Contents

1	Prod	uct overview	3
	1.1	Introduction	3
	1.2	Technical Data	4
	1.3	Hardware Specification	5
2	Wirir	ng	7
	2.1	LED Definition	7
	2.2	Alias Rotary Swtich	9
	2.3	Connection Interfaces	10
	2.4	Digital Input Wiring	14
	2.5	Stepper Motor Wiring	15
		2.5.1 Four Lead Motor	16
		2.5.1 Six Lead Motor	17
		2.5.2 Eight Lead Motor	18
		2.5.3 Encoder Connection	19
3	Basic	s Communication	21
	3.1	EtherCAT Cabling	21
	3.2	EtherCAT State Machine	21
	3.3	Synchronization Modes	23
		3.3.1 Free Run Mode	23
		3.3.2 Distributed Clocks (DC Mode)	25
4	CoE (Communication Area (1000h ~ 1FFFh)	28
	4.1	Device information	28
	4.2	PDO(Process Data Object)Mapping	30
		4.2.1 PDO Assign Object(1C12h ~ 1C13h)	30
		4.2.2 PDO Mapping Object(1600h ~ 1630h \ 1A00~1A30h)	30
	4.3	Sync manager 2/3 sychronization(1C32h \ 1C33h)	33
5	Drive	parameter Area (2000h ~ 5FFFh)	35
6	Drive	Profile Area (6000h ~ 6FFFh)	42
	6.1	Object List	42
	6.2	PDS State Machine	45
	6.3	Controlword(6040h)	47
	6.4	Statuslword(6041h)	49
	6.5	Operation mode Setting	51
		6.5.1 Supported drive modes(6502h)	51
		6.5.2 Modes of operation (6060h)	52

		6.5.3 Modes of operation display (6061h)	53
		6.5.4 Caution for Changing Operation mode	54
	6.6	Position Control Function	55
		6.6.1 Software position limit (Software position limit:607Dh)	55
		6.6.2 Profile Position Mode(pp mode)	56
		6.6.3 Cyclic Synchronous Position Mode(csp mode)	59
		6.6.4 Homing Mode(hm mode)	61
	6.7	Velocity Control Function	77
		6.7.1 Cyclic Synchronous Velocity Mode(csv mode)	77
	6.8	Common Motion Function	79
		6.8.1 Digital inputs	79
7	Alar	m List	80
7	Alar	m List	

1 Product overview

1.1 Introduction

The ECAT-2094DS stepper motor controller is a cost-effective, two-phase bipolar stepper driver. The ECAT-2094DS simultaneously controls up to four stepper motors. A motor voltage range between 16 and 29 V DC and a maximum motor coil current of 3.3A (Peak)/phase is being supported. The running motor current and other motion parameters are software selectable.

ECAT-2094DS can be directly connected with a two-phase bipolar stepping motor. Stepper motors are controlled in an open loop operation. It must complete the system configuration through the EtherCAT MainDevice station and the application program.

The ECAT-2094DS has four integrated incremental encoder interfaces. Four 32 bit high frequency encoder counter counts the input signal of external incremental encoders. The encoder can for example be used for homing purposes and for consistency checks.

High resolution of up to 256 microsteps per full step is supported for an ensuring smooth and precise motor operation.

For each motor three digital input channels are provided. The digital inputs include a positive and negative direction hardware limit switches and an org switch. The positive and negative direction limit switches can automatically stop the motor when triggered, and all three digital inputs can be used for home position search.

The device has to supplied with three power sources. Two motor supplies and a 24Vdc control supply. Two motors share one power supply.

1.2 Technical Data

- Supports 4 stepper motor (2-phase bipolar)
- Stepper motor are controlled in an open loop operation
- Programmable coil current level: up to 3.3 A/phase
- Programmable microstep size: maximum 256 microsteps per full step
- Supported motor voltage range: 16 to 29V_{DC}
- 4 x Encoder interfaces (A, B, Z), differential
- 12 x Digital input. Three DI channels for each axis: hardware limit input, home switch input
- · Automatic current reduction to reduce heat when motor is not moving
- Drive protection:
 - Over-temperature
 - Under voltage
 - Short circuit
- Optically isolated I/O
- LED indicators for I/O, EtherCAT and motion status
- Internal memory for storing configuration data
- EtherCAT:
 - 2 x RJ-45 bus interface
 - Distance between stations up to 100 m (100BASE-TX)
 - Support daisy chain connection
 - EtherCAT conformance test tool verified
 - Supports Free-Run and Distributed Clock (DC) operation modes
 - Supports CoE and FoE
 - Supports Control modes: CPS \ CSV \ Hm and PP
 - Support minimum communication cycle 0.5ms
- Removable terminal block connector

