

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 1

CANopen Slave Device

CAN-2000C Series
Communication User’s Manual

Warranty
Without contrived damage, all products manufactured by ICP DAS are

warranted in one year from the date of delivery to customers.

Warning

ICP DAS revises the manual at any time without notice. However, no
responsibility is taken by ICP DAS unless infringement act imperils to patents
of the third parties.

Copyright

Copyright © 2009 is reserved by ICP DAS.

Trademark

The brand name ICP DAS as a trademark is registered, and can be used
by other authorized companies.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 2

Contents
1 Introduction...4

1.1 Overview...4
1.2 CAN-2000C General Hardware Specifications5
1.3 CAN-2000C Common Features...6

2 Hardware Specification ..7
2.1 Wire Connection ..7
2.2 Power LED..9
2.3 CANopen Status LED...10

2.3.1 The RUN LED...10
2.3.2 The ERR LED ... 11

2.4 The Node ID & the Baud rate Rotary Switch..............................13
2.5 Module Support ...13

3 CANopen Application ...14
3.1 CANopen Introduction...14
3.2 SDO Introduction ...20
3.3 PDO Introduction ...22
3.4 EMCY Introduction...34
3.5 NMT Introduction ...35

3.5.1 Module Control Protocols...36
3.5.2 Error Control Protocols ..37

4 Getting Start ..40
5 CANopen Communication Set...41

5.1 SDO Communication Set ..42
5.1.1 Upload SDO Protocol..42
5.1.2 Download SDO Protocol ...51
5.1.3 Abort SDO Transfer Protocol ...56

5.2 PDO Communication Set ..59
5.2.1 PDO COB-ID Parameters ..59
5.2.2 Transmission Type ..61
5.2.3 PDO Communication Rule..62

5.3 EMCY Communication Set..97
5.3.1 EMCY COB-ID Parameter..97
5.3.2 EMCY Communication..98

5.4 NMT Communication Set ..105
5.4.1 Module Control Protocol ..105
5.4.2 Error Control Protocol ..108

6 Object Dictionary of CAN-2000C ... 114

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 3

6.1 Communication Profile Area... 114
6.2 Module Device Profile Area... 119

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 4

1 Introduction

1.1 Overview
CANopen, a kind of communication protocols, is an intelligent field bus

(CAN bus). It has been developed as a standard embedded network with a
high flexible configuration. It provides a standard communication protocol
transmitting real-time data in PDO (Process Data Objects), configuration data
in SDO (Service Data Objects), and network management data (NMT
message, and Error Control), even supports the special functions (Time Stamp,
Sync message, and Emergency message). Nowadays, CANopen is used on
many applications and in specific fields, such as medical equipment, off-road
vehicles, maritime electronics, public transportation, automation and so on.

The CAN-2000C series CANopen slave modules are specially designed

for the slave device of the CANopen protocols. All of these CAN-2000C series
modules follow the CANopen Spec DS-301 V4.02 and DS-401 V2.1, and
supply a great deal of features to users, such as dynamic PDO, EMCY object,
error output value, SYNC cyclic and acyclic and so forth. The general
application for the CAN-2000C series CANopen slave devices architecture is
as follows.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 5

1.2 CAN-2000C General Hardware Specifications

 Built-in Watchdog
 PWR LED, RUN LED, and ERR LED
 Terminal resister LED
 120Ω terminator resister selected by DIP-switch
 CAN bus interface: ISO 11898-2, 5-pin screw terminal with removable

terminal block.
 Unregulated from +10VDC ~ +30VDC
 Operating Temperature:-25°C ~ +75°C
 Storage Temperature:-30°C ~ +80°C
 Humidity: 10% ~ 90% RH, non-condensing.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 6

1.3 CAN-2000C Common Features

 NMT: Slave
 Error Control: Node Guarding and Heartbeat Producer
 Node ID: Setting by Rotary Switch (1 ~ 99)
 No of SDOs: 1 server, 0 client
 No. of PDOs: 10Rx, 10Tx
 PDO Modes: Event-triggered, remotely requested, cyclic and acyclic

SYNC
 Support dynamic PDO mapping
 Emergency Message variable
 Support “Save” and “Load” command, can save I/O setting or restore

I/O default setting.
 CANopen Version: DS-301 v4.02
 Device Profile: DS-401 v2.1
 Baud Rate selected by rotary switch from 0~7 (10K, 20K, 50K, 125K,

250K, 500K, 800K and 1M bps).
 Status LED: Power LED, RUN LED, and ERR LED indicators

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 7

2 Hardware Specification

(Top View) (Bottom View)

2.1 Wire Connection
In order to minimize the reflection on the CAN bus line, the CAN bus line

has to be terminated at both ends by two terminal resistances as shown in the
following. According to the ISO 11898-2 spec, each terminal resistance is
120Ω (or other between 108Ω~132Ω). The length related resistance has to
reach 70 mΩ/m. At this circumstance, users would better check the
resistances of the CAN bus before installing a new CAN network.

12
0Ω

120Ω

CAN_H

CAN_L

Device NDevice 2Device 1 . . .

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 8

 Moreover, to minimize the voltage drop, value of the terminal resistance
must be higher than the one defined in the ISO 11898-2. The following table is
for users’ reference.

Bus Cable Parameters
Bus Length

(meter)
Length Related

Resistance
(mΩ/m)

Cross Section
(Type)

Terminal
Resistance

(Ω)

0~40 70 0.25(23AWG)~
0.34mm2(22AWG)

124 (0.1%)

40~300 < 60 0.34(22AWG)~
0.6mm2(20AWG)

127 (0.1%)

300~600 < 40 0.5~0.6mm2

(20AWG)
150~300

600~1K < 20 0.75~0.8mm2
(18AWG)

150~300

In the CAN-2000C series module, the 120Ω terminal resistance is
supplied as a standard accessory. In the following figure, the position SW1
allowed to build in a terminal resistance.

The figure indicates two conditions, “Disable (Up)” and “Enable (Down)”.

And if the terminal resister is enabled, the terminal resister LED will on.

The bus length determines the CAN bus baud rate. In the following the
table provides users a relationship between the baud rate and the bus length.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 9

Baud rate (bit/s) Max. Bus length (m)

 1 M 25
800 K 50
500 K 100
250 K 250
125 K 500
 50 K 1000
 20 K 2500
 10 K 5000

Note: When the bus length is greater than 1000m, the

bridge or repeater devices may be needed.

The pin descriptions of the CAN bus connectors on the CAN-2000C are
shown below.

Pin No. Signal Description

1 CAN_GND Ground (0V)
2 CAN_L CAN_L bus line (dominant low)
3 CAN_SHLD Optional CAN Shield
4 CAN_H CAN_H bus line (dominant high)
5 CAN_V+ CAN external positive supply

2.2 Power LED
The CAN-2000C series products need 10 to 30 VDC power supplies.

Under a normal connection, a good power supply and a correct voltage
selection, as the unit is turned on, the LED will light up in red. If it can’t work,
please check with local agents or resellers for more help.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 10

2.3 CANopen Status LED
Each one CAN-2000C module has two LED indicators. One is the Error

LED (lighting in orange) and the other one is the RUN (Performing) LED
(lighting in green). The Error LED and the Run (Performing) LED information
are presented in the CANopen specifications. When the CANopen
communication carries out, these indicators will glitter in different time. The
following descriptions will show meanings of the glittering signal as these
indicators are being triggered.

2.3.1 The RUN LED

The RUN LED relates to the physical mechanism on the CANopen that
will be discussed later. The data state and the signal state description are
respectively shown in the following figure and table.

No. Signal State Description
1 No Light Non-operation Malfunction or Power Supply

/Connection not ready
2 Single Flash Stopped The device is in Stopped state
3 Blinking Pre-operation The device is in the pre-operational

state
4 Continuing Light Operation The device is in the operational

state

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 11

2.3.2 The ERR LED

The ERR LED relates to the state of missing messages at the CAN
physical layer (These missing messages might be SYNC or Guard messages).
The data state and the signal state description are respectively shown in the
following figure and table.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 12

No. Signal State Description
1 No Light No error The device is in working

condition.
2 Single Flash Error Reminding

when Warning
Level is Reached

At least one of the error counters
of the CAN controller has
reached or exceeded the warning
level (too many error frames).

3 Double Flash Error Reminding
when Events
happen.

A guard event (NMT-Slave or
NMT-master).

4 Continuing
Light

Bus Off The CAN controller is in a bus off
condition.

Note: If several errors occur at the same time, the most severe error will have

high priority to show its signal first. For example, if NMT Error (No. =3)
and Bus Off Error (No. =4) occur, the Bus off error signal will indicate.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 13

2.4 The Node ID & the Baud rate Rotary Switch
The rotary switches for node ID configure the node ID of CAN-2000C

module. These two switches are for the tens digit and the units digit of node ID.
The node ID value of this demo picture is 32.

Node ID rotary switch

 The rotary switch for baud rate handles the CAN baud rate of the
CAN-2000C module. The relationship between the rotary switch value and the
practical baud rate is presented in the following table.

Baud rate rotary switch

Rotary Switch Value Baud rate (K BPS)
0 10
1 20
2 50
3 125
4 250
5 500
6 800
7 1000

2.5 Module Support
The CAN-2000C series modules include many kinds of DI, DO, AI and AO

types series modules. Please refer to the web to get more detail information.
The web site http://www.icpdas.com/products/Remote_IO/can_bus/can-2000.htm

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 14

3 CANopen Application

The CANopen is a kind of network protocols evolving from the CAN bus, used
on car control system in early days, and has been greatly used in various
applications, such as vehicles, industrial machines, building automation,
medical devices, maritime applications, restaurant appliances, laboratory
equipment & research.

3.1 CANopen Introduction

CANopen provides not only the broadcasting function but also the
peer-to-peer data exchange function between every CANopen node. The
network management function instructed in the CANopen simplifies the
program design. In addition, users can also implement and diagnose the
CANopen network, including network start-up, and error management by
standard mechanisms (CANopen device), i.e. the CANopen device can
effectively access the I/O values and detect node states of other devices in the
same network. Generally, a CANopen device can be modeled into three parts.

 Communication
 Object Dictionary
 Application program

The functions and general concepts for each part are shown as follows.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 15

Communication

The communication part provides several communication objects and
appropriate functionalities to transmit CANopen messages via the network
structure. These objects include PDO (Process Data Object), SDO (Service
Data Object), NMT (Network Management Objects), SYNC (Synchronous
Objects)…etc. Each communication object has its relative communication
model and functionality. For example, the communication objects for accessing
the device object dictionary is SDO, using the Client/Server structure as its
communication model (section 3.2). Real-time data or I/O values can be
accessed quickly without any protocol by means of PDO communication
objects. The PDO’s communication model follows the Producer/Consumer
structure. It is also named the Push/Pull model (section 3.3). NMT
communication objects are used for controlling and supervising the state of the
nodes in the CANopen network, and it follows a Master/Slave structure
(section 3.5). No matter which kind of communication object is used, the
transmitted message will comply with the data frame defined in the CAN 2.0A
spec. Generally, it looks like the following figure.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 16

ID RTR Data
Length 8-byte Data

11-bit data is limited in the ID field. It is useful in the arbitration mechanism.

The RTR, limited in 1-bit data, is used for remote-transmitting requests as the
value is set to 1. The data length, limited in 4-bit data, shows the valid data
number stored in the 8-byte data field. The last field, 8-byte data, is applied to
store the message data.

In the CANopen specifications the 4-bit function code and 7-bit node ID
are assumed to combine the 11-bit ID of CAN message, and named the
communication object ID (COB-ID). The COB-ID structure is displayed below.

Function Code Node ID

bit 10 bit 0

The COB-IDs are used for recognizing where the message comes from or
where the message is sent to, as well deciding the priority of the message
transmission around node network. According to the arbitration mechanism
rule of the CAN bus, the CAN message with the lower COB-ID will get the
higher priority to be transmitted. In the CANopen specifications some COB-IDs
are reversed for specific communication objects, and can't be defined
arbitrarily by users. The following list shows these reversed COB-IDs.

Reversed COB-ID (Hex) Used by object
 0 NMT
 1 Reserved
 80 SYNC
 81~FF EMERGENCY
 100 TIME STAMP
101~180 reversed
581~5FF Default Transmit-SDO
601~67F Default Receive-SDO
 6E0 reversed
701~77F NMT Error Control
780~7FF reversed

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 17

In addition, the other COB-IDs shown in the following table can be used if
necessary.

