 RW
“error mode analog output
16-bit”
1h | error mode analog output 1h UNSIGNED 16 RW 0
6444 Oh | largest sub-index supported for UNSIGNED 8 RW

“error value analog output
16-bit”

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 180

1h | error value analog output 1h UNSIGNED 16 RW 0

Note: 1. Because the CAN-8x23 doesn’t support float format, users have to transfer the AO value
from the float format to hex format. It is similar to the Al situation. The transformation
equation is as follows.

FloatValue— F min

F max— F min

HexVaIue:(j*(H max— H min)+ H min

The Hex Value is the result after transformation. The Float Value is the value which wants
to be transferred. The Fmax and Fmin is the maximum and minimum values of the float
range. The Hmax and Hmin is the maximum and minimum value of the 2's complement

hex range. User can find out the Fmax, Fmin, Hmax, and Hmin in the appendix B.

2. When the bus-off is detected or the node guarding fails, the CAN-8x23 will check the
value of the object with index 0x6443. If this value is set to 1, the CAN-8x23 will output
the error mode analog output value to the corresponding AO channel. For example, if the
sub-index 01 in the object with index 0x6443 and 0x6444 are 1 and 0x0000 respectively,
and when the error events occurs, this AO will be output to error mode output because
the value of the object with index 0x6443 and sub-index 01 is 1. The AO output value is 0

because of the value in the object with index 0x6444 and sub-index 01.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 181

6.4 Object of Counter/Frequency Modules
(Only for 1-8080 and 1-8084W)

ldx S-idx Description Type Attr PDO mapping | Default
3000h Oh largest sub-index supported for | UNSIGNED 8 RO No
“read counter / frequency 32-bit”
1h Read counter / frequency with chl UNSIGNED 32 RO Yes
3001h Oh largest sub-index supported for | UNSIGNED 8 RO No
“‘read counter overflow 16-bit”
1h Read counter overflow with chl UNSIGNED 16 RO Yes
3002h Oh largest sub-index supported for | UNSIGNED 8 RO No
“reset counter value with writing 0”
1h Reset chl counter value UNSIGNED 8 WO Yes
3003h Oh largest sub-index supported for “set | UNSIGNED 8 RO No
XorRegister with 0 or 1”
1h XorRegister value of chl UNSIGNED 8 RwW No
3004h Oh largest sub-index supported for “set | UNSIGNED 8 RO No
frequency mode with 0, 1, or 2”
1h Frequency mode of chl UNSIGNED 8 RW No
3005h Oh largest sub-index supported for “set | UNSIGNED 8 RO No
frequency update time (unit — ms)”
1h Frequency update time of chl UNSIGNED 16 | RW No
3006h Oh largest sub-index supported for | UNSIGNED 8 RO No
“enable/disable low pass filter”
1h Low pass filter status of chl UNSIGNED 8 RW No
3007h Oh largest sub-index supported for “set | UNSIGNED 8 RO No
low pass filter time (unit - us)”
1h Low pass filter time of chl UNSIGNED 16 RW No
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 182

Owing to the configuration of object index 0x3000 to 0x3007, you may
parameterize the counter modules. The object index 0x3000 records the counter
value of each channel. Each sub-index is corresponding to each channel. Users can
use object index 0x2004~2007 to decide the counting method. Please refer to the
appendix A for more detail information. If users select Dir/Pulse, Up/Down or AB
phase counting, the counter value may be negative value. Therefore, users need to
transfer the UNSIGNED 32 to SIGNED32 by themselves. Object index 0x3001
records the overflow times of object index 0x3000. Therefore, the total counter value
of one channel is the combination of the value of object index 0x3000 and 0x3001.
For example, if users select Dir/Pulse, Up/Down or AB phase counting, there are two
situations. If the object index 0x3000 with sub-index 1 is 16384 and the object index
0x3001 with sub-index 1 is 1, the total counter is 1*0x80000000+16384=2147500032.
If the object index 0x3000 with sub-index 1 is -8192 and the object index 0x3001 with
sub-index 1 is -1, the total counter is (-1)*0x80000000-8192=-2147491840. If users
select Frequency or Up counting, there is only one situation. If the object index
0x3000 with sub-index 1 is 16384 and the object index 0x3001 with sub-index 1 is 1,
the total counter is 1*0x100000000+16384=4294983680. Take a note that the
Frequency counting always has no overflow value.