1.3 Hardware Specification

Motors	Motors			
Number of outputs	4x stepper motor, 2 phases			
Output current	3.3A/phase			
Motor voltage range	16 to 29V _{DC}			
Maximum step frequency	8.192 MHz			
Microsteps per step	256, 128, 64, 32, 16, 8, 4, 2			
Encoder inputs				
Number of encoder inputs	4x encoder counter (A, B, Z), differential			
Maximum encoder pulse frequency	1 MHz			
Digital Inputs				
Number of digital inputs	12 (3 inputs for each motor)			
Wat south at	ON voltage level: +10 to 24V _{DC}			
Wet contact	OFF voltage level: +4V _{DC} MAX			
Photo-Isolation	3750V _{DC}			
LED Indicators				
Diagnostic LED Power, EtherCAT status, Digital IO, d				
	temperature warning, over-temperature error			
Communication Interface				
Connector	2 x RJ-45			
Protocol	EtherCAT			
Distance between stations	Max. 100 m (100BASE-TX)			
Data transfer medium	Ethernet/EtherCAT Cable (Min. CAT 5), Shielded			
Power				
Input voltage range	20V ~ 30V _{DC}			
EMS Protection				
ESD (IEC 61000-4-2)	4 KV Contact for each channel			
EFT (IEC 61000-4-4)	Signal: 1 KV Class A; Power: 1 KV Class A			
Surge (IEC 61000-4-5)	1 KV Class A			
Mechanism				
Installation	DIN-Rail			
Dimensions (LxWxH) [mm]	181 x 110 x 33 (without connectors)			
Case material	Metal			
Environment				
Operating temperature	-25℃ ~40℃			
Storage temperature	-30℃ ~80℃			

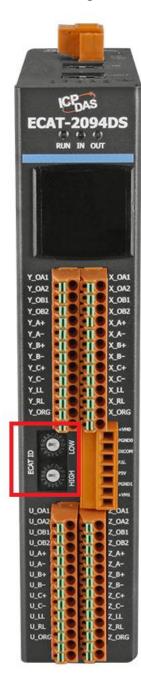
Relative humidity	10 ~ 90%, No Condensation
-------------------	---------------------------

2 Wiring

2.1 LED Definition

The ECAT-2094DS provides on the frontside of the connection cap several diagnostic LEDs.

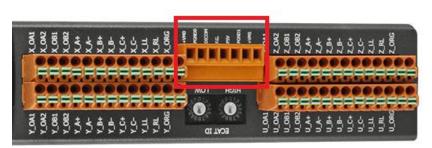
Furthermore there are three LEDs to indicate the network status for EtherCAT. The exact meaning of the LED indication is specified in the following tables:


EtherCAT LED	Color	State	Description
RUN	red		This LED indicates the operation state of
			the EtherCAT SubDevice:
		Off	Device is in INIT state
		Flashing	Device is in PREOP state
		Single flash	Device is in SAFEOP state
			Outputs remain in safe state
		On	Device is in OP state
IN	green		Indicates the communication status of
			the EtherCAT port IN
		Off	No connection
		Flashing	Link and activity (e.g. data exchange with
			the MainDevice)
		On	Link without any activity
OUT	green		Indicates the communication status of
			the EtherCAT port OUT. Further EtherCAT
			SubDevice can be connected to the port
			OUT
		Off	No EtherCAT SubDevices are connected
			to port OUT
		Flashing	Link and activity (e.g. data exchange
			connected SubDevices)
		On	Link without any activity

Control LED	Color	Description
*	red	- Power indicator

* * * * * * * (first row)	green	- LED 0: AXIS X - Home Switch input
01 2 3 4 5 6 7		- LED 1: AXIS X - Positive direction hardware limit input
		- LED 2: AXIS X - Negative direction hardware limit input
		- LED 3: AXIS X - Driving
		- LED 4: AXIS X - Motion chip SPI communication error
		- LED 5: AXIS X - Short to ground
		- LED 6: AXIS X - Over temperature warning
		- LED 7: AXIS X - Over temperature error
* * * * * * * (second row)	green	- LED 0: AXIS Y - Home Switch input
8 9 10 11 12 13 14 15		- LED 1: AXIS Y - Positive direction hardware limit input
		- LED 2: AXIS Y - Negative direction hardware limit input
		- LED 3: AXIS Y - Driving
		- LED 4: AXIS Y - Motion chip SPI communication error
		- LED 5: AXIS Y - Short to ground
		- LED 6: AXIS Y - Over temperature warning
		- LED 7: AXIS Y - Over temperature error
* * * * * * * (third row)	green	- LED 0: AXIS Z - Home Switch input
16 17 18 19 20 21 22 23		- LED 1: AXIS Z - Positive direction hardware limit input
		- LED 2: AXIS Z - Negative direction hardware limit input
		- LED 3: AXIS Z - Driving
		- LED 4: AXIS Z - Motion chip SPI communication error
		- LED 5: AXIS Z - Short to ground
		- LED 6: AXIS Z - Over temperature warning
		- LED 7: AXIS Z - Over temperature error
* * * * * * * (fourth row)	green	- LED 0: AXIS U - Home Switch input
24 25 26 27 28 29 30 31		- LED 1: AXIS U - Positive direction hardware limit input
		- LED 2: AXIS U - Negative direction hardware limit input
		- LED 3: AXIS U - Driving
		- LED 4: AXIS U - Motion chip SPI communication error
		- LED 5: AXIS U - Short to ground
		- LED 6: AXIS U - Over temperature warning
		- LED 7: AXIS U - Over temperature error
·		

2.2 Alias Rotary Swtich


The Alias range is 0x00~0xFF

2.3 Connection Interfaces



Name	Signal	Description
F.G	Frame ground	
GND	Power supply: Ground OV (from negative power contact)	
+Vs	Power supply: +24 V _{DC} (from positive power contact)	ECAT-2094DS power
IN	EtherCAT signal input	Incoming EtherCAT cable
OUT	EtherCAT signal output	Outgoing EtherCAT cable