(Bit10~Bit7)
(Function Code)

(Bit6~Bit0) Communication object Name

0000 0000000 NMT
0001 0000000 SYNC
0010 0000000 TIME STAMP
0001 Node ID EMERGENCY

0011/0101/0111/1001 Node ID TxPDO1/2/3/4
0100/0110/1000/1010 Node ID RxPDO1/2/3/4

1011 Node ID SDO for transmission (TxSDO)
1100 Node ID SDO for reception (RxSDO)
1110 Node ID NMT Error Control

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 18

Object Dictionary

The object dictionary collects a lot of important information which can
affect device’s reaction, such as the data accessing through I/O channels, the
communication values and the network states. Essentially, the object
dictionary consists of a group of entry objects, and these entries can be
accessed via the node network in a pre-defined method. Each object entry
within the object dictionary has its own function, for example communication
parameters, device profile, data type (ex. 8-bit Integer, 8-bit unsigned…), and
access type (read only, write only …). All of them are addressed in a 16-bit
index and an 8-bit sub-index. The overall profile of the standard object
dictionary is shown below.

Index Object
0x0000 Reserved

0x0001 - 0x001F Static Data Types

0x0020 - 0x003F Complex Data Types

0x0040 - 0x005F Manufacturer Specific Complex Data Types

0x0060 - 0x007F Device Profile Specific Static Data Types

0x0080 - 0x009F Device Profile Specific Complex Data Types

0x00A0 - 0x0FFF Reserved for further use

0x1000 - 0x1FFF Communication Profile Area

0x2000 - 0x5FFF Manufacturer Specific Profile Area

0x6000 - 0x9FFF Standardized Device Profile Area

0xA000 - 0xBFFF Standardized Interface Profile Area

0xC000 - 0xFFFF Reserved for further use

About the standardized device profile area, it stores the DI, DO, AI and AO

channels of CANopen, especially the entries with indexes 0x6000, 0x6200,
0x6401, and 0x6411. When the CANopen device obtains the input value, these
values will be stored in the 0x6000 and 0x6401 indexes. Furthermore, the
values stored in the 0x6200 and 0x6411 indexes will also output to the DO and
AO channels. The example of basic concept is presented as follows.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 19

Subindex1 : DI Channel 0~7
Subindex2 : DI Channel 8~15

Subindex1 : DO Channel 0~7

Subindex1 : AI Channel 0
Subindex2 : AI Channel 1

Subindex1 : AO Channel 0

DI Standardized Device
Dictionary Object (0x6000)

DO Standardized Device
Dictionary Object (0x6200)

AI Standardized Device
Dictionary Object (0x6401)

AO Standardized Device
Dictionary Object (0x6411)

Practical DI
Channel 0~15

Practical DO
Channel 0~7

Practical AI
Channel 0~1

Practical AO
Channel 0

Hardware
Standardized Device

Profile Area

Application

The application objects control all of the device functions, related to the
interaction with the process environment. It’s just like a medium between the
object dictionary and practical process, such as the analog I/O, digital I/O….

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 20

3.2 SDO Introduction

In order to access the entries in a device object dictionary, service data

objects (SDOs) are provided. By means of the SDO communication method, a
peer-to-peer communication bridge between two devices is established, and
its transmission follows the client-server relationship. The general concept is
shown in the figure below.

Client Server

confirmation responsedata

datarequest indication

The SDO has two kinds of the COB-IDs, RxSDOs and TxSDOs. They can

be viewed in the CANopen device. For example, users send a SDO message
to the CAN-2000C modules by using RxSDO. On the contrary, the devices
CAN-2000C transmit a SDO message by using TxSDOS.

Before the SDO has been used, only the client can take the active
requirement for a SDO transmission. When the SDO client starts to transmit a
SDO, it is necessary to choose a proper protocol.

If the SDO client has to get the information from the device object
dictionary and from the SDO server, the segment upload protocol or block
upload protocol will be applied.

It is worth to be mentioned, the front protocol is used for transmitting fewer
data; the latter protocol is used for transmitting larger data. Both the segment
download protocol and block download protocol will work when the SDO client
wants to modify the object dictionary to the SDO server. The differences
between the segment download protocol and the block download protocol are
similar to the differences between the segment upload protocol and the block
upload protocol. Because of the different access types in the object dictionary,
not all accessing action of the object dictionary via the SDO transmission is
allowed. If the SDO client trends to modify the entries of the SDO server object
dictionary which uses the read-only access type, the abort SDO transfer

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 21

protocol will be given, and the SDO transmission will also be stopped.
The CAN-2000C only supports the SDO server. Therefore, it can be

passive and wait for requests from clients. The general concept figure of the
upload and download protocol with the CAN-2000C is shown as follows.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 22

3.3 PDO Introduction
Based on the transmission data format of the CAN bus, the PDO can

transmit eight bytes of process data at one time. Because of the PDO
messages without overheads, it is more efficient than other communication
objects within CANopen and therefore used for real-time data transfer, such as
DI, DO, AI, AO, etc.

Communication Modes for the PDO

PDO reception or transmission is implemented via the producer/consumer
communication model (also called the push/pull model). When starting to
communicate in the PDO push mode, it needs one CANopen device to play
the role of PDO producer, and non device or more than one device to play the
role of PDO consumer.

The PDO producer sends out the PDO message after it reached the CAN
bus arbitration. Afterwards, each PDO consumer will receive this PDO
message respectively, and then message is processed by each device to
check whether it is needed or not (be dropped). In the PDO pull mode, one of
the PDO consumers needs to send out a remote transmit request to the PDO
producer. According to this remote request message, the PDO producer
responds the corresponding PDO message for each PDO consumer in the
CAN bus. The PDO communication structure figure is shown below.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 23

For the CANopen device, the TxPDO specializes in transmitting data, and
usually is applied on DI/AI channels. The COB-ID of the PDO for receiving
data is RxPDO COB-ID, and it is usually applied on DO/AO channels. Take the
CAN-2000C as an example. If a PDO producer sends a PDO message to the
CAN-2000C, it needs to use the RxPDO COB-ID of the CAN-2000C because it
is a PDO reception action viewed from the CAN-2000C. Inversely, when some
PDO consumers send remote transmit requests to the CAN-2000C, it must
use the TxPDO COB-ID of the CAN-2000C because it is a PDO transmission
action viewed from the CAN-2000C.

Trigger Modes Of PDO

For PDO producers, PDO transmission messages can be trigged by three
conditions. They are the event driven, timer driven and remote request
conditions. All of them are described below.

Event Driven

PDO transmission can be triggered by a specific driven event, including
the following conditions. Under the cyclic synchronous transmission type, the
event is driven by the expiration of the specified transmission period,
synchronized by the reception of the SYNC message.

Moreover, under the acyclic synchronous or asynchronous transmission
type, the PDO transmission can also be triggered or driven by a
device-specified event in the CANopen specification DS-401 v2.1, i.e. by
following this spec, the PDO will be triggered by any change in the DI-channel
states when the transmission type of this PDO is set to acyclic synchronous or
asynchronous.

Timer Driven

PDO transmissions are also triggered by a specific time event, even if a
specified time elapsed without occurrence of an event. For example, the PDO
transmission of the CAN-2000C can be triggered by the event timer of the
PDO communication parameters, which is set by users.

Remote Request

The PDO transmission can be triggered by receiving a remote request
from any other PDO consumer with under the asynchronous or RTR setting.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 24

PDO Transmission Types

Generally there are two kinds of PDO transmission modes, synchronous
and asynchronous. For the PDO in a synchronous mode, it must be triggered
by the reception of a SYNC message.

The synchronous mode can be further distinguished into three kinds of
transmission(s), acyclic synchronous, cyclic synchronous and RTR-only
synchronous. The acyclic synchronous can be triggered by both the reception
of a SYNC message and the driven event mentioned above.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 25

Acyclic synchronous

For the TxPDO object, after receiving an object from the SYNC producer,
the CAN-2000C will respond with a pre-defined TxPDO message to the PDO
consumers. For the RxPDO object, the CAN-2000C needs to receive the
SYNC objects to actuate the RxPDO object, which is received before the
SYNC object. The following figures indicate how the acyclic synchronous
transmission type works on the RxPDO and the TxPDO.

Cyclic synchronous

Inversely, the cyclic synchronous transmission mode is triggered by the
reception of an expected number of SYNC objects, and the max number of

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 26

expected SYNC objects can be 240. For example, if the TxPDO is set to
response when receiving 3 SYNC objects, the CAN-2000C will feed back the
TxPDO object according to the set. For the RxPDO, actuating the DO/AO
channels by the RxPDO is independent of the number of SYNC objects. These
concepts are shown in the figures below.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 27

RTR-only synchronous

The RTR-only synchronous mode is activated when receiving a
remote-transmit-request message, i.e. SYNC objects. This transmission type
is only useful for TxPDO. In this situation, the CAN-2000C will update the DI/AI
value when receiving any SYNC object. And, if the RTR object is received, the
CAN-2000C will respond to the TxPDO object. The following figure shows the
mechanism of this transmission type.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 28

RTR-only asynchronous

The asynchronous mode is independent of the SYNC object. This mode
can also be divided into two parts. There are RTR-only asynchronous
transmission type and asynchronous transmission type. The RTR-only
transmission type is only for supporting TxPDO transmissions, only triggered
by receiving the RTR object from the PDO consumer. This action is depicted
below.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 29

Asynchronous

 The other part is the asynchronous transmission type. Under this type, the
TxPDO message can be triggered by receiving the RTR object and the
device-specified event mentioned in the event driven paragraph. Furthermore,
the DO/AO channels can act directly by receiving the RxPDO object. This
transmission type is the default value when the CAN-2000C boots up. The
concept of the asynchronous type is shown as follows.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 30

Inhibit Time

Because of the arbitration mechanism of the CAN bus, the CANopen
communication object ID in small size has a higher transmission priority than
the bigger one. For example, there are two nodes on the CAN bus, the one
needs to transmit the CAN message with the COB-ID 0x181, and the other has
to transmit the message with COB-ID 0x182. When these two nodes transmit
the CAN message to the CAN bus simultaneously, only the message
containing COB-ID 0x181 can be successfully sent to the CAN bus because of
the higher transmission priority. So the message with COB-ID 0x182 will be
held to transmit until the message with COB-ID 0x181 is successfully
transmitted. This arbitration mechanism can guarantee the successful
transmission for one node when a transmission conflict occurs.

However, if the message with COB-ID 0x181 is continually transmitted,
the message with COB-ID 0x182 will be postponed to be transmitted. In order
to avoid the occupation of the transmission privilege by the message with the
lower COB-ID, the inhibit time parameters for each of the PDO objects are
supported to define a minimum time interval between each PDO message
transmission, which has a multiple of 1ms. During this time interval, the PDO
message will be inhibited from transmission.

Event Timer

This parameter setting on the event timer is only used for TxPDO. If the
parameter of the event timer is not equal to 0 under the transmission type in
asynchronous mode, the expiration of this time value can be just considered to
be an event. This event will cause the TxPDO message transmission. The
event timer parameter is defined as a multiple of 1ms.

PDO Mapping Objects

The PDO mapping objects are provided to the interface which is for PDO
messages and real I/O data in the CANopen device. They define the meanings
for each byte in the PDO message, and may be changed by using a SDO
message. All of the PDO mapping objects are arranged in the Communication
Profile Area. In the CANopen spec (see DS 401), RxPDO and TxPDO default
mapping objects will specify something as follows:

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 31

 There shall be up to 4 TxPDO mapping objects and up to 4 RxPDO

mapping objects with default mappings.
 The 1st RxPDO and TxPDO mapping objects are used for digital

outputs and inputs to each other.
 The 2nd, 3rd, and 4th RxPDO and TxPDO mapping objects are

respectively assigned to record the value of analog outputs and
inputs.