The object index 0x3002 can help users to clear the counter value. Write this
object to 0 once will clear the counter value store in object index 0x3000 and 0x3001.
The object index 0x3003 can set the count mode to high active with value 1 or low
active with value 0. The object index 0x3004 is used to set the frequency mode of
counter module. Value 0 is auto mode, value 1 is low frequency and value 2 is high
frequency. These three frequency modes are decided by the object “update time of
frequency” with index 0x3005. If users want to set the update time of frequency
measurement, use object 0x3005 to reach this purpose. The object index 0x3006
decide if users want to use low-pass filter or not, set the value 1 to enable the
low-pass filter, or value O to disable the low-pass filter. The object index 0x3007 is
used to set the pulse width which will be used in the low-pass filter. If the pulse width
of the signal is less than this value, this signal will be taken into account.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 183

6.5 Object of PWM Module (Only for 1-8088W)

ldx S-idx Description Type Attr PDO mapping | Default
3100h Oh largest sub-index supported for | UNSIGNED 8 RO No
“start to output pulse”
1h Start to output pulse with chl UNSIGNED 8 RW Yes
3101h Oh largest sub-index supported for “set | UNSIGNED 8 RO No
burst count 16-bit”
1h Set burst count with chl UNSIGNED 16 RW No
3102h Oh largest sub-index supported for “set | UNSIGNED 8 RO No
frequency of output pulse 32-bit”
1h Set frequency of output pulse UNSIGNED 32 RwW No
3103h Oh largest sub-index supported for “set | UNSIGNED 8 RO No
pulse duty with 1 ~ 999 (%o)”
1h Set pulse duty of chl UNSIGNED 16 RwW No
3104h Oh largest sub-index supported for | UNSIGNED 8 RO No
“enable/disable hardware trig”
1h Set hardware trig of chl UNSIGNED 8 RW No
3105h Oh largest sub-index supported for | UNSIGNED 8 RO No
“enable/disable sync channel”
1h Set sync channel of chl UNSIGNED 8 RW No
3106h Oh largest sub-index supported for | UNSIGNED 8 RO No
“start the synchronous pulse”
1h Start the synchronous pulse of the | UNSIGNED 8 RW Yes
first PWM module which has lower
slot No.
CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 184

Owing to the configuration of object index 0x3100 to 0x3106, you may
parameterize the PWM modules. The object index 0x3100 can control the module to
start or stop the pulse output of each channel. Each sub-index is corresponding to
each channel. Users can use object index 0x2004~2007 to decide the PWM method
of each slot. Please refer to the appendix A for more details. If users select Burst
Counting mode, the object index 0x3101 must be set to decide how many pulse users
want to output. Users can set 1 ~ 65535 to the object 0x3101 and use object 0x3100
to start or stop the pulse output. Every time when set the object 0x3100 to 1, the
channel will output the specific pulses with one burst cyclic. For example, user set
channel 0 to Burst Counting mode and set object index 0x3101 with sub-index 1 to
100. When user set the object 0x3100 with sub-index 1 to 1, the channel O will output
100 pulses. Or if users select Continue Counting mode, the object 0x3101 will useless.
When users set the object 0x3100 to 1, the channel will start to output the pulse
cyclically until the object is set to O.If you want to change the frequency of pulse, you
can set the value 100 ~ 5000000 with the base 0.1Hz (that is 10Hz ~ 500kHz) to
object 0x3102.