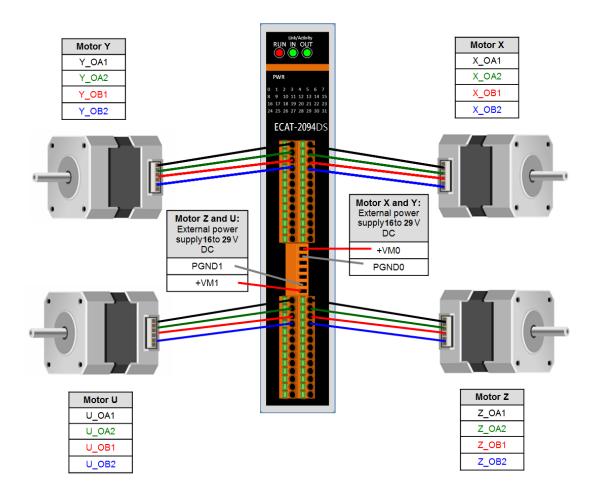
Name	Signal	Description
+VM0	+16 to 29V _{DC} (from positive power contact)	Power supply for motor X and Y Power supply for motor
PGND0	Ground 0V (from negative power contact)	CAUTION: Automatic start of stepper motor! Risk of death or serious injury for humans working in the machine. It can not ruled out that the stepper motor may perform unplanned movement during the ECAT-2094DS setup and configuration
DI.COM		Common DI X supply: +10 to +24V _{DC}

F.G.		Frame ground
P5V	Output	Power supply to encoder
PGND1	Ground 0V (from negative power contact)	Power supply for motor Z and U Power supply for motor
+VM1	+16 to 29V _{DC} (from positive power contact)	CAUTION: Automatic start of stepper motor! • Risk of death or serious injury for humans working in the machine. It can not ruled out that the stepper motor may perform unplanned movement during the ECAT-2094DS setup and configuration

Name	Signal	Description	
X_OA1	Output	Motor X winding A1	
X_OA2	Output	Motor X winding A2	MakanV
X_OB1	Output	Motor X winding B1	Motor X
X_OB2	Output	Motor X winding B2	
X_A+	Input	Encoder X input A+	
X_A-	Input	Encoder X input A-	
X_B+	Input	Encoder X input B+	Encoder X
X_B-	Input	Encoder X input B-	Encoder X
X_C+	Input	Encoder X input C+	
X_C-	Input	Encoder X input C-	
V 11	Input	Negative direction hardware limit	limit switch and home switch
X_LL		switch for motor X	for motor X
X_RL	Input	Positive direction hardware limit	
		switch for motor X	
X_ORG	Input	home switch for motor X	

Y_OA1	Output	Motor Y winding A1	
Y_OA2 Output Y_OB1 Output		Motor Y winding A2	
		Motor Y winding B1	Motor Y
Y_OB2	Output	Motor Y winding B2	
Y_A+	Input	Encoder Y input A+	
Y_A-	Input	Encoder Y input A-	
Y_B+	Input	Encoder Y input B+	Encoder Y
Y_B-	Input	Encoder Y input B-	Encoder Y
Y_C+	Input	Encoder Y input C+	
Y_C-	Input	Encoder Y input C-	
Y_LL	Input	Negative direction hardware limit	limit switch and home switch
		switch for motor Y	for motor Y
Y_RL	Input	Positive direction hardware limit	
		switch for motor Y	
Y_ORG	Input	home switch for motor Y	
Z_OA1	Output	Motor Z winding A1	
Z_OA2	Output	Motor Z winding A2	Motor Z
Z_OB1	Output	Motor Z winding B1	
Z_OB2	Output	Motor Z winding B2	
Z_A+	Input	Encoder Z input A+	
Z_A-	Input	Encoder Z input A-	
Z_B+	Input	Encoder Z input B+	Encoder Z
Z_B-	Input	Encoder Z input B-	
Z_C+	Input	Encoder Z input C+	
Z_C-	Input	Encoder Z input C-	
Z_LL	Input	Negative direction hardware limit	limit switch and home switch
		switch for motor Z	for motor Z
Z_RL	Input	Positive direction hardware limit	
		switch for motor Z	
Z_ORG	Input	home switch for motor Z	
U_OA1	Output	Motor U winding A1	
U_OA2 Output U_OB1 Output		Motor U winding A2	Motor U
		Motor U winding B1	IVIOLOI O
U_OB2	Output	Motor U winding B2	

U_A+	Input	Encoder U input A+	
U_A-	Input	Encoder U input A-	
U_B+	Input	Encoder U input B+	Encoder U
U_B-	Input	Encoder U input B-	Encoder o
U_C+	Input	Encoder U input C+	
U_C-	Input	Encoder U input C-	
11 11	Input	Negative direction hardware limit	limit switch and home switch
U_LL		switch for motor U	for motor U
U RL	Input	Positive direction hardware limit	
U_NL		switch for motor U	
U_ORG	Input	home switch for motor U	


2.4 Digital Input Wiring

Digital Input									
Digital input channe	ls	12 (3 switches for each motor)							
Input type		Wet							
	ON voltage level	+10 to 24 V _{DC}							
Wet contact	OFF voltage level	+5 V _{DC} MAX							
Photo-isolation	•	3750 V _{DC}							

The diagram for Positive (RL) and Negative (LL) direction hardware limit switches and home switch (ORG) wiring for axis X, Y, Z, and U is shown below.