 If a device supports too many digital input or output channels over 8
channels, the related analog default PDO mapping objects remaining
the additional unused digital I/Os will use its additional objects. This
rule with the same concept is used on the additional analog channels.
Take the RxPDO as an example; there are 11 DO and 13 AO object
entries in the object dictionary. Generally in the CAN-2000C, the first
8 DO object entries will be mapped to the first RxPDO mapping object
because one DO object entry needs one byte space. The last 3 DO
object entries will be assigned to the 5th RxPDO according to the
above rules the 2nd and the 3rd. Furthermore, one AO object entry
needs 2 bytes of space. Therefore, the second RxPDO mapping
object has been occupied by the first 4 AO object entries. The
following 4 AO object entries will be assigned to the third RxPDO
mapping object, as well to the 4th RxPDO mapping object. Because
the 5th RxPDO mapping object has been occupied by the DO object
entries, the last AO object entry shall be assigned into the 6th RxPDO
mapping object.

Before applying the PDO communications, the PDO producer and the

PDO consumers must have mutual PDO mapping information. On the one
hand, the PDO producers need PDO mapping information to decide how to
assign the expected practical I/O data to PDO messages. Besides, PDO
consumers need the PDO mapping information to recognize each byte of
received PDO message, i.e. when a PDO producer transmits a PDO object to
PDO consumers, the consumers will contrast this PDO message with PDO
mapping entries, previously obtained from the PDO producer, and then
interpret the meanings of these values from the received PDO object. For
example, if a CANopen device has 16 DI, 8 DO, 2 AI, and 1 AO channels. The
input or output values of these channels will be mutually stored into several
specific entries.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 32

Subindex1 : DI Channel 0~7
Subindex2 : DI Channel 8~15

Subindex1 : DO Channel 0~7

Subindex1 : AI Channel 0
Subindex2 : AI Channel 1

Subindex1 : AO Channel 0

DI Standardized Device
Dictionary Object (0x6000)

DO Standardized Device
Dictionary Object (0x6200)

AI Standardized Device
Dictionary Object (0x6401)

AO Standardized Device
Dictionary Object (0x6411)

1 2 3 4 5 6 70 1 2 3 4 5 6 70

RxPDO Mapping Object TxPDO Mapping Object

According to the PDO mapping objects in the figure above, if this
CANopen device gets the RxPDO message in three bytes, the first byte is for
the output value from the DO channels 0~7, and the following two bytes are for
the analog output value. After interpreting the data of the RxPDO message, the
device will actuate the DO and AO channels by the received RxPDO message.
It is worth to mention that TxPDO also operate in the same procedure as
RxPDO message. When the TxPDO trigger events occur, the CANopen device
will send the TxPDO message to the PDO consumers. The values of the bytes
assigned in the TxPDO message will follow the TxPDO mapping object as
shown in the above figure. The first two bytes of the TxPDO message are
respectively for the values from the DI channels 0~7 and channel 8~15. The
following third and forth bytes of the TxPDO message is for the value 0 of the
AI channel. And the fifth and sixth bytes are for the value 1 of the AI channel.
The relationships among the object dictionary, the PDO mapping object and
the PDO message are given below.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 33

...

TxPDO

DI
 0~

7
DI

 8~
15

AI
 0

A
I 1

TxPDO mapping objects

RxPDO

DO
 0~

7

A
O

 0

} } }

Object Dictionary

Practical I/O
B

yt
e

0

B
yt

e
1

B
yt

e
2

B
yt

e
3

B
yt

e
4

B
yt

e
5

B
yt

e
6

B
yt

e
7

B
yt

e
0

B
yt

e
1

B
yt

e
2

B
yt

e
3

B
yt

e
4

B
yt

e
5

B
yt

e
6

B
yt

e
7

RxPDO mapping objects

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 34

3.4 EMCY Introduction
EMCY messages are triggered when a device internal error occurs, i.e.

after a CANopen device detects the internal error, an emergency message will
be transmitted to the EMCY consumers per time per error event. But the
EMCY message will not be transmitted again if the same error repeatedly
occurs. When error reasons are gone, an emergency message containing the
emergency error code “00 00” will only respond to the specific error fields. So,
by checking the EMCY message, users can understand what happened in the
CAN-2000C, and then do something about the error event.

Please note that only the emergency consumers can receive the EMCY

object, and only the CAN-2000C can support functions of the emergency
producer.

The general concept regarding EMCY communications is shown below.

An emergency message containing 8-byte of data is called emergency

object data. The abbreviated diagram is shown below, and all fields in the
emergency object data will be described in section 5.3.

Byte 0 1 2 3 4 5 6 7

Content Emergency Error Code Error register Manufacturer specific Error Field

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 35

3.5 NMT Introduction

The Network Management (NMT) follows the node-oriented structure and

the master-slave relationship. In the same CAN bus network, only one
CANopen device is allowed to execute the function of NMT master. Each
CANopen node is regarded as a unique NMT slave identified by its node ID
from 1 to 127.

The NMT service supplies two protocols, the module control protocol and

the error control protocol. Through the module control protocol, the nodes can
be controlled to several kinds of status, such as installing, pre-operational,
operational, and stopped. According to the NMT slave can present in different
statuses, it has different privileges to carry out the communication protocol.
Through the error control protocol, users are enabling to detect the remote
error in the network in order to confirm whether the node still works or not.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 36

3.5.1 Module Control Protocols

Before introducing the modules control protocols, the architecture of the

NMT state mechanism needs to be mentioned. The diagram shows the
process and the relationships among each NMT state and the mechanism.

Operational

Initialization

State Mechanism Diagram

Stop

Pre-Operational

Power on or
Hardware reset

(1)

(2)

(4)(3)
(6)

(8)

(5)
(7)

(9)

(1) Under “Power on” or “Hardware Reset”, the initialization state
will be loaded automatically.

(2) As the Initialization accomplished, Pre-Operational state will
be entered automatically

(3),(6) Indication of starting remote node
(4),(7) Indication of entering Pre-Optional State
(5),(8) Indication of stopping remote node
(9) Indication of the “Reset Node” or the “Reset Communication”

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 37

Devices will directly lead to the Pre-Operational state after finishing the
device initialization. Then, the nodes will be switched into different state by
receiving a specific indication. By the way, each different NMT state will
consider a specific communication method. For example, the PDO message
can only do the transmission and receiving in the operational state. In the
following table, the relationship among each NMT state and communication
objects is given.

 Installing Pre-operational Operational Stopped
PDO O
SDO O O
SYNC Object O O
Time Stamp Object O O
EMCY Object O O
Boot-Up Object O
NMT O O O

3.5.2 Error Control Protocols

There are two kinds of protocols defined in the error control protocol.

According to the CANopen spec, one device is not allowed to use the following
error control mechanisms at the same time, Node Guarding Protocol and
Heartbeat Protocol. In addition, the CAN-2000C provides the salve function of
the Node Guarding Protocol for practical applications. Therefore, only node
guarding protocols will be highlighted here, and described below.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 38

Node Guarding Protocol

The Node Guarding Protocol follows the Master/Slave relationship. It
helps users monitoring the node in the CAN bus. The communication method
of node guarding protocol is defined as follows.

 The NMT master will inspect each NMT slave at regular time intervals.
This time-interval is called the node guard time, given by the “guard time * life
time factor”, and may be different from each NMT slave. And the response of
the NMT slave contains the state of that NMT slave, which may be in a
"Stopped", "Operational", or "Pre-operational" state. The node life time
factor can also be different for each NMT slave. If the NMT slave has not been
inspected during its life time, a remote node error will be given, and indicate
through the "Life Guarding Event" service.

In addition, the reported NMT slave state, which does not match the
expected state, will also produce the “Node Guarding Event”. This event may
occur in the DO and AO channels, and output the error mode value, recorded
in the object with index 0x6207 and index 0x6444. Moreover, the object with
index 0x6206 and 0x6443 can control the error mode value of the DO or AO
channels in enabling or disabling when the “Lift Guarding Event” has been
indicated. For more information about objects with index 0x6206, 0x6207,
0x6443, and 0x6444, please refers to the chapter 6.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 39

Heartbeat Protocol

The Heartbeat Protocol follows the Producer/Consumer relationship. It
helps users monitoring the node in the CAN bus. The communication method
of node guarding protocol is defined as follows.

The Heartbeat Protocol defines an Error Control Service without need of

the remote frames. A Heartbeat Producer transmits a Heartbeat message
cyclically. One or more Heartbeat Consumer receives the indication. The
relationship between producer and consumer is configurable via the object
dictionary. The Heartbeat Consumer guards the reception of the Heartbeat
within the Heartbeat Consumer Time. If the Heartbeat is not received within the
Heartbeat Consumer Time a Heartbeat Event will be generated.
 If the Heartbeat Producer Time is configured on a device, the Heartbeat
Protocol begins immediately. It is not allowed for one device to use both error
control mechanisms Guarding Protocol and Heartbeat Protocol at the same
time. If the Heartbeat Producer Time is unequal to 0, the Heartbeat Protocol is
used.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 40

4 Getting Start

When gets a CAN-2000C series module, turn off it and set the proper node
ID and baud rate by using the rotary switch first. Afterwards, reboot the module
and if a CAN tool has received the boot up message of the CAN-2000C
module, it means the module boot up successful. And if not, please check the
baud rate and connect of the module.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 41

5 CANopen Communication Set

In the following section, several CANopen communication protocols are
described. Each protocol description has one corresponding example. Before
the example, users must have one CAN interface device to send out the CAN
command. Therefore, the PISO-CAN200/400 CAN interface card with a 2/4
CAN port PCI will be requested. It provides an easy-to-use utility tool to
sending the CAN 2.0A or 2.0B command. The relationship between the
software and the hardware is shown as follows.

Please refer to the PISO-CAN200/400 user manual to know how to use its

Utility Tool.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 42

5.1 SDO Communication Set

5.1.1 Upload SDO Protocol

Initiate SDO Upload Protocol
Before transferring the SDO segments, the client and server need to

communicate with each other by using the initiate SDO upload protocol. Via
the initiate SDO upload protocol, the SDO client will inform the SDO server
what object the SDO client wants to request. As well, the initiate SDO upload
protocol is permitted to transmit up to four bytes of data. Therefore, if the data
length of the object, which the SDO client can read, is equal to or less than the
permitted data amount, the SDO communication will be finished only by using
the initial SDO upload protocol, i.e. if the data upload is less enough to be
transmitted in the initiate SDO upload protocol, then the upload SDO segment
protocol will not be used. The communication process of this protocol is shown
as follows.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 43

ccs : client command specified

2: initiate upload request
scs : server command specified

2: initiate upload response
n : Only valid if e = 1 and s = 1, otherwise 0. If valid, it indicates the

number of bytes in d that do not contain data. Bytes [8-n, 7] do
not contain segment data.

e : transfer type
0: normal transfer
1: expedited transfer
If the e=1, it means that the data of the object are equal or less
than 4 bytes, and only initiate SDO upload protocol is needed. If
e=0, the upload SDO segment protocol is necessary.

s : size indicator
0: Data set size is not indicated.
1: Data set size is indicated.

m : multiplexer
It represents the index/sub-index of the data to be transfer by
the SDO. The first two bytes are the index value and the last
byte is the sub-index value.

d : data
e=0, s=0: d is reserved for further use.
e=0, s=1: d contains the number of bytes to be uploaded, and

byte 4 contains the least significant bit, and byte 7
contains the most significant bit.

e=1, s=1: d contains the data of length 4-n to be uploaded, the
encoding depends on the type of the data referenced
by index and sub-index.

e=1, s=0: d contains unspecified number of bytes to be
uploaded.

x : not used, always 0
reserved : reserved for further use , always 0

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 44

Upload SDO Segment Protocol

When the upload data length is over 4 bytes, the upload SDO segment
protocol will be needed. After finishing the transmission of the initiate SDO
upload protocol, the SDO client will start to upload the data. The upload SDO
segment protocol will comply with the process shown below.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 45

ccs : client command specified

3: upload segment request
scs : server command specified

0: upload segment response
t : toggle bit

This bit must alternate for each subsequent segment that is
uploaded. The first segment will have the toggle bit set to 0. The
toggle bit will be equal for the request and the response
message.

c : indicates whether there are still more segments to be uploaded
0: more segments to be uploaded.
1: no more segments to be uploaded.

seg-data : It is at most 7 bytes of segment data to be uploaded. The
encoding depends on the type of the data referenced by index
and sub-index.

n : It indicates the number of bytes in seg-data that do not contain
segment data. Bytes [8-n, 7] do not contain segment data. n = 0
if no segment size is indicated.

x : not used, always 0
reserved : reserved for further use , always 0

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 46

SDO Upload Example

The practical application of the SDO upload is illustrated as below.