Object index 0x3103 is pulse duty per mille (%o0). If set the object to value 300, it
means that the high duty is 300%. and the low duty is 700%. in one pulse width. The
object 0x3104 can set the DI pin of the PWM module as hardware trigger channel.
When set the value of object 0x3104 with sub-index 2 to 1, it means the DI channel 2
will loss the DI functions and become a hardware trigger pin. In this case, if there is a
signal (5V~30V) into the DI channel 2, the channel 2 will start to output until the signal
is clear.

Object 0x3105 and 0x3106 can control all of the channels of the PWM module to
output synchronous. If user wish channel 0 ~ 3 of the PWM module output the pulse
synchronously. Set the object 0x3105 with sub-index 1 ~ 4 to 1, and set the others to O.
Then, set the object 0x3106 with sub-index 1 to 1. These 4 channels (channel 0 ~ 3)
will start to output pulse at the same time (their first low-to-high edge will be triggered
at the same time, but the period may be different because of different pulse width).
Take a note that the different sub-index of the object 0x3106 indicates the different
PWM module in different slot. If there are two PWM modules on the CAN-8x23, the
maximum sub-index number of the object 0x3106 is 2. The sub-index 1 is for the
PWM module with lower slot No. and the sub-index 2 is for the one with higher slot
No.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 185

Appendix A: Type Code Table

In order to look up the configuration parameters of each slot module more
quickly, the transformation table has separated into several parts according to

the name of slot module. They are given below.

-87K module I-8K module
[-87013 I-8017HS/I-8017HW
1-8024/1-8024W

[-87015/1-87015P

1-87017/1-87017R/1-87017W/1-87017RW/

[-8050

1-87017ZW/ 1-87017ZW/ 1-87017W-RMS
[-87017RC [-8080/1-8084W
1-87018/1-87018RW/I-87018W/I-87018Z [-8088W
/1-87018PW

1-87019RW/I-87019PW/I-87019ZW

Thermocouple of 1-87018/1-87019 Series

[-87022

[-87024/1-87024W

[-87026

1-87024C/1-87028C

1-87028UW/ 1-87028VW/I-87024UW

186

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

Range Code
(Hex)

20
(default)

21

22

23

24

25

26

27

28

RTD Type

Platinum 100
a =0.00385

Platinum 100
a = 0.00385

Platinum 100
a = 0.00385

Platinum 100
a =0.00385

Platinum 100
a =0.003916

Platinum 100
a =0.003916

Platinum 100
a =0.003916

Platinum 100
a =0.003916

Nickel 120

1-87013/ 1-87015 RTD Type Definition

Data Format

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Max Value

+100.00°C

7FFF

+100.00°C

7FFF

+200.00°C

7FFF

+600.00°C

7FFF

+100.00°C

7FFF

+100.00°C

7FFF

+200.00C

7FFF

+600.00°C

7FFF

+100.00°C

7FFF

Back to table

Min Value

-100.00°C

8000

+000.00°C

0000

+000.00°C

0000

+000.00°C

0000

-100.00°C

8000

+000.00°C

0000

+000.00°C

0000

+000.00°C

0000

-080.00°C

999A

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

187

29

2A

2B

2Cct

2D

2E™

2F

80"

817

Note :

Nickel 120

Platinum 1000
a =0.00385

Cu 100
a=0.00421

Cu 100
a=0.00421

Cu 1000
a=0.00421

Pt 100
a = 0.00385

Pt 100
a=0.003916

Pt 100
a = 0.00385

Pt 100
a=0.003916

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

Input Range

2's complement
HEX

* 1. Type 2B, 2C and 2D are only available with 1-87015.
* 2. Type 2E, 2F, 80 and 81 are only available with the 1-87015 firmware version A1.10
and later, 1-87013 firmware version B1.3 and later.