Digital Input	Readback as 1	Readback as 0			
	+10 ~ +24V DC	OPEN or <4 VDC			
Sink	ORG/RL/LL 3K	ORG/RL/LL 3K			
	+10 ~ +24V DC	OPEN or <4 VDC			
Source	ORG/RL/LL 3K ORG/RL/LL 3K ORG/RL/LL 3K ORG/RL/LL 3K	ORG/RL/LL 3K DI.COM			

2.5 Stepper Motor Wiring

2.5.1 Four Lead Motor

The Figure 1 below shows an example for a four lead two-phase motor connected to the X output of the ECAT-2094DS.

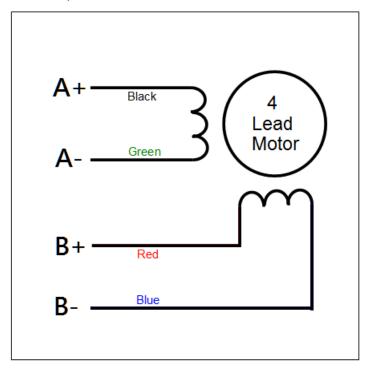
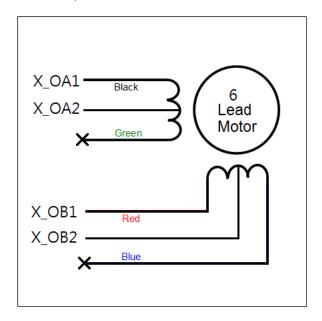



Figure 1: Four lead bipolar motor connected to the first axis output

2.5.1 Six Lead Motor

The Figure 2 below shows an example for a six lead two-phase motor connected to the X output of the ECAT-2094DS.

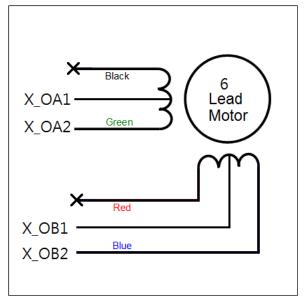


Figure 2: Six lead bipolar motor connected to the first axis output

2.5.2 Eight Lead Motor

Eight lead motors can be connected in series or parallel. A series connected motor needs less current than one that is connected in parallel but it will not be able to run as fast.

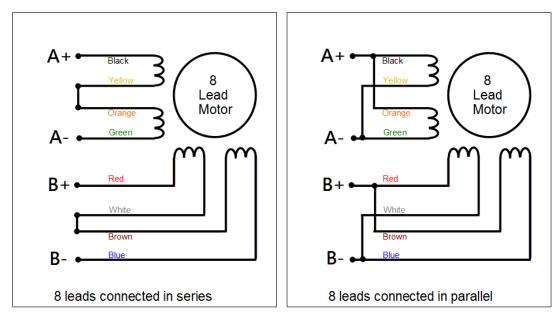


Figure 3: Eight lead bipolar motor connection (left: series, right: parallel)

2.5.3 Encoder Connection

Differential encoder:

The ECAT-2094DS supports differential encoder by default.

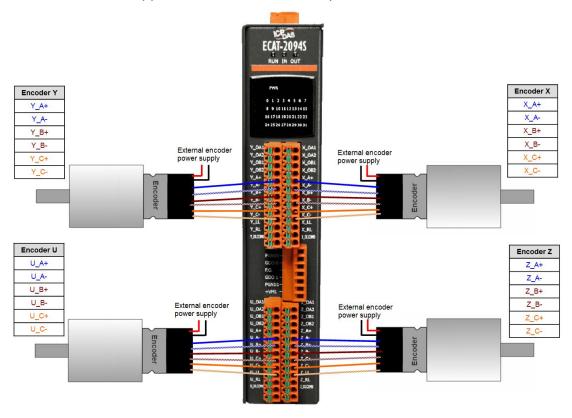
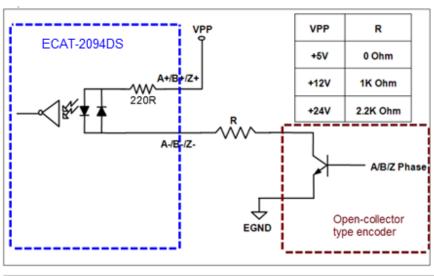



Figure 4: Encoder connection

Open collector type encoder:

For single-ended encoder connection refers to the Figure 5 which lists the possible power supply values with the corresponding resistor sizes.

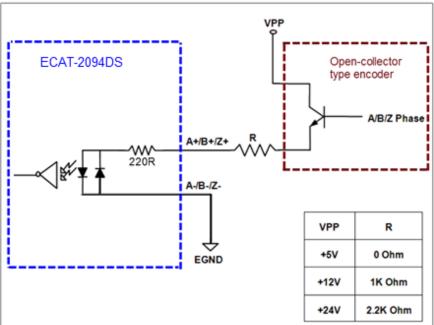


Figure 5: Open collector wiring diagram

3 Basics Communication

3.1 EtherCAT Cabling

The cable length between two EtherCAT devices must not exceed 100 m.