 In the following paragraph, both expedited transfer and normal
transfer are given according to the procedure described above. In addition, the
method of how to get the value stored in the object dictionary is also presented.
As to the initiate SDO upload protocol, users can obtain how many
sub-indexes the object with index 0x1400 can support. This information is in
the object with index 0x1400 with sub-index 00. As well, users can get the
string in the object with index 0x1008 via the initiate SDO upload protocol and
the upload SDO segment protocol.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 47

 Example for expedited transfer

Step 1. SDO message will be sent to the CAN-2000C to obtain the object entry
with index 0x1400 and sub-index 00 stored in the communication profile area.
The message structure is as follows. Moreover, the node ID of the CAN-2000C
set to 1, and the information about the object entry with index 0x1400 will be
described in the chapter 6.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 00 14 00 00 00 00 00

SDO client
 SDO server

(CAN-2000C)
ccs : 2
m : 00 14 00

According to the low byte has the higher transferred sequence,
the first byte “00” will get the priority than the second byte “14”.
Here the last byte “00” means the sub-index 00.

Step 2. The CAN-2000C will reply to the data stored in the object entry with
index 0x1400 and sub-index 00.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 5 4F 00 14 00 02 -- -- --

SDO client
 SDO server

(CAN-2000C)
scs : 2
n : 3
e : 1
s : 1
m : 00 14 00
d : 02 -- -- --

Because of the n=3, only the 4th byte is valid. Therefore, the
feedback value is 02.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 48

 Example for normal transfer
Step 1. Send the RxSDO message to the CAN-2000C to obtain the object
entry with index 0x1008 and sub-index 00 stored in the communication profile
area. The message structure is as follows. Moreover, the node ID for the
CAN-2000C set to 1, and the information about object entry with index 0x1008
will be described in the chapter 6.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 08 10 00 00 00 00 00

SDO client
 SDO server

(CAN-2000C)
ccs : 2
m : 08 10 00

Step 2. The CAN-2000C will respond to the SDO message with the indication
of how many bytes will be uploaded from the CAN-2000C.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 41 08 10 00 09 00 00 00

SDO client
 SDO server

(CAN-2000C)
scs : 2
n : 0
e : 0
s : 1
m : 08 10 00
d : 09 00 00 00

Because of the e=0 and s=1, the d means how many data users
will upload from the CAN-2000C. The byte “09” is the lowest byte
in the data length with a long format. Therefore, the data “09 00
00 00” means that users will upload 9 bytes data from
CAN-2000C.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 49

Step 3. The CAN-2000C is requested to start the data transmission.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 60 00 00 00 00 00 00 00

SDO client
 SDO server

(CAN-2000C)
ccs : 3

t : 0

Step 4. The CAN-2000C will respond to the first 7 bytes in the index 0x1008
and sub-index 00 object entries.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 00 43 41 4E 2D 32 30 38

SDO client
 SDO server

(CAN-2000C)
scs : 0

t : 0
n : 0
c : 0

seg-data : 43 41 4E 2D 32 30 38
Users can check the chapter 6 to know that the object entry with
index 0x1008 and sub index 00 has the data type
“VISIBLE_STRING”. Therefore, users need to transform these
data values into the corresponding ASCII character. For example,
after transformation, they become “CAN-208”.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 50

Step 5. The CAN-2000C is requested to transmit the rest of the data.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 70 00 00 00 00 00 00 00

SDO client
 SDO server

(CAN-2000C)
ccs : 3

t : 1

Step 6. The rest of the data will be received from the SDO server.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 3 1B 38 00 -- -- -- -- --

SDO client
 SDO server

(CAN-2000C)
scs : 0

t : 1
n : 5
c : 1

seg-data : 38 00 -- -- -- -- --
Because of the n=5, and only the first two bytes are valid, the
value of 0x38 and 0x00 will be transferred to the corresponding
ASCII character. After transformation, it became “8 ”. So the
example object had shown “CAN-2088” string.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 51

5.1.2 Download SDO Protocol

Initiate SDO Download Protocol

The download modes are similar to the upload modes, but different in
some parameters of the SDO messages. They are also separated into two
steps. If the download data length is less than 4 bytes, the download action will
finish in the download initialization protocol. Otherwise, the download segment
protocol will be needed. These two protocols are shown below.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 52

ccs : client command specified

1: initiate download request
scs : server command specified

3: initiate download response
n : Only valid if e = 1 and s = 1, otherwise 0. If valid, it indicates the

number of bytes in d that do not contain data. Bytes [8-n, 7] do
not contain segment data.

e : transfer type
0: normal transfer
1: expedited transfer
If the e=1, it means that the data of the object are equal or less
than 4 bytes, and only initiate SDO download protocol is needed.
If e=0, the download SDO protocol is necessary.

s : size indicator
0: data set size is not indicated
1: data set size is indicated

m : multiplexer
It represents the index/sub-index of the data to be transfer by the
SDO.

d : data
e=0,s=0: d Is reserved for further use.
e=0,s=1: d contains the number of bytes to be downloaded, and

byte 4 contains the least significant bit, and byte 7
contains the most significant bit.

e=1,s=1: d contains the data of length 4-n to be downloaded, the
encoding depends on the type of the data referenced
by index and sub-index.

e=1,s=0: d contains unspecified number of bytes to be
downloaded.

x : not used, always 0
reserved : reserved for further use , always 0

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 53

Download Segment Protocol

ccs : client command specified
0: download segment request

scs : server command specified
1: download segment response

seg-data : It is at most 7 bytes of segment data to be downloaded. The
encoding depends on the type of the data referenced by index
and sub-index.

n : It indicates the number of bytes in segment data that do not
contain segment data. Bytes [8-n, 7] do not contain segment
data. n = 0 if no segment size is indicated.

c : It indicates whether there are still more segments to be
downloaded.
0 more segments to be downloaded
1: no more segments to be downloaded

t : toggle bit
This bit must alternate for each subsequent segment that is
downloaded. The first segment will have the toggle-bit set to 0.
The toggle bit will be equal for the request and the response
message.

x : not used, always 0
reserved : reserved for further use , always 0

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 54

SDO Download Example

When the SDO download example has been applied, the procedure in the
below figure may be applied.

Since all of those object entries, which can be written, in the CAN-2000C
are equal or less than 4 bytes, we can only provide the example for expedited
transfer.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 55

 Example for expedited transfer

Step 1. The Rx SDO message is sent to the CAN-2000C to access the object
entry with index 0x1400 and sub-index 02 stored in the communication profile
area. For example, the value of this object entry is changed to 5, as the node
ID for the CAN-2000C is set to 1.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 14 02 05 00 00 00

SDO client
 SDO server

(CAN-2000C)
ccs : 1
n : 3
e : 1
s : 1
m : 00 14 02
d : 05 00 00 00

Because the n=3, only the 4th byte is valid. Therefore, the
feedback value is 05.

Step 2. The CAN-2000C will reply with the message to finish the data
download. Then, users can use the upload methods to read back the value.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 4 60 00 14 02 -- -- -- --

SDO client
 SDO server

(CAN-2000C)
scs : 3
m : 00 14 02

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 56

5.1.3 Abort SDO Transfer Protocol

In some conditions, the SDO client or SDO server will terminate the SDO
transmission. For example, the value of entries that users want to modify does
not exist or is read-only, even users wouldn’t continue the uncompleted SDO
protocol under some special situations. When these conditions occur, both the
client and the server can be activated to send the Abort SDO Transfer
message. The Abort SDO Transfer protocol is shown below.

cs : command specified

4: abort transfer request
x : not used, always 0
m : multiplexer

It represents index and sub-index of the SDO
d : contains a 4-byte “Abort Code” about the reason for the abort

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 57

Abort Code Description

0503 0000h Toggle bit not alternated.

0504 0000h SDO protocol timed out.

0504 0001h Client/server command specified not valid or unknown.

0504 0002h Invalid block size (block mode only).

0504 0003h Invalid sequence number (block mode only).

0504 0004h CRC error (block mode only).

0504 0005h Out of memory.

0601 0000h Unsupported access to an object.

0601 0001h Attempt to read a write only object.

0601 0002h Attempt to write a read only object.

0602 0000h Object does not exist in the object dictionary.

0604 0041h Object cannot be mapped to the PDO.

0604 0042h
The number and length of the objects to be mapped would exceed

PDO length.

0604 0043h General parameter incompatibility reason.

0604 0047h General internal incompatibility in the device.

0606 0000h Access failed due to a hardware error.

0607 0010h
Data type does not match, length of service parameter does not

match

0607 0012h Data type does not match, length of service parameter too high

0607 0013h Data type does not match, length of service parameter too low

0609 0011h Sub-index does not exist.

0609 0030h Value range of parameter exceeded (only for write access).

0609 0031h Value of parameter written too high.

0609 0032h Value of parameter written too low.

0609 0036h Maximum value is less than minimum value.

0800 0000h General error.

0800 0020h Data cannot be transferred or stored to the application.

0800 0021h
Data cannot be transferred or stored to the application because of

local control.

0800 0022h
Data cannot be transferred or stored to the application because of

the present device state.

0800 0023h

Object dictionary dynamic generation fails or no object dictionary is

present (e.g. object dictionary is generated from file and generation

fails because of a file error).

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 58

Abort SDO Transfer Example
 The object index 0x1008 doesn’t support the sub-index 01 entry.
Therefore, if users read the object entry with index 0x1008 and sub-index 01,
the CAN-2000C will reply the Abort SDO Transfer message. The example is
figured as follows.

Step 1. The Rx SDO message will be sent to the CAN-2000C in order to get
the object entry with index 0x1008 and sub-index 01. The following example is
assumed that the node ID for the CAN-2000C is set to 1.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 08 10 01 00 00 00 00

SDO client
 SDO server

(CAN-2000C)
ccs : 2
m : 08 10 01

Step 2. The CAN-2000C will reply to the Abort SDO message as shown below.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 80 08 10 01 11 00 09 06

SDO client
 SDO server

(CAN-2000C)
cs : 4
m : 08 10 01
d : 11 00 09 06

According to the low byte data have the transferring priority, the
data will be converted to “06 09 00 11”. Therefore, after searching
the Abort Code table described above, this Abort Code can be
interpreted as “Sub-index does not exist”.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 59

5.2 PDO Communication Set

5.2.1 PDO COB-ID Parameters

Before the real-time data are transmitted by the PDO, it is necessary to
check the COB-ID parameter of this PDO in the PDO communication objects.
This parameter setting controls the COB-ID of the PDO communication, which
is in 32 bits, and each bit with its meaning is given in the table follow.

Bit Number Value Meaning
31 (MSB) 0 PDO exits (PDO is valid)

 1 PDO does not exist (PDO is not valid)
30 0 RTR allowed on this PDO
 1 No RTR allowed on this PDO

29 0 11-bit ID (CAN 2.0A)
 1 29-bit ID (CAN 2.0B)

28-11 0 If bit 29=0
 x If bit 29=1: 28-11 bits of 29-bit COB-ID

10-0 (LSB) x 10-0 bits of COB-ID

Note: Only CAN-2000C supports CAN 2.0A.

In the following table, it’s regarding the default PDO COB-ID

parameters.

Default COB-ID of PDO
Number of PDO Bit10~Bit7

(Function Code)
Bit6~Bit0

TxPDO1 0011 Node ID
TxPDO2 0101 Node ID
TxPDO3 0111 Node ID
TxPDO4 1001 Node ID
RxPDO1 0100 Node ID
RxPDO2 0110 Node ID
RxPDO3 1000 Node ID
RxPDO4 1010 Node ID

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 60

Note: 1. Users can also define the PDO COB-ID by themselves. Actually, all
COB-ID can be defined by users except the reserved COB-ID
described in the table of the section 3.1. It is important to avoid the
conflict with the defined COB-ID used in the same node.

2. The PDO COB-ID parameters cannot be changed if the PDO is valid
(bit 31 =0).

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 61

5.2.2 Transmission Type

The transmission type is one of the several parameters defined in PDO
communication objects with sub-index 02. Each PDO has its own transmission
type. The transmission type can indicate the transmission or reception
character for its corresponding PDO. The following table describes the
relationship between the value of the transmission type and the PDO character.
For example, if users used transmission type 0 for the first TxPDO, the
CANopen device will follow the rule of the acyclic and synchronous PDO
transmission.