+100.00C

7FFF

+600.00°C

7FFF

+150.00C

7FFF

+200.00°C

7FFF

+150.00C

7FFF

+200.00°C

7FFF

+200.00°C

7FFF

+600.00°C

7FFF

+600.00°C

7FFF

+000.00°C

0000

-200.00°C

D556

-020.00°C

EEEF

-000.00°C

0000

-020.00°C

EEEF

-200.00°C

8000

-200.00°C

8000

-200.00°C

D556

-200.00C

D556

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

188

1-87017 Series Type 08 to OD Definition (not for 1-87017RC)

Range Code
(Hex)

08
(default)

09

0A

0B

0oC

oD™

Note:

Input Range

-10V to +10V

-5V to +5V

-1V to +1V

-500mV to +500mV

-150mV to +150mV

-20mA to +20mA

Data Format

Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX

Full Scale

+10.000 V
7FFF
+5.0000 V
TFFF
+1.0000 V
7FFF
+500.00 mV
7FFF
+150.00 mV
7FFF
+20.000 mA
7FFF

Back to table

Negative
Full Scale

-10.000 V
8000
-5.0000 V
8000
-1.0000 V
8000
-500.00 mV
8000
-150.00 mV
8000
-20.000 mA
8000

*1: When [-87017 and 1-87017R are connecting to a current source set to OD type code,
an optional external 125 Ohms resistor is required.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

189

Range Code

Input Range

1-87017RC Type 07 to 1A Definition

Data Format

Full Scale

Back to table

Negative

(Hex) Full Scale

Input Range +04.000 mA +20.000 mA
07 -4mA to +20mA
2's Complement HEX TFFF 8000
oD Input Range +20.000 mA -20.000 mA
-20mA to +20mA
(default) 2's Complement HEX 7FFF 8000
Input Range +00.000 mA +20.000 mA
1A +0A to +20mA
2's Complement HEX TFFF 8000
Note:

1. 1-87017RC has built-in 125 Ohms resistors for each channels. When
connecting to a current source, no add any external resistors required.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 190

Range Code
(Hex)

00

01

02

03

04

05
(default)

06"

Note:

Input Range

-15mV to +15mV

-50mV to +50mV

-100mV to +100mV

-500mV to +500mV

-1V to +1V

-2.5V to +2.5V

-20mA to +20mA
with 125() resistor

[-87018 Series Type 00 to 06 Definition

Data Format

Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX

Full Scale

+15.000 mV
7FFF
+50.000 mV
7FFF
+100.00 mV
7FFF
+500.00 mV
7FFF
+1.0000 V
7FFF
+2.5000 V
7FFF
+20.000 mA
7FFF

Back to table

Negative
Full Scale

-15.000 mV
8000
-50.000 mV
8000
-100.00 mV
8000
-500.00 mV
8000
-1.0000 V
8000
-2.5000 V
8000
-20.000 mA
8000

*1: When I-87018 and 1-87018R are connecting to a current source set to 06 type code,
an optional external 125 Ohms resistor is required.

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

191

Range
Code (Hex)

00

01

02

03

04

05

06

08
(default)

09

0A

[-87019R Type 00 to 19 Definition

Input Range

-15mV to +15mV

-50mV to +50mV

-100mV to +100mV

-500mV to +500mV

-1V to +1V

-2.5V to +2.5V

-20mA to +20mA
with 125() resistor

-10V to +10V

-5V to +5V

-1V to +1V

Data Format

Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX

Full Scale

+15.000 mV

7FFF

+50.000 mV

7FFF

+100.00 mV

7FFF

+500.00 mV

7FFF

+1.0000 V

7FFF

+2.5000 V

7FFF

+20.000 mA

7FFF

+10.000 V

7FFF

+5.0000 V

7FFF

+1.0000 V

7FFF

Back to table

Negative
Full Scale

-15.000 mV
8000
-50.000 mV
8000
-100.00 mV
8000
-500.00 mV
8000
-1.0000 V
8000
-2.5000 V
8000
-20.000 mA
8000
-10.000 V
8000
-5.0000 V
8000
-1.0000 V