Cables and connectors

For connecting EtherCAT devices only Ethernet connections (cables + plugs) that meet the requirements of at least category 5 (CAt5) according to EN 50173 or ISO/IEC 11801 should be used. EtherCAT uses 4 wires for signal transfer. The pin assignment is compatible with the Ethernet standard (ISO/IEC 8802-3).

3.2 EtherCAT State Machine

The state of the EtherCAT MainDevice and SubDevice is controlled via the EtherCAT State Machine (ESM). The state determines which functions are accessible or executable in the EtherCAT SubDevice. State changes are typically initiated by requests of the MainDevice and acknowledged by the SubDevice after the successful initialization. In case of an internal error, the SubDevice automatically changes to a lower state.

Supports four states:

- Init (state after Reset)
- Pre-Operational
- Safe-Operational
- Operational

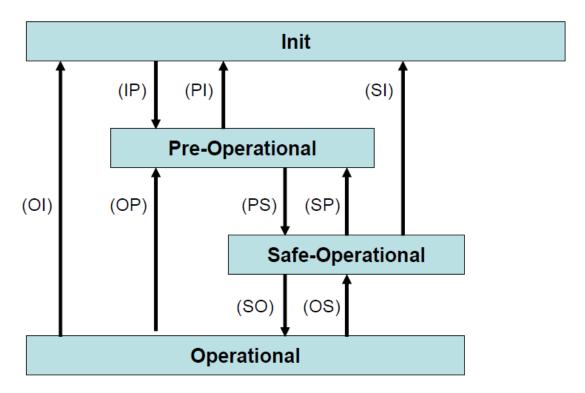


Figure 6: EtherCAT state machine

Init

After switch-on the EtherCAT SubDevice is in the initial state. Only ESC register communication is possible, but no mailbox or process data communication. The SubDevice initializes the service object data with default value or with values previously stored to the local memory. The EtherCAT MainDevice assigns the station address and configures the sync manager channels 0 and 1 for acyclic mailbox communication.

Pre-Operational (Pre-Op)

In Pre-Op state acyclic mailbox communication is possible, but not process data communication. In this state the EtherCAT MainDevice does the following configurations:

- Set the sync manager 2 and 3 for process data communication (from sync manager channel 2)
- The FMMU channels
- PDO mapping or the sync manager PDO assignment

Safe-Operational (Safe-Op)

In Safe-Op state both mailbox and process data communication is enabled, but the

SubDevice keeps its outputs in a safe state, while the input data are updated cyclically. The SubDevice will ignore the output data sent by the MainDevice and just return the current input data (e.g. digital input, encoder value, etc.)

Outputs in Safe-Op state

The sync manager watchdog expires when the MainDevice application does not provide new output process data within the configured watchdog time. In this case the SubDevice will automatically go from operational state to ERROR-SAFEOP state and set all the outputs in a safe state. Will stop the stepper motor and the motor current will be adjusted to 0.

Operational (Op)

Here both the process data object (PDO) and service data object (SDP) are fully enabled. MainDevice sends cyclic output data and read input data. This module supports two types of Op modes: Free Run mode and Distributed Clock (DC) mode.

3.3 Synchronization Modes

ECAT-2094DS devices support two different modes

- Free Run: The MainDevice cycle time and SubDevice cycle time is independent and not synchronized.
- Distributed Clock (DC): The MainDevice cycle time and SubDevice cycle time are synchronized.

3.3.1 Free Run Mode

The SubDevice operates autonomously according to its cycle and is not synchronized with the EtherCAT cycle. The MainDevice cycle time and the SubDevice cycle time are fully independent which means each SubDevice device reads/writes its own process data according to its local time, independent of the MainDevice's cycle time.

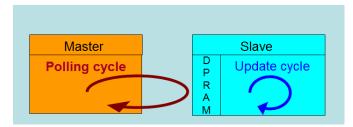


Figure 7: MainDevice-SubDevice cycle in Free Run mode

The following diagram shows the process timing of the SubDevice in Free Run mode in detail:

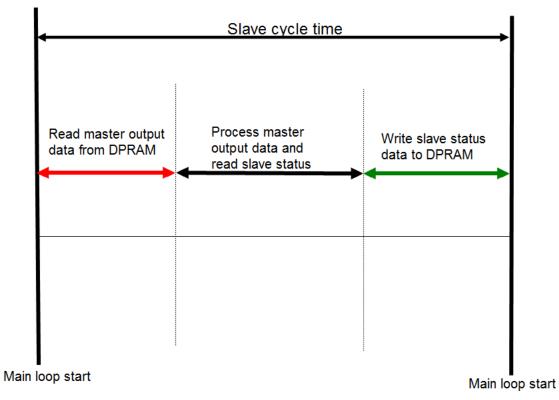


Figure 8: SubDevice processing sequence in Free-run mode

The SubDevice firmware checks in each cycle time the memory of the EtherCAT SubDevice chip (ESC) whether new output data has been received from the MainDevice. Newly received data will be processed and the motion path will be calculated. In the next step motion and digital input status are being read from motion chip. In the final step the read status are being written to the DPRAM, so that the MainDevice can retrieve the data ESC DPRAM in the next cycle time.

3.3.2 Distributed Clocks (DC Mode)

DC clock synchronization enables all EtherCAT devices (MainDevice and SubDevices) to share the same EtherCAT system time. The EtherCAT SubDevices in the network can be synchronized to each other. This enables the MainDevice to simultaneously set the output (e.g. digital output, pulse output) or to synchronously read inputs (e.g. digital input, encoder counter) of different SubDevices in the EtherCAT network.