PDO Transmission method
Transmission

Type cyclic acyclic synchronous asynchronous
RTR
only

0 O O
1-240 O O

241-251 -------------------------reversed-------------------------
252 O O
253 O O
254 O
255 O

Note:
1. The transmission type 1-240 indicates how many SYNC objects the TxPDO

will be triggered. The RxPDO is always triggered by the following SYNC
upon reception of data independent of the transmission types 0-240.

2. The transmission type 252 and 253 are only used for TxPDO. The
transmission type 252 means that the data is updated (but not sent)
immediately after reception of the SYNC object. For these two transmission
types, the PDO is only transmitted on remote transmission requests.

3. For the transmission types 254 and 255, the event timer will be used in the
TxPDO. The PDO, including the DI value, will be sent when the DI value is
changed. And both transmission types will directly trigger an update of the
mapped data when receiving the RxPDO.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 62

5.2.3 PDO Communication Rule

The PDO related objects are indicated from index 0x1400 to 0x1BFF. For

the CAN-2000C, RxPDO communication objects are from index 0x1400 to
index 0x140F, and RxPDO mapping objects are from index 0x1600 to index
0x160F. The ranges of the TxPDO communication objects and the mapping
objects are from index 0x1800 to index 0x180F and from index 0x1A00 to
index 0x1A0F respectively. Moreover, each PDO communication object has its
own PDO mapping object.

For example, the first RxPDO communication object is stored in the entry
with index 0x1400, and the corresponding mapping object is stored in an entry
with index 0x1600. The object with index 0x1401 and the object with index
0x1601 are a group, and so on. The TxPDO also follows the same rules. The
first TxPDO communication object is stored in the entry with 0x1800, and the
corresponding mapping object is in the 0x1A00 entry, and so on. Therefore,
before users access the practical I/O channels via PDO communication, each
parameter for the PDO communications and mapping objects must be
controlled.

Besides, only PDO communications can be used in the NMT operational
state. Users can use the NMT module control protocol to change the NMT
state of the CAN-2000C. It is described in the section 5.4. Besides, during
communication via the PDO messages, the data length of the PDO message
must match with the PDO mapping object. If the data length ‘L’ of the PDO
message exceeds the total bytes ‘n’ of the PDO mapping object entries, only
the first 'n' bytes of the PDO message are used by the PDO consumer. If ‘L’ is
less than 'n', the PDO message will not be disposed by the PDO consumer,
and an Emergency message with error code 8210h will be transmitted to the
PDO producer. The PDO communication set is shown as follows.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 63

COB-ID : the default PDO COB-ID, or the PDO COB-ID can be defined by

user
L : the data length about how many bytes the PDO message has

PDO-msg : the real-time data or the data which can be mapped into the
PDO mapping objects

COB-ID : the default PDO COB-ID, or the PDO COB-ID defined by users
L : the data length about how many bytes the PDO message has

PDO-msg : the real-time data or the data which can be mapped into the
PDO mapping objects

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 64

PDO Communication Example
 To take a look at a PDO communication demo, some CAN-2000C
modules will be needed. They are CAN-2057C, CAN-2053C, CAN-2024C and
CAN-2017C. Connect each I/O channels for these modules as following figure.

Please use rotary switch to set the node ID from 1 to 4, and CAN bus

baud rate to 125Kbps. Moreover, refer to manuals of these modules to set the
CAN-2024C and CAN-2017C input/output range to -10V~+10V. The four
modules’ information is as below.

PDO information:
Node Name PDO Type COB-ID Transmission Inhibit Time Event Timer

1 CAN-2057C Rx PDO 0x201 0xFF 0x00 0x00

3 CAN-2024C Rx PDO 0x303 0xFF 0x00 0x00

2 CAN-2053C Tx PDO 0x182 0xFF 0x00 0x00

4 CAN-2017C Tx PDO 0x284 0xFF 0x00 0x00

4 CAN-2017C Tx PDO 0x384 0xFF 0x00 0x00

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 65

PDO I/O mapping information:
COB-ID Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x201 DO 0~7 DO 8~15

0x303 AO 00_L AO 0_H AO 1_L AO 1_H AO 2_L AO 2_H AO 3_L AO 3_H

0x182 DI 0~7 DI 8~15

0x284 AI 0_L AI 0_H AI 1_L AI 1_H AI 2_L AI 2_H AI 3_L AI 3_H

0x384 AI 4_L AI 4_H AI 5_L AI 5_H AI 6_L AI 6_H AI 7_L AI 7_H

SDO I/O channels Information:

Name CAN-2057C CAN-2024C CAN-2053C CAN-2017C
Node 1 3 2 4
Index 0x6200 0x6411 0x6000 0x6401

Description DO AO DI AI
Sub-Index 0 2 4 2 8
Sub-Index 1 00 ~ 07 ch 00 ch 00 ~ 07 ch 00 ch
Sub-Index 2 07 ~ 15 ch 01 ch 07 ~ 15 ch 01 ch
Sub-Index 3 02 ch 02 ch
Sub-Index 4 03 ch 03 ch
Sub-Index 5 04 ch
Sub-Index 6 05 ch
Sub-Index 7 06 ch
Sub-Index 8 07 ch

After concluding the above preparations, the several functions of PDO

communication will be introduced as follows.

 The function of accessing digital/analog I/O with asynchronous PDO.
 The function by using Event Timer to obtain the input value.
 The function of the acyclic and synchronous RxPDO.
 The function of the acyclic and synchronous TxPDO.
 The function of the cyclic and synchronous TxPDO.
 The function of the synchronous and RTR-only TxPDO.
 The function of the asynchronous and RTR-only RxPDO.
 The function of the dynamic PDO mapping for DI/AI/DO/AO channels

Before describing the example, the step0 must be checked. And the
default COB-ID for each communication object is assumed to be being used.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 66

Step0: The following message must be sent in order to change the NMT state
of the CAN-2000C first, because only the PDO communication can run under
the NMT Operational state.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 8 01 01 00 00 00 00 00 00

NMT master
 NMT slave

(CAN-2000C)
cs : 1

Node ID : 1

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 67

 Access Digital I/O & Analog I/O

Step 1. In order to change the DO value of the CAN-2057C to be 0x1234,
users must send the PDO message by using the first RxPDO.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 34 12 00 00 00 00 00 00

PDO
producer

 PDO consumer
(CAN-2057C)

COB-ID : 0x201
L : 8

PDO-msg : 34 12 00 00 00 00
Only the first two bytes are valid, even if the L is set to 8,
because the data in the first RxPDO contains only two bytes.
According to the PDO mapping table shown above, the first byte
is for the DO0~DO7 channel values of the CAN-2057. The
second byte is for the DO8~DO15 channel values of the
CAN-2057C.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 68

Step 2. Because of the change of the DI-channel status, the TxPDO is
transmitted automatically when the transmission type is 255, based on the
CANopen spec 401. Then, users will receive the 1st TxPDO message.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 0 2 34 12 -- --- -- -- -- --

PDO
consumer

 PDO consumer
(CAN-2053C)

COB-ID : 0x182
L : 2

PDO-msg : 34 12 -- -- -- -- -- --
Because the data length is 2, only the first two bytes are valid.
The DI value will be 1 if the DI is OFF, according to the character
of the CAN-2053C DI channels. Therefore, the first byte
indicates that the DI2, DI4, and DI5 of the CAN-2053C are in ON
state. The second byte shows that the DI9 and DI12 of the
CAN-2053C are in ON state.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 69

Step 3. In order to output 5V to the AO0 of the CAN-2024C, users must send
the PDO message by using the 2nd RxPDO.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0 1 1 0 8 FF 3F 00 00 00 00 00 00

PDO
producer

 PDO consumer
(CAN-2024C)

COB-ID : 0x303
L : 8

PDO-msg : FF 3F 00 00 00 00 00 00
The first two bytes are for AO channel 0, and the others are for
AO channel 1, 2 and 3. Users need to transfer the float value to
hex format because only the CAN-2000C supports the hex
format. The output range of the CAN-2024C is -10V~10V.
According to the transformation table stored in the appendix
table, the mapping hex-format range is from 0x8000 (-32768) to
0x7FFF (32767). Therefore, the 5V is mapped to the 0x3FFF by
applying following equation.

()

FFFx
VV
VVHexValue

301638325.16383

)32768()32768(32767
)10(10
)10(5

=≈=

−+−−∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

=

The first two bytes of the PDO message will be filled with “FF”
and “3F”. All the other AI channels are set to 0V. Then, the value
“00 00” will be given for these channels. For more details about
how to transfer the value between the hex and float, please refer
to the user manual of the I/O module of CAN-2000C series
products.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 70

Step 4. Even the AI input value has been changed according the AO value, the
RxPDO will not respond automatically in the CAN-2017C. Therefore, users
need to use the RTR message from the 2nd TxPDO to read back the AI value.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 1 0 0 1 0 00 00 00 00 00 00 00 00

PDO
consumer

 PDO consumer
(CAN-2017C)

COB-ID : 0x284

Step 5. The feedback value for AI is 5V.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 0 0 1 0 8 00 40 FD FF FD FF FD FF

PDO
consumer

 PDO consumer
(CAN-2017C)

COB-ID : 0x284
L : 8

PDO-msg : 00 40 FD FF FD FF FD FF
The first two bytes are for AI channel 0. The others are for AI
channel 1, 2, and 3. The feedback AI0 value is 0x4000. All the
other AI channels are 0xFFFD. Users need to transfer this AI0
value to float. The CAN-2017C’s input float range is set to -10V ~
+10V and the input hex range is from 0x8000 (-32768) to 0x7FFF
(32767). The value 0x4000 (16384) can be transferred by using
the following equation.

()
() ()() ()

V

VVVFloatValue

001.5

101010
3276832767
3276816384

≈

−+−−∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

=

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 71

 Event Timer Functionality

Step 6. Users can use the SDO to change the event timer of the 2nd TxPDO to
1000, stored in index 0x1801 with sub-index 5. In addition, the value 1000
means 1 second according to the event timer is ms,

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 1 0 0 0 8 2B 01 18 05 E8 03 00 00

SDO client
 SDO server

(CAN-2017C)
ccs : 1
n : 2
e : 1
s : 1
m : 01 18 05
d : E8 03 00 00

The value 0x03E8 is equal to 1000. Because the n=2, the last two
bytes “00 00” is useless.

Step 7. The CAN-2017C will response the message to finish the data
download.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 1 0 0 0 4 60 01 18 05 -- -- -- --

SDO client
 SDO server

(CAN-2017C)
scs : 3
m : 01 18 05

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 72

Step 8. After changing the value of the event timer, the AI value will be
automatically transmitted per second. The example below shows that at the
first time the 2n TxPDO message is received.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 1 0 0 0 8 00 40 FD FF FF FF FF FF

PDO
consumer

 PDO producer
(CAN-2017C)

COB-ID : 0x284
L : 8

PDO-msg : 00 40 FD FF FF FF FF FF

Step 9. The following example shows that at the second time the 2nd TxPDO
message is received.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 1 0 0 0 8 06 40 FF FF FF FF FF FF

PDO
consumer

 PDO producer
(CAN-2017C)

COB-ID : 0x284
L : 8

PDO-msg : 06 40 FF FF FF FF FF FF
The value of 0x4006 is equal to 5.002V. The AI value is changed
because of the noise disturbance or other factors.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 73

Step 10. It shows that at the third time for the 2nd TxPDO message is received.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 0 1 0 0 0 8 00 40 FF FF FD FF FF FF

PDO
consumer

 PDO producer
(CAN-2017C)

COB-ID : 0x284
L : 8

PDO-msg : 00 40 FF FF FD FF FF FF

Step 11. Users can set the event timer to 0 to finish the event timer test.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 1 0 0 0 8 2B 01 18 05 00 00 00 00

SDO client
 SDO server

(CAN-2017C)
ccs : 1
n : 2
e : 1
s : 1
m : 01 18 05
d : 00 00 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 1 0 0 0 4 60 01 18 05 -- -- -- --

SDO client
 SDO server

(CAN-2017C)
scs : 3
m : 01 18 05

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 74

 Transmission Type 0 for the first RxPDO
Step 12. Users can set the transmission type of the first RxPDO to 0.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 14 02 00 00 00 00

SDO client
 SDO server

(CAN-2057C)
ccs : 1
n : 3
e : 1
s : 1
m : 00 14 02
d : 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 4 60 00 14 02 -- -- -- --

SDO client
 SDO server

(CAN-2057C)
scs : 3
m : 00 14 02

Step 13. Change the DO value of the CAN-2057C to be 0x5678 by using the
1st RxPDO.