8000

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

192

0B

0oC

0D

Input Range
-500mV to +500mV
2's Complement HEX

Input Range
-150mV to +150mV
2's Complement HEX

_20mA to +20mA Input Range

with 125€) resistor | 5.5 complement HEX

+500.00 mV

7FFF

+150.00 mV

7FFF

+20.000 mA

7FFF

-500.00 mV

8000

-150.00 mV

8000

-20.000 mA

8000

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

193

[-87018/ 87018R/ 87019R Thermocouple Type Definition

Range Code
(Hex)

OE

OF

10

11

12

13

14

15

16

17

18

19

Thermocouple

Type

J Type

K Type

T Type

E Type

R Type

S Type

B Type

N Type

C Type

L Type

M Type

L Type
DIN43710

Data Format

Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX
Input Range

2's Complement HEX

Max Value

+760.00°C
7FFF
+1372.0C
7FFF
+400.00C
7FFF
+1000.0°C
7FFF
+1768.0C
7FFF
+1768.0C
7FFF
+1820.0C
7FFF
+1300.0C
7FFF
+2320.0C
7FFF
+800.00°C
7FFF
+100.00°C
4000
+900.00°C
7FFF

Back to table

Min Value

-210.00C
DCAZ2
-0270.0C
EGDO
-270.00°C
A99A
-0270.0C
DD71
+0000.0°C
0000
+0000.0°C
0000
+0000.0°C
0000
-0270.0C
ES56B
+0000.0°C
0000
-200.00°C
EOOO
-200.00°C
8000
-200.00°C
E38F

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023)

194

1-87022 Analog Output Type Definition Back to table

Range Code

Output Range Data Format Max Value @ Min Value
(Hex)
Input Range 20.000 mA 00.000 mA
0 0 to 20mA
Hexadecimal FFF 000
Input Range 20.000 mA 04.000 mA
1 4 to 20mA
Hexadecimal FFF 000
2 Input Range 10.000 V 00.000 V
0 to 10V
(default) Hexadecimal FFF 000
1-87024 Analog Output Type Definition Back to table
Range Code .
Output Range Data Format Max Value @ Min Value
(Hex)
Output Range +20.000 mA +00.000 mA
30 0 to 20mA
2's Complement HEX Ox7FFF 0
Output Range +20.000 mA +04.000 mA
31 4 to 20mA
2's Complement HEX OX7FFF 0
Output Range +10.000V +00.000 V
32 0 to 10V
2's Complement HEX Ox7FFF 0
33 Output Range +10.000V -10.000 V
-10 to 10V
(default) 2's Complement HEX OX7FFF 0x8000
Output Range +05.000V +00.000 V
34 0to 5V
2's Complement HEX OX7FFF 0
Output Range +05.000V -05.000 V
35 -5to 5V
2's Complement HEX OX7FFF 0x8000

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

195

Range Code
(Hex)

0

2
(default)

Output Range

0 to 20mA

4 to 20mA

0 to 10V

1-87026 Analog Output Type Definition

Data Format

Output Range
Hexadecimal
Output Range
Hexadecimal
Output Range

Hexadecimal

Max Value

20.000 mA
FFFF
20.000 mA
FFFF
10.000 V
FFFF

I-87024C/1-87028C Analog Output Type Definition

Range Code
(Hex)

0
(default)

Range Code
(Hex)

0

2
(default)