For system synchronization all SubDevices are synchronized to one reference clock. Normally the first EtherCAT SubDevice closest to the MainDevice with Distributed Clocks capability becomes the clock base for the MainDevice as well as for other DC SubDevices.

The EtherCAT SubDevice is synchronized with the SYNCO or SYNC1 event of the distributed clock system. After the EtherCAT network has been set into DC communication mode by the MainDevice, the ESC (EtherCAT SubDevice chip) of each SubDevice generates fixed time hardware interrupt which triggers the SubDevice firmware to process the PDO data received by the MainDevice. The MainDevice cycle time and the ESC hardware interrupt time interval are fully synchronized to the first SubDevice in the network that is used as a reference clock with the SYNCO signal.

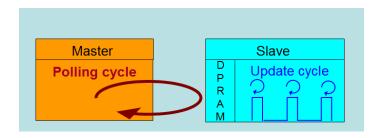


Figure 9: MainDevice-SubDevice cycle in DC mode

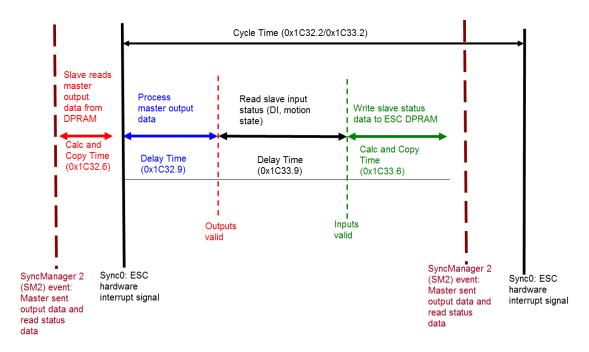


Figure 10: Internal SubDevice processing sequence in DC mode

Once the SubDevice receives process data (RxPDOs) from the MainDevice the SM2 event is triggered which causes the firmware to read the data from the ESC memory. The ESC interrupts the firmware at fixed time interval to process the data received from the MainDevice and write the status data to the ESC memory. Every time when the MainDevice fails to sent process data within the DC cycle time the internal sync error counter is being increase by three counts. This error counter is being decreased by one count for every successful DC cycle. Once the error counter reached the maximum count (default 4) a sync error will be generated and the SubDevice goes into Safe OP mode (Sync Error 0x1C32:20 true TRUE). The maximum count value can be set by changing the default value of the "Sync Error Counter Limit" (0x10F1:02).

Index	Name	Flags	Value
Ė 10F1:0	Error Settings		>2<
10F1:01	Local Error Reaction	RW	0x00000001 (1)
10F1:02	Sync Error Counter Limit	RW	0x0004 (4)

Figure 11: Sync error counter limit object

The setting of the sync manager for the output and input data is available at the TwinCAT "CoE online" tab.

Index	Name	Flags	Value
⊟ 1C32:0	SM output parameter		> 32 <
1C32:01	Synchronization Type	RW	0x0002 (2)
1C32:02	Cycle Time	RO	0x00000000 (0)
1C32:04	Synchronization Types supported	RO	0x401F (16415)
1C32:05	Minimum Cycle Time	RO	0x001E8480 (2000000)
1C32:06	Calc and Copy Time	R0	0x0007A120 (500000)
1C32:08	Get Cycle Time	RW	0x0001 (1)
1C32:09	Delay Time	R0	0x000927C0 (600000)
1C32:0A	Sync0 Cycle Time	RW	0x005B8D80 (6000000)
1C32:0B	SM-Event Missed	R0	0x0000 (0)
1C32:0C	Cycle Time Too Small	R0	0x0000 (0)
1C32:20	Sync Error	RO	FALSE

Figure 12: SyncManager 2 parameters

SyncManager parameter description (time unit: nanosecond):

- Calc and Copy Time (0x1C32.6 / 0x1C33.6): Required time to copy the process data from the ESC to the local memory and calculate the output value.
- Delay Time (0x1C32.9 / 0x1C33.9): Delay from receiving the trigger to set the output or latch the input.
- Cycle Time (0x1C32.2 / 0x1C33.2): The current cycle time for the application. When using DC synchronization the value is read from register 0x9A0:0x9A3.
- 0x1C32.5 / 0x1C33.5 (Min Cycle Time): Minimum cycle time for the application. It is the total execution time of all SubDevice application related operations.

4 CoE Communication Area (1000h ~ 1FFFh)

4.1 Device information

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default		
	index			Туре						
1000h	00h	Device type	0 -	U32	ro	N	N	20192h		
		4294967295								
		Device type of the EtherCAT SubDevice								
1001h	00h	Error register	0 - 255	U8	ro	N	N	00h		
1008h	00h	Manufacturer		VS	ro	N	N			
		device name								
		Device name of the E	therCAT Sub[Device						
1009h		Manufacturer		VS	ro	N	N	1.0		
		hardware version								
		Hardware version of t	he EtherCAT	SubDe	vice					
100Ah		Manufacturer		VS	ro	N	N	1.0		
		software version								
		Software version of th	ne EtherCAT S	SubDev	vice					
1018h		Identify object								
	00h	Number of entries	0 - 255	U8	ro	N	N	4		
	01h	Vendor ID	0 -	U32	ro	N	N	00494350h		
			4294967295							
		Vendor ID of the EtherCAT SubDevice								
	02h	Product code	0 -	U32	ro	N	N	20944453h		
			4294967295							
		Product code of the E	therCAT Subl	Device						
	03h	Revision number	0 -	U32	ro	N	N	00000000h		
			4294967295							
		Revision number of th	ne EtherCAT S	SubDev	vice					
	04h	Serial number	0 -	U32	ro	N	N	00000000h		
			4294967295							
		Serial number of the	EtherCAT Sub	Device	<u> </u>					
10F1h	00h	Error settings								
	01h	Local error reaction	0 -	U32	rw	N	N	00000001h		
			4294967295							