 11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 78 56 00 00 00 00 00 00

PDO
producer

 PDO consumer
(CAN-2057C)

COB-ID : 0x201
L : 8

PDO-msg : 78 56 00 00 00 00 00 00

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 75

Step 14. The DO value isn’t changed immediately according to the character of
the transmission type 0. Meanwhile, the SYNC message is needed to trigger
the action of the 1st RxPDO.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 -- -- -- --- --- -- -- --

SYNC
producer

 SYNC consumer
(CAN-2057C)

COB-ID : 0x80
The message of the SYNC object is always fixed as the format
described above. The COB-ID of the SYNC object can be
changed arbitrarily. It complies with the producer/consumer
relationship.

Step 15. After transmitting the SYNC object, the 1st RxPDO is triggered. The
DI value is also changed at the same time. Hence, users can receive the 1st
TxPDO from CAN-2053C.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 0 2 78 56 -- -- -- -- -- --

PDO
consumer

 PDO producer
(CAN-2053C)

COB-ID : 0x182
L : 2

PDO-msg : 78 56 -- -- -- -- -- --

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 76

Step 16. Users can set the transmission type of the first RxPDO to 255 to finish
the test.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 00 14 02 FF 00 00 00

SDO client
 SDO server

(CAN-2057C)
ccs : 1
n : 3
e : 1
s : 1
m : 00 14 02
d : FF 00 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 4 60 00 14 02 -- -- -- --

SDO client
 SDO server

(CAN-2057C)
scs : 3
m : 00 14 02

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 77

 Transmission Type 0 for the first TxPDO

Step 17. Users can set the transmission type of the first TxPDO to 0.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 1 0 0 8 2F 00 18 02 00 00 00 00

SDO client
 SDO server

(CAN-2053C)
ccs : 1
n : 3
e : 1
s : 1
m : 00 18 02
d : 00 00 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 1 0 0 4 60 00 18 02 -- -- -- --

SDO client
 SDO server

(CAN-2053C)
scs : 3
m : 00 18 02

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 78

Step 18. Users can change the DO value of the CAN-2057C to be 0x90AB by
using the first RxPDO.

 11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 AB 90 00 00 00 00 00 00

PDO
producer

 PDO consumer
(CAN-2057C)

COB-ID : 0x201
L : 8

PDO-msg : AB 90 00 00 00 00 00 00

Step 19. The first TxPDO will not be transmitted immediately even if the DI
value is changed according to the character of the transmission type 0. In
addition, the SYNC message is needed to trigger the action of the first TxPDO.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

SYNC
producer

 SYNC consumer
(CAN-2053C)

COB-ID : 0x80

Step 20. After transmitting the SYNC object, the 1st TxPDO is triggered, and
users can receive the 1st TxPDO from CAN-2053C.

 11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 0 2 90 AB -- -- -- -- -- --

PDO
consumer

 PDO producer
(CAN-2053C)

COB-ID : 0x182
L : 2

PDO-msg : 90 AB -- -- -- -- -- --

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 79

Step 21. Users can send the SYNC message again.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

SYNC
producer

 SYNC consumer
(CAN-2053C)

SYNC
COB-ID

: 0x80

Step 22. Nothing happened because the DI values were not changed. This is
the main difference between transmission type 0 and 1. (Under the
transmission type 1, the TxPDO is always transmitted no matter whether the
DI values are changed or not, when the CAN-2000C modules receives the
SYNC object.)

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 80

 Transmission Type 3 for the first TxPDO

Step 23. Users can set the transmission type of the first TxPDO to 3.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 1 0 0 8 2F 00 18 02 03 00 00 00

SDO client
 SDO server

(CAN-2053C)
ccs : 1
n : 3
e : 1
s : 1
m : 00 18 02
d : 03 00 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 1 0 0 4 60 00 18 02 -- -- -- --

SDO client
 SDO server

(CAN-2053C)
scs : 3
m : 00 18 02

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 81

Step 24. Users can change the DO value of the CAN-2057C to be 0xCDEF by
using the first RxPDO.

 11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 EF CD 00 00 00 00 00 00

PDO
producer

 PDO consumer
(CAN-2057C)

COB-ID : 0x201
L : 8

PDO-msg : EF CD 00 00 00 00 00 00

Step 25. The SYNC message has to be transmitted in 3 times according to the
character of transmission type 3.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

SYNC
producer

SYNC consumer
(CAN-2053C)

COB-ID : 0x80

Step 26. After finishing the transmission of the three SYNC objects, the first
TxPDO will be triggered, and users will receive the first TxPDO from
CAN-2053C.

 11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 0 2 EF CD --- --- --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2053C)

COB-ID : 0x182
L : 2

PDO-msg : EF CD -- -- -- -- -- --

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 82

 Transmission Type 252 for the first TxPDO

Step 27. Users can set the transmission type of the first TxPDO to 252.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 1 0 0 8 2F 00 18 02 FC 00 00 00

SDO client
 SDO server

(CAN-2053C)
ccs : 1
n : 3
e : 1
s : 1
m : 00 18 02
d : FC 00 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 1 0 0 4 60 00 18 02 -- -- -- --

SDO client
 SDO server

(CAN-2053C)
scs : 3
m : 00 18 02

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 83

Step 28. Users can change the DO value of the CAN-2057C to be 0x1234 by
using the first RxPDO.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 34 12 00 00 00 00 00 00

PDO
producer

 PDO consumer
(CAN-2057C)

COB-ID : 0x201
L : 8

PDO-msg : 34 12 00 00 00 00 00 00

Step 29. The fist TxPDO will not be transmitted immediately according to the
transmission type 252. Meanwhile, it will send the RTR message of the first
TxPDO.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 1 0 --- --- --- --- --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2053C)

COB-ID : 0x182

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 84

Step 30. The feedback DI values is out-of-date. (Users can see the LEDs
status on the CAN-2053C to confirm the practical DI values).

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 0 2 34 12 00 00 00 00 00 00

PDO
consumer

 PDO producer
(CAN-2053C)

COB-ID : 0x182
L : 2

PDO-msg : 34 12 00 00 00 00 00 00

Step 31. Transmit a SYNC message.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

SYNC
producer

 SYNC consumer
(CAN-2053C)

COB-ID : 0x80

Step 32. Users can send the RTR message of the first TxPDO again.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 1 0 --- --- --- --- --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2053C)

COB-ID : 0x182

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 85

Step 33. The feedback DI values will be the real DI values.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 0 2 34 12 --- --- --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2053C)

COB-ID : 0x182
L : 2

PDO-msg : 34 12 -- -- -- -- -- --

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 86

 Transmission Type 253 for the first TxPDO
Step 34. Users can set the transmission type of the first TxPDO to 253.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 1 0 0 8 2F 00 18 02 FD 00 00 00

SDO client
 SDO server

(CAN-2053C)
ccs : 1
n : 3
e : 1
s : 1
m : 00 18 02
d : FD 00 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 1 0 0 4 60 00 18 02 -- -- -- --

SDO client
 SDO server

(CAN-2053C)
scs : 3
m : 00 18 02

Step 35. Users can change the DO value of the CAN-2057C to be 0x5678 by
using the first RxPDO.

 11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 8 78 56 00 00 00 00 00 00

PDO
producer

 PDO consumer
(CAN-2057C)

COB-ID : 0x201
L : 8

PDO-msg : 78 56 00 00 00 00 00 00

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 87

Step 36. According to the transmission type 253, only the first TxPDO can be
transmitted when receiving the RTR message. So, users can send the RTR
message to get DI values. Then, the CAN-2053C will reply with digital input
status.

 11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 1 0 --- --- --- --- --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2053C)

COB-ID : 0x182

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 0 1 0 0 2 78 56 --- --- --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2053C)

COB-ID : 0x182
L : 2

PDO-msg : 78 56 -- -- -- -- -- --

Step 37. Set the transmission type of the 1st TxPDO to 255 to finish the test.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 1 0 0 8 2F 00 18 02 FF 00 00 00

SDO client
 SDO server

(CAN-2053C)
ccs : 1
n : 3
e : 1
s : 1
m : 00 18 02
d : FF 00 00 00

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 88

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 1 0 0 4 60 00 18 02 -- -- -- --

SDO client
 SDO server

(CAN-2053C)
scs : 3
m : 00 18 02

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 89

 Dynamic PDO Mapping for DI/AI/DO/AO Channels
Step 38. Users can use the 5th TxPDO of CAN-2017C to create a new PDO
communication with PDO COB-ID 0x333, which is useless for others
CANopen device for AI channel 2 and 5. Before setting the COB-ID of a PDO,
users have to check the bit 31 of the COB-ID first. Only the COB-ID with the
value 0 on the bit 31 can be changed. So the COB-ID can be configured
directly according to the 5th TxPDO is invalid.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 1 0 0 0 8 23 05 18 01 33 03 00 00

SDO client
 SDO server

(CAN-2017C)
ccs : 1
n : 0
e : 1
s : 1
m : 05 18 01
d : 33 03 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 1 0 0 0 4 60 05 18 01 --- --- --- ---

SDO client
 SDO server

(CAN-2017C)
scs : 3
m : 05 18 01

Step 39. Users can create a new PDO mapping object for the 5th TxPDO.
Before getting the device objects into the index 0x1A05, users have to check
the value of the index 0x1A05 with sub-index 00. If the value is not equal to 0,
any modification will be rejected. In this case, it is necessary to have the value
in 0. Therefore, users have to fill the AI2 and AI5 of the CAN-2017C into the
index 0x1A05 with sub-index 01 and 02.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 90

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 1 0 0 0 8 23 05 1A 01 10 03 01 64

SDO client
 SDO server

(CAN-2017C)
ccs : 1
n : 0
e : 1
s : 1
m : 05 1A 01
d : 10 03 01 64

The value “10 03 01 64” means the mapped object is stored in the
index 0x6401 with sub-index 03. It is a 16-bit data unit. Users can
check this object in the Standardize object mapping table
described above. It is mapped according to the AI2 of the
CAN-2017C. In CAN-2017C, all analog channels are presented
by 16-bit value.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 1 0 0 0 4 60 05 1A 01 --- --- --- ---

SDO client
 SDO server

(CAN-2017C)
scs : 3
m : 05 1A 01

Step 40. According to the purposes, users have to fill the AI5 of the
CAN-2017C into the index 0x1A05 with sub-index 02 respectively.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 91

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 1 0 0 0 8 23 05 1A 02 16 06 01 64

SDO client
 SDO server

(CAN-2017C)
ccs : 1
n : 0
e : 1
s : 1
m : 05 1A 02
d : 10 06 01 64

The value “10 06 01 64” means the mapped object is stored in the
index 0x6401 with sub-index 06. It is a 16-bit data unit. Users can
check this object in the Standardize object mapping table
described above. It is mapped according to the AI5 of the
CAN-2017C.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 1 0 0 0 4 60 05 1A 02 --- --- --- ---

SDO client
 SDO server

(CAN-2017C)
scs : 3
m : 05 1A 02

Step 41. In order to use this PDO mapping object normally, the value of the
index 0x1A05 with sub-index 00 must be changed to 2. The value 2 means
there are 2 objects mapped to the 5th TxPDO. They are the index 0x6401 with
sub-index 03 and index 0x6401 with sub-index 06.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 92

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 1 0 0 0 8 2F 05 1A 00 02 00 00 00

SDO client
 SDO server

(CAN-2017C)
ccs : 1
n : 3
e : 1
s : 1
m : 05 1A 00
d : 02 00 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 1 0 0 0 4 60 05 1A 00 --- --- --- ---