Output Range

0 to 20mA

4 to 20mA

Data Format

Output Range
Hexadecimal
Output Range

Hexadecimal

[-87028UW/I-87028VW/1-87024UW
Analog Output Type Definition

Output Range

0 to 20mA

4 to 20mA

0 to 10V

Data Format

Output Range
Hexadecimal
Output Range
Hexadecimal
Output Range

Hexadecimal

Max Value

+20.000 mA
FFF

+20.000 mA
FFF

Max Value

+20.000 mA
OXFFFF
+20.000 mA
OXFFFF
+10.000 V
OXFFFF

Back to table

Min Value

00.000 mA
0000
04.000 mA
0000
00.000 V
0000

Back to table
Min Value

+00.000 mA
000

+04.000 mA
000

Back to table

Min Value

+00.000 mA
0
+04.000 mA
0
+00.000 V
0

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

196

Output Range +10.000V -10.000 V
3 -10 to 10V
Hexadecimal OX7FFF 0x8000
Output Range +05.000V +00.000 V
4 0to 5V
Hexadecimal OxXFFFF 0
Output Range +05.000V -05.000 V
5 -5to 5V
Hexadecimal OX7FFF 0x8000
1-8024/1-8024W Analog Output Type Definition Back to table
Range Code :
Output Range Data Format Max Value = Min Value
(Hex)
0 Output Range +10.000V ~ -100.000 V
-10 to 10V
(default) Hexadecimal 7FFF 8000
Output Range +20.000 mA +00.000 mA
1 0 to 20mA
Hexadecimal TFFF 8000

[-8017HS/I-8017HW Analog Input Type Definition
Range Code

Output Range Data Format Max Value
(Hex)
0 Input Range +10.000 V
-10 to 10V
(default) Hexadecimal 1FFF
Input Range +5.000 V
1 -5to 5V
Hexadecimal 1FFF
Input Range +2.500 V
2 -2.5V to +2.5V
Hexadecimal 1FFF
Input Range +1.250 V
3 -1.25V to +1.25V
Hexadecimal 1FFF
4 -20 mA to +20 mA Input Range +20.000 mA

Back to table
Min Value

-10.000 V
2000
-5.000 V
2000
-2.5000 V
2000
-1.250V
2000
-20.000 mA

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

197

Hexadecimal 2000
1-8080/ 8084W Counter Input Type Definition Back to table
Range Code Channel _
Counter Type Max Value Min Value
(Hex) number
2147483647 -2147483648
0™ Dir/Pulse Counter 4
1FFFFFFF 80000000
2147483647 -2147483648
1 Up/Down Counter 4
1FFFFFFF 80000000
2 Frequency 8
3 4294967295 0
Up Counter 8
(default) FFFFFFFF 00000000
4*1 2147483647 -2147483648
AB Phase 4
(for 1-8084W) 1FFFFFFF 80000000

Note:

*1: The sub-index of all parameters and input channels are still 8, but the sub-index 1 is
equal to sub-index 2, and sub-index 3 is equal to sub-index 4, and so on.

[-8088W PWM Output Type Definition

Range Code Channel)
Counter Type Max Value Min Value
(Hex) number

65535 1

0 Burst Counter 8
FFFF 1

Continue Counter 8
(default)

Back to table

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------

198

Appendix B: DIO Type Define of I-8050 Modules

[-8050 is a selectable 16-channel DIO module. User can decide which channel
will be DI and which channel will be DO. In CAN-8x23, users can achieve this purpose
by setting the type code in the object index 0x2004~0x2007. The object index 0x2004,
0x2005, 0x2006 and 0x2007 are for the module plugged in slot 0, slot 1, slot 2 and slot
3 respectively.

For example, if the 1-8050 module is plugged on the slot 0 of CAN-8423, user can
set the object index 0x2004 to decide the channel type of I-8050. The object index
0x2004 with sub-index 1 controls the channel type of ch-0 to ch-7 of 1-8050, and
sub-index 2 controls the ch-8 to ch-15. If one bit of the object data is set to 1, it means
that the corresponding channel will be set to DI. So if users set the sub-index 1 to
0x77, it means that only the ch-3 and ch-7 are DO channels and the others are DI
channels. In default, all the channels of I-8050 are DI channels.

Back to table

CAN-8x23 user’s manual (Revision 3.40, Mar/15/2023) ------ 199