02h	Sync error counter	0 - 65535	U16	rw	N	N	0004h	
	limit							
	For DC mode only:							
The Sync Error Counter is incremented with every missing Sync Managemer								
	by three and decrement	ted by one if a	n event	is receiv	ed. If the S	ync Err	or Counter	
	exceeds this limit the system changes into the SAFEOP state with the							
	"Synchronization Lost" error. The Sync Error Counter is reset when the error was							
	acknowledged.							

4.2 PDO(Process Data Object)Mapping

4.2.1 PDO Assign Object(1C12h ~ 1C13h)

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default
	index			Туре				
1C12h		Sync manager						
		channel 2						
	00h	Number of assigned	0 -4	U8	rw	N	N	4
		PDOs						
	01h	PDO mapping object	1600h –	U16	rw	N	N	1600h
		of assigned RxPDO 1	1630h					
	02h	PDO mapping object	1600h –	U16	rw	N	N	1610h
		of assigned RxPDO 2	1630h					
	03h	PDO mapping object	1600h –	U16	rw	N	N	1620h
		of assigned RxPDO 3	1630h					
	04h	PDO mapping object	1600h –	U16	rw	N	N	1630h
		of assigned RxPDO 4	1630h					
1C13h								
	00h	Number of assigned	0 -4	U8	rw	N	N	4
		PDOs						
	01h	PDO mapping object	1A00h –	U16	rw	N	N	1A00h
		of assigned TxPDO 1	1A30h					
	02h	PDO mapping object	1A00h –	U16	rw	N	N	1A10h
		of assigned TxPDO 2	1A30h					
	03h	PDO mapping object	1A00h –	U16	rw	N	N	1A20h
		of assigned TxPDO 3	1A30h					
	04h	PDO mapping object	1A00h –	U16	rw	N	N	1A30h
		of assigned TxPDO 4	1A30h					

4.2.2 PDO Mapping Object(1600h ~ 1630h \ 1A00~1A30h)

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default
	index			Туре				
1600h		Receive PDO						
		mapping 1						

	00h	Number of entries	0 - 16	U8	rw	N	N	4
	01h	1st receive PDO mapped	0 - 4294967295	U32	rw	N	N	60400010h
	02h	2nd receive PDO mapped	0 - 4294967295	U32	rw	N	N	60600008h
	03h	3rd receive PDO mapped	0 - 4294967295	U32	rw	N	N	607A0020h
	04h	4th receive PDO mapped	0 - 4294967295	U32	rw	N	N	600FF0020h
	05h	5th receive PDO mapped	0 - 4294967295	U32	rw	N	N	00000000h
	0Fh	15th receive PDO mapped	0 - 4294967295	U32	rw	N	N	00000000h
1610h		Receive PDO mapping 2						
	01h – 0Fh	Subindex 規 格同 1600h	0 - 4294967295	U32	rw	N	N	68400010h – 68FF0020h
1620h								
	01h –	Subindex 規	0 -	U32	rw	N	N	70400010h –
	0Fh	格同 1600h	4294967295					70FF0020h
1630h								
	01h –	Subindex 規	0 -	U32	rw	N	N	78400010h –
	0Fh	格同 1600h	4294967295					78FF0020h
1A00h								
	00h	Number of entries	0 - 16	U8	rw	N	N	7
	01h	1st transmit PDO mapped	0 - 4294967295	U32	rw	N	N	60410010h
	02h	2nd transmit PDO mapped	0 - 4294967295	U32	rw	N	N	603F0010h
	03h	3rd transmit PDO mapped	0 - 4294967295	U32	rw	N	N	60610008h
	04h	4th transmit PDO mapped	0 - 4294967295	U32	rw	N	N	60640020h

	05h	5th transmit	0 -	U32	rw	N	N	606c0020h
		PDO mapped	4294967295					
	06h	6th transmit	0 -	U32	rw	N	N	60FD0020h
		PDO mapped	4294967295					
	07h	7th transmit	0 -	U32	rw	N	N	00000018h
		PDO mapped	4294967295					
	08h	8th transmit	0 -	U32	rw	N	N	00000000h
		PDO mapped	4294967295					
	0Fh	15th	0 -	U32	rw	N	N	00000000h
		transmit	4294967295					
		PDO mapped						
1A10h								
	01h –	Subindex 規	0 -	U32	rw	N	N	680410000h –
	0Fh	格同 1A00h	4294967295					68FD0020h
1A20h								
	01h –	Subindex 規	0 -	U32	rw	N	N	70410000h –
	0Fh	格同 1A00h	4294967295					70FD0020h
1A30h								
	01h –	Subindex 規	0 -	U32	rw	N	N	78410000h –
	0Fh	格同 1A00h	4294967295					78FD0020h