SDO client
 SDO server

(CAN-2017C)
scs : 3
m : 05 1A 00

Step 42. Users can use the 5th RxPDO of CAN-2024C to create a new PDO
communication with PDO COB-ID 0x222 for AO2 and AO5, and create the
RxPDO mapping object in the index 0x1605 because the COB-ID 0x222 is not
available for the CAN-2024C. This procedure is similar to the steps 37 to 40.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 93

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 1 1 0 8 23 05 14 01 22 02 00 00

SDO client
 SDO server

(CAN-2024C)
ccs : 1
n : 0
e : 1
s : 1
m : 05 14 01
d : 22 02 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 1 1 0 4 60 05 14 01 --- --- --- ---

SDO client
 SDO server

(CAN-2024C)
scs : 3
m : 05 14 01

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 1 1 0 8 23 05 16 01 16 03 11 64

SDO client
 SDO server

(CAN-2024C)
ccs : 1
n : 0
e : 1
s : 1
m : 05 16 01
d : 10 03 11 64

The value “10 03 11 64” means the mapped object is stored in the
index 0x6411 with sub-index 03. It is a 16-bit data unit. Users can
check this object in the Standardize object mapping table
described above. It is mapped to the AO2 for CAN-2024C.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 94

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 1 1 0 4 60 05 16 01 --- --- --- ---

SDO client
 SDO server

(CAN-2024C)
scs : 3
m : 05 16 01

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 1 1 0 8 23 05 16 02 16 06 11 64

SDO client
 SDO server

(CAN-2024C)
ccs : 1
n : 0
e : 1
s : 1
m : 05 16 02
d : 10 06 11 64

The value “10 06 11 64” means the mapped object is stored in the
index 0x6411 with sub-index 06. It is a 16-bit data unit. Users can
check this object in the Standardize object mapping table
described above. It is mapped according to the AO5 of the
CAN-2024C.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 1 1 0 4 60 05 16 02 --- --- --- ---

SDO client
 SDO server

(CAN-2024C)
scs : 3
m : 05 16 02

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 95

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 1 1 0 8 2F 05 16 00 02 00 00 00

SDO client
 SDO server

(CAN-2024C)
ccs : 1
n : 3
e : 1
s : 1
m : 05 16 00
d : 02 00 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 1 1 0 4 60 05 16 00 --- --- --- ---

SDO client
 SDO server

(CAN-2024C)
scs : 3
m : 05 16 00

Step 43. Transform the AO2 and AO5 of CAN-2024C to be 0V and 5V
respectively.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 0 0 1 0 0 0 1 0 0 4 00 00 FF 3F --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2024C)

COB-ID : 0x222
PDO-msg : 00 00 FF 3F -- -- -- --

The first two bytes are assigned to the value 0x0000 of the AO2
of the CAN-2024C. The 3rd and 4th bytes are assigned to the
value 0x3FFF for the AO5 of the CAN-2024C. Total bytes of this
PDO message are 4.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 96

Step 44. Users can send a RTR message to get the AI value with COB-ID
0x333.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 1 0 0 1 1 0 0 1 1 1 0 --- --- --- --- --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2017C)

COB-ID : 0x333

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 1 1 0 0 0 0 1 0 1 0 4 FF FF 00 40 --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2017C)

COB-ID : 0x333
L : 4

PDO-msg : FF FF 00 40 -- -- -- --
The first two bytes are assigned to the value 0xFFFF for the AI2
of the CAN-2017C. The 3rd and 4th bytes are assigned to the
value 0x4000 for the AI5 of the CAN-2017C. After transferring,
the input value of the AI2 is -0.001V and AI5 is 5.000V.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 97

5.3 EMCY Communication Set

5.3.1 EMCY COB-ID Parameter

The EMCY COB-ID is similar to the PDO COB-ID. It can be a default value
or can be the value defined by users via SDO communication methods. This
COB-ID is stored in the object 0x1014, and the data format is shown in the
following table. Before using the EMCY mechanism, bit 31 of the EMCY
COB-ID needs to be confirmed.

Bit Number Value Meaning
31 (MSB) 0 EMCY exits (EMCY is valid)

 1 EMCY does not exist (EMCY is not valid)
30 0 reserved (always 0)
29 0 11-bit ID (CAN 2.0A)
 1 29-bit ID (CAN 2.0B)

28-11 0 If bit 29=0
 x If bit 29=1: 28-11 bits of 29-bit COB-ID

10-0 (LSB) x 10-0 bits of COB-ID

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 98

5.3.2 EMCY Communication

The EMCY message is triggered when some internal error occurs. After

the transmission of one EMCY message, the object with index 0x1003 will
record this EMCY event. Therefore, users can track the error’s occurrences.
The CAN-2000C supports the maximum of 5 records stored in the index
0x1003 object. The sub-index 1 of this object will store the last EMCY event,
and sub-index 5 will record the most previous EMCY event. The EMCY
communication set is given below.

COB-ID : the EMCY COB-ID
The EMCY COB-ID can be defined by users. This situation is
similar to the PDO COB-ID. The default value is 4-bit function
code “0001” with 7-bit node ID.

EMCY-msg : record the type or the class of the occurrence error

The data format of the emergency object data complies with the structure

bellows.

Byte 0 1 2 3 4 5 6 7

Content Emergency Error Code Error register Manufacturer specific Error Field

Each bit on the error register is defined as follows. Only the CAN-2000C

supports bit 0, bit 4 and bit 7.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 99

Bit Meaning
0 generic error
1 current
2 voltage
3 temperature
4 communication error (overrun, error state)
5 device profile specific
6 reserved (always 0)
7 manufacturer specific

The emergency error codes and the error register are specified in the

following table.

Emergency

Error Code

Manufacturer Specific Error

Field

High

Byte

Low

Byte

Error

Register

First Two

Byte

Last Three

Byte

Description

00 00 00 00 00 00 00 00 Error Reset or No Error

10 00 81 01 00 00 00 00 CAN Controller Error Occur

50 00 81 02 00 00 00 00 EEPROM Access Error

81 10 11 04 00 00 00 00 Soft Rx Buffer Overrun

81 10 11 05 00 00 00 00 Soft Tx Buffer Overrun

81 10 11 06 00 00 00 00 CAN Controller Overrun

81 30 11 07 00 00 00 00 Lift Guarding Fails

81 40 11 08 00 00 00 00 Recover from bus off

82 10 11 09 00 00 00 00 PDO Data length Error

FF 00 80 0A 00 00 00 00 Request to reset Node or

communication

After producing the EMCY message, the emergency object data will be saved
to the object with index 0x1003, and the error register of the emergency object
data will be mapped to object 0x1001. Therefore, users can use these two
objects to view what happened in the CAN-2000C and check the error history.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 100

EMCY Communication Example
Before starting the example, a CAN-2000C module with more than

8-channels DO or 1-channel AO, like CAN-2057C is needed. Here, the same
hardware configuration shown in the PDO example is used for the EMCY
communication.

Step 1. In order to generate the emergency event, it’s necessary to send the
data to RxPDO1 with data length 1.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 1 00 --- --- --- --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2057C)

COB-ID : 0x201
L : 1

PDO-msg : 00

Step 2. Then, the CAN-2057C will reply to an emergency message based on
the PDO data length of TxPDO1 doesn’t correspond to the value defined in the
PDO mapping object.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 1 0 8 10 82 11 09 00 00 00 00

EMCY
consumer

 EMCY producer
(CAN-2057C)

COB-ID : 0x81
EMCY-msg : 10 82 11 09 00 00 00 00

The first two bytes “10 82” are for the emergency error codes.
The 3rd byte “11” is for the error register, i.e. the CAN-2057C has
either a communication or a generic error. The last five bytes “09
00 00 00 00” are for the manufacturer specific errors. This
emergency message means that the data length of TxPDO
doesn’t correspond to the value defined in the PDO mapping
object.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 101

Step 3. After recognizing the 0x1003 object with sub-index 01, users will get
emergency error codes of the emergency object data recording in this object.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 03 10 01 00 00 00 00

SDO client
 SDO server

(CAN-2057C)
ccs : 2
m 03 10 01

Step 4. The CAN-8423 will reply to the ending message.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 43 03 10 01 10 82 09 00

SDO client
 SDO server

(CAN-2057C)
scs : 2
n : 0
e : 1
s : 1
m : 03 10 01
d : 10 82 09 00

Step 5. Users have to check the object 0x1001, and make sure that the
communication and generic errors on the error register are indicated.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 01 10 00 00 00 00 00

SDO client
 SDO server

(CAN-2057C)
ccs : 2
m 01 10 00

Step 6. The communication and generic errors on the error register are
indicated in the received message.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 102

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 5 4F 01 10 00 11 --- --- ---

SDO client
 SDO server

(CAN-2057C)
scs : 2
n : 3
e : 1
s : 1
m : 01 10 00
d : 11 -- -- --

Step 7. Users can send the data to RxPDO1 with data length 2. Then, the
EMCY message containing the error reset information will be received.
Because the value of TxPDO is the same with the previous one, the DO
channels will not change.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 0 1 0 2 00 00 --- --- --- --- --- ---

PDO
consumer

 PDO producer
(CAN-2057C)

COB-ID : 0x201
L : 2

PDO-msg : 00 00 -- -- -- -- -- --

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 0 0 1 0 8 00 00 00 00 00 00 00 00

NMT master
 NMT slaver

(CAN-2057C)
EMCY-msg : 00 00 00 00 00 00 00 00

The data “00 00 00 00 00 00 00 00” are for the error reset EMCY
message, i.e. CAN-2057C has no error now.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 103

Step 9. Users have to check the index 0x1003 with sub-index 01 again. Then,
the error reset emergency code should be recorded.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 03 10 01 00 00 00 00

SDO client
 SDO server

(CAN-2057C)
ccs : 2
m 03 10 01

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 43 03 10 01 --- --- --- ---

SDO client
 SDO server

(CAN-2057C)
ccs : 1
n : 0
e : 1
s : 1
m : 03 10 01
d : -- -- -- --

Step 10. Users have to check the index 0x1003 with sub-index 02. Then, the
received emergency error code had been recorded in the emergency object
data.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 03 10 02 00 00 00 00

SDO client
 SDO server

(CAN-2057C)
ccs : 2
m : 03 10 02

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 104

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 43 03 10 02 10 82 09 00

SDO client
 SDO server

(CAN-2057C)
ccs : 1
n : 0
e : 1
s : 1
m : 03 10 02
d : 10 82 09 00

Step 11. Users have to confirm the error register stored in index 0x1001. The
value should be 0 now.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 40 01 10 00 00 00 00 00

SDO client
 SDO server

(CAN-2057C)
ccs : 2
m 01 10 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 8 4F 01 10 00 00 --- --- ---

SDO client
 SDO server

(CAN-2057C)
ccs : 1
n 2
e 1
s 1
m : 01 10 00
d : 00 -- -- --

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 105

5.4 NMT Communication Set

5.4.1 Module Control Protocol

The NMT communication set can be applied for changing the NMT slave
status. The following figure shows how to change the different NMT statuses
for the CAN-2000C.

Start Remote Node Protocol

cs : NMT command specified

1: start
Node ID : the node ID of the NMT slave device

Stop Remote Node Protocol

cs : NMT command specified
2: stop

Node ID : the node ID of the NMT slave device

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 106

Enter Pre-Operational Protocol

cs : NMT command specified
128: enter PRE-OPERATIONAL

Node ID : the node ID of the NMT slave device

Reset Node Protocol

cs : NMT command specified

129: Reset_Node
Node ID : the node ID of the NMT slave device

Reset Communication Protocol

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 107

cs : NMT command specified

130: Reset_Communication
Node ID : the node ID of the NMT slave device

Module Control Protocol Example
 If the CAN-2000C node ID is set to 5 as an example, the following steps
would be…

Step1. Turn off the CAN-2000C.

Step2. Then, turn it on. After initialized, the CAN-2000C will automatically enter
the Pre_Operational state. Users will note the RUN LED flashing twice per
second.

Step3. Users can send the NMT module control protocol, and control the
CAN-2000C to enter the operational state.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 8 01 05 00 00 00 00 00 00

NMT master
 NMT slave

(CAN-2000C)
cs : 1

Node ID : 5

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 108

5.4.2 Error Control Protocol

Error Control Protocol is a kind of the solution to check whether the
CANopen device is still alive or not. There are two protocols supported for
Error Control Protocol, Node Guarding Protocol and Heartbeat Protocol. The
related objects of Node Guarding Protocol include 0x100C and 0x100D. And
the related objects of Heartbeat Protocol include 0x1017.

Note: It is not allowed for one CAN-2000C module to use both Node
Guarding Protocol and Heartbeat Protocol at the same time.

Node Guarding Protocol

The 0x100C is the guard time, and the 0x100D is the life time factor. The
node life time is the guard time multiplied by the life time factor. The Node
Guarding timer of the CAN-2000C will start to count after receiving the first
RTR message for the guarding identifier. The communication set of the Node
Guarding Protocol is displayed below.

t : toggle bit
The value of this bit will be alternatively changed between two
consecutive responses from the NMT slave. After the node
Guarding protocol becomes active, the value of the toggle-bit of
the first response will be 0.

s : the state of the NMT Slave
4: STOPPED
5: OPERATIONAL
127: PRE-OPERATIONAL

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 109

Node Guarding Protocol Example

The default EMCY function code and node ID 1 for the CAN-2000C are
used as an example on the error control protocol. The steps will be as follows.

Step 1. Turn off the CAN-2000C. Then, turn it on. The CAN-2000C will be in
the pre_operational state.

Step 2. Users can set the guard time value to 250. This value will be stored in
index 0x100C with sub-index 00.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2B 0C 10 00 FA 00 00 00

SDO client
 SDO server

(CAN-2000C)
ccs : 1
n : 2
e : 1
s : 1
m : 0C 10 00
d : FA 00 00 00

Step 3. The CAN-2000C will reply with the ending message.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 4 60 0C 10 00 --- --- --- ---

SDO client
 SDO server

(CAN-2000C)
scs : 3
m : 0C 10 00

Step 4. Users can set the life-time factor value to 4. This value will be stored in
the index 0x100D with sub-index 00. Then, the ending message from
CAN-2000C will be received.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 110

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2F 0D 10 00 04 00 00 00

SDO client
 SDO server

(CAN-2000C)
ccs : 1
n : 3
e : 1
s : 1
m : 0D 10 00
d : 04 00 00 00

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 4 60 0D 10 00 --- --- --- ---

SDO client
 SDO server

(CAN-2000C)
scs : 3
m : 0D 10 00

Step 5. Users can send the node guarding protocol to start the mechanism of
the node guard. The life time here is equal to 1000 ms (guard time * life time
factor =250*4=1000),

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 1 0 0 0 0 0 0 0 1 1 0 --- --- --- --- --- --- --- ---

NMT master
 NMT slaver

(CAN-2000C)
COB-ID : 0x701

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 111

Step 5. Then, users will receive the message, recording the NMT state of the
CAN-2000C. For the reason that life time is equal to 1000 ms (guard time * life
time factor =250*4=1000), users will transmit the node guarding protocol
again.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 1 0 0 0 0 0 0 0 1 0 1 7F --- --- --- --- --- --- ---

NMT master
 NMT slaver

(CAN-2000C)
COB-ID : 0x701

t : 1
s 7F

The value 7F means that the CAN-2000C is in the NMT
pre_operational state.

Step 6. Since the life time is equal to 1000 ms (guard time * life time factor
=250*4=1000), users will transmit the node guarding protocol again.

Step 7. If the transmission is not available, an error event will be triggered, and
an EMCY message for guarding failure will be received. Moreover, all values
from the output channels will be changed according to index 0x6206, index
0x6207, index 0x6443, and index 0x6444.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0 1 0 1 0 8 30 81 11 07 00 00 00 00

EMCY
consumer

 EMCY producer
(CAN-2000c)

EMCY-msg : 30 81 11 07 00 00 00 00
The first two bytes “30 81” are for the emergency error code. The
3rd byte “11” is for the error register. The last five bytes “07 00 00
00 00” are for the manufacturer specific error values. This
emergency message indicates a life guard error.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 112

Heartbeat Protocol
The 0x1017 is the heartbeat time, and the Heartbeat Protocol defines an

Error Control Service without need for remote frames. A CAN-2000C module
will transmit Heartbeat message cyclically when the object 0x1017 is unequal
to 0. The communication set of the Heartbeat Protocol is displayed below.

r : Reserved (always 0).
s : the state of the NMT Slave

4: STOPPED
5: OPERATIONAL
127: PRE-OPERATIONAL

Heartbeat Protocol Example

The default EMCY function code and node ID 1 for the CAN-2000C are
used as an example on the error control protocol. The steps will be as follows.

Step 1. Turn off the CAN-2000C. Then, turn it on. The CAN-2000C will be in
the pre_operational state.

Step 2. Users can set the heartbeat time value to 250 (ms). This value will be
stored in index 0x1017 with sub-index 00.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0 0 1 0 8 2B 17 10 00 FA 00 00 00

SDO client
 SDO server

(CAN-2000C)

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 113

ccs : 1
n : 2
e : 1
s : 1
m : 17 10 00
d : FA 00 00 00

Step 3. The CAN-2000C will reply with the ending message.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 0 1 1 0 0 0 0 0 0 1 0 4 60 17 10 00 --- --- --- ---

SDO client
 SDO server

(CAN-2000C)
scs : 3
m : 17 10 00

Step 5. Then, users will receive the message, recording the NMT state of the
CAN-2000C. For the reason that Heartbeat time is equal to 250 ms, and users
can change the heartbeat time any time.

11-bit COB-ID (bit)

Func Code Node ID
8-byte Data (byte)

10 9 8 7 6 5 4 3 2 1 0

RTR
Data

Length
0 1 2 3 4 5 6 7

1 1 1 0 0 0 0 0 0 0 1 0 1 7F --- --- --- --- --- --- ---

Heartbeat
consumer

 Heartbeat producer
(CAN-2000C)

COB-ID : 0x701
t : 1
s 7F

The value 7F means that the CAN-2000C is in the NMT
pre_operational state.

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 114

6 Object Dictionary of CAN-2000C

6.1 Communication Profile Area
The following tables are regarding each entry of the communication profile

area is defined in CAN-2000C. For the convenient purpose, all communication
entries are divided into several tables. They are “General Communication
Entries”, “RxPDO Communication Entries”, “RxPDO Mapping Communication
Entries”, “TxPDO Communication Entries”, and “TxPDO Mapping Communication
Entries”.

Please note that In the table header with “Idx”, “Sidx” and “Attr” represent
“index”, “sub-index”, and “attribute” respectively. The sign “---” in the default field
means that the default is not defined or can be defined conditionally by the
firmware built in CAN-2000C. In the table, the number accompanying letter “h”
indicates that this value is in the hex format.

General Communication Entries

Idx Sidx Description Type Attr Default

1000h 0h device type UNSIGNED 32 RO ---

1001h 0h error register UNSIGNED 8 RO ---

1003h 0h largest sub-index supported for

“predefine error field”

UNSIGNED 8 RO 0h

 1h actual error (the newest one) UNSIGNED 32 RO ---

 ---

 5h actual error (the oldest one) UNSIGNED 32 RO ---

1005h 0h COB-ID of Sync message UNSIGNED 32 RW 80h

1008h 0h manufacturer device name VISIBLE_STRING RO ---

1009h 0h manufacturer hardware version VISIBLE_STRING RO ---

100Ah 0h manufacturer software version VISIBLE_STRING RO ---

100Ch 0h guard time UNSIGNED 16 RW 0h

100Dh 0h life time factor UNSIGNED 8 RW 0h

1010h 0h largest sub-index supported for

“store parameters”

UNSIGNED 8 RO 1h

1010h 1h save all hardware parameter UNSIGNED 32 RW ---

1011h 0h largest sub-index supported for UNSIGNED 8 RO 1h

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 115

“restore default parameters”

1011h 1h restore all default parameters UNSIGNED 32 RW ---

1014h 0h COB-ID of EMCY UNSIGNED 32 RW 80h+Node-ID

1017h 0h producer heartbeat time UNSIGNED 16 RW 0

1018h 0h largest sub-index supported for

“identity object”

UNSIGNED 8 RO 4

 1h vender ID UNSIGNED 32 RO ---

 2h product code UNSIGNED 32 RO ---

 3h revision number UNSIGNED 32 RO ---

 4h serial number UNSIGNED 32 RO ---

Note:

1. The object with index 0x1000 has the following data format:

Additional information General Information

bit 31~ bit 24 bit 23 ~ bit16 bit 15 ~ bit 0

Specific functionality I/O functionality Device profile number

For CAN-2000C, the specific function is always in 0. The I/O function defines what kind of

CAN-2000C is. Bit 16, 17, 18, 19, 20, 21, 22 present the DI, DO, AI, AO, Counter, PWM,

DIO respectively. For example, if bit 16 is 1, it means that the CAN-2000C has DI

channels. If both bit 16 and 17 are 1, the CAN-2000C will have both DI and DO channels.

Bit 23 is always in 0. The general information is 0x191 (0x191=401), it means that the

CAN-2000C complies with the CANopen spec DS401.

2. About the objects with index 0x1001 and 0x1003, please refer to the section 5.3.2.

3. The object with index 0x1005 stores the SYNC COB-ID. In the CAN-2000C, this object is used

to receive the SYNC COB-ID. The following table shows the data format of the SYNC.

Bit Number Value Meaning

31 (MSB) x do not care

30 0 Device does not generate SYNC message

 1 Device generates SYNC message

29 0 11-bit ID (CAN 2.0A)

 1 29-bit ID (CAN 2.0B)

28-11 0 If bit 29=0

 x If bit 29=1: 28-11 bits of 29-bit COB-ID

10-0 (LSB) x 10-0 bits of COB-ID

The CAN-2000C doesn’t support the SYNC generation, therefore 29-bit ID, bit 30 and bit

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 116

31 are always in 0.

4. The object with index 0x1008, 0x1009 and 0x100A records the CAN-2000C product

information. When interpreting these objects, the ASCII table will be needed.

5. The range of the 0x100c is from 0 to 65535 in CAN-2000C. For more information of the

object with index 0x100C and 0x100D, please refer to the section 5.4.2.

6. The object with index 0x1010 can store the setting of the module and 0x1011 can restore

the default setting of the module.

7. For the object with index 0x1014, please refer to the section 5.3.1.

8. The object with index 0x1017 stores the heartbeat time. The producer heartbeat time is 0

if it not use. The time has to be a multiple of 1ms. For more information please refer to the

section 5.4.

SDO Communication Entries

Idx Sidx Description Type Attr Default

1200h 0h largest sub-index supported for

“server SDO parameter”

UNSIGNED 8 RO 2

 1h COB-ID form client to server

(RxSDO)

UNSIGNED 32 RO 600h+Node-ID

 2h COB-ID form server to client

(TxSDO)

UNSIGNED 32 RO 580h+Node-ID

RxPDO Communication Entries

Idx Sidx Description Type Attr Default

1400h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 2

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 200h+Node-ID

 2h transmission type UNSIGNED 8 RW FFh

1401h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 2

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 300h+Node-ID

 2h transmission type UNSIGNED 8 RW FFh

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 117

1402h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 2

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 400h+Node-ID

 2h transmission type UNSIGNED 8 RW FFh

1403h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 2

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 500h+Node-ID

 2h transmission type UNSIGNED 8 RW FFh

1404h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 2

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 80000000h

 2h transmission type UNSIGNED 8 RW FFh

...

1409h 0h largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 2

 1h COB-ID used by PDO (Rx) UNSIGNED 32 RW 8000 0000h

 2h transmission type UNSIGNED 8 RW FFh

TxPDO Communication Entries

Idx Sidx Description Type Attr Default

1800h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 180h+Node-ID

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

1801h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 280h+Node-ID

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

1802h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 380h+Node-ID

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 118

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

1803h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 480h+Node-ID

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

1804h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 80000000h

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

...

1809h 0 largest sub-index supported for

“receive PDO parameter”

UNSIGNED 8 RO 5

 1 COB-ID used by PDO (Tx) UNSIGNED 32 RW 80000000h

 2 transmission type UNSIGNED 8 RW FFh

 3 inhibit time UNSIGNED 16 RW 0

 4 reversed --- --- ---

 5 event timer UNSIGNED 16 RW 0

CAN-2000C user’s manual (Revision 1.00, Oct/22/2009) ------ 119

6.2 Module Device Profile Area
Every CAN-2000C series module has different function. So about the device

profile of the module, please refer to the module’s manual.