4.3 Sync manager 2/3 sychronization(1C32h \ 1C33h)

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default
	index			Туре				
1C32h		Sync manager 2						
		synchronization						
	00h	Number of	0 - 255	U8	ro	N	N	20h
		sub-objects						
	01h	Synchronization	0 - 65535	U16	rw	N	N	0000h
		Туре						
	02h	Cycle Time	0 -	U32	ro	N	N	0000h
			4294967295					
	04h	Synchronization	0 – 65535	U16	ro	N	N	001Fh
		Types supported						
	05h	Minimum Cycle	0 -	U32	ro	N	N	0007A120h
		Time	4294967295					
	06h	Calc and Copy	0 -	U32	ro	N	N	00009C40h
		Time	4294967295					
	08h	Get Cycle Time	0 - 65535	U16	ro	N	N	0000h
	09h	Delay time	0 -	U32	ro	N	N	00002710h
			4294967295					
	0Ah	Sync0 Cycle Time	0 -	U32	ro	N	N	00000000h
			4294967295					
	0Bh	SM-Event Missed	0 - 65535	U16	ro	N	N	0000h
	0Ch	Cycle Time Too	0 - 65535	U16	ro	N	N	0000h
		small						
	20h	Sync Error	0 - 1	BOOL	ro	N	N	FALSE

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default
	index			Туре				
1C33h		Sync manager 3 synchronization						
	00h	Number of sub-objects	0 - 255	U8	ro	N	N	20h
	01h	Synchronization Type	0 - 65535	U16	rw	N	N	0000h
	02h	Cycle Time	0 -	U32	ro	N	N	0000h

			4294967295					
	04h	Synchronization	0 – 65535	U16	ro	N	N	001Fh
		Types supported						
	05h	Minimum Cycle	0 -	U32	ro	N	N	0007A120h
		Time	4294967295					
	06h	Calc and Copy	0 -	U32	ro	N	N	00009C40h
		Time	4294967295					
	08h	Get Cycle Time	0 - 65535	U16	ro	N	N	0000h
	09h	Delay time	0 -	U32	ro	N	N	00002710h
			4294967295					
	0Ah	Sync0 Cycle Time	0 -	U32	ro	N	N	00000000h
			4294967295					
	0Bh	SM-Event Missed	0 - 65535	U16	ro	N	N	0000h
	0Ch	Cycle Time Too	0 - 65535	U16	ro	N	N	0000h
		small						
	20h	Sync Error	0 - 1	BOOL	ro	N	N	FALSE

5 Drive parameter Area (2000h ~ 5FFFh)

Index	sub-	Name	Range	Data	Acces	EEPRO	PD	default
	index			Туре	s	M	o	
0x2001		ORG Active						
		Level						
	00h	Highest	4	U8	ro	N	N	4
		sub-index						
		supported						
	01h	ORG0 Active	0 - 1	U16	rw	Υ	N	01h
		Level						
	02h	ORG1 Active	0 - 1	U16	rw	Υ	N	01h
		Level						
	03h	ORG2 Active	0 - 1	U16	rw	Υ	N	01h
		Level						
	04h	ORG3 Active	0 - 1	U16	rw	Υ	N	01h
		Level						
0x2002		NOT/LL Active						
		Level						
	00h	Highest	4	U8	ro	N	N	4
		sub-index						
	041	supported	0.4	114.6		.,		041
	01h	NOTO Active	0 - 1	U16	rw	Υ	N	01h
	026	Level	0 - 1	111.0		V	N.	01h
	02h	NOT1 Active Level	0-1	U16	rw	Υ	N	OTII
	03h	NOT2 Active	0 - 1	U16	rw	Υ	N	01h
	0311	Level	0-1	010	I VV	I	IN	OIII
	04h	NOT3 Active	0 - 1	U16	rw	Υ	N	01h
	0-111	Level	0 1	010	1 00	'	' '	OIII
0x2003		POT/RL Active						
		Level						
	00h	Highest	4	U8	ro	N	N	4
		sub-index						
		supported						
	01h	POT0 Active	0 - 1	U16	rw	Υ	N	01h
		Level						

	02h	POT1 Active Level	0 - 1	U16	rw	Y	N	01h
	03h	POT2 Active Level	0-1	U16	rw	Υ	N	01h
	04h	POT3 Active Level	0-1	U16	rw	Υ	N	01h
0x3001		Axes Run Current unit:mA						
	00h	Highest sub-index supported	4	U16	ro	N	N	4
	01h	Axis0 Run Current	0 - 3368	U16	rw	Υ	N	03E8h
	02h	Axis1 Run Current	0 - 3368	U16	rw	Y	N	03E8h
	03h	Axis2 Run Current	0 - 3368	U16	rw	Y	N	03E8h
	04h	Axis3 Run Current	0 - 3368	U16	rw	Y	N	03E8h
0x3002		Axes Hold Current unit:mA						
	00h	Highest sub-index supported	4	U16	ro	N	N	4
	01h	Axis0 Hold Current	0 - 3368	U16	rw	Y	N	01F4h
	02h	Axis1 Hold Current	0 - 3368	U16	rw	Υ	N	01F4h
	03h	Axis2 Hold Current	0 - 3368	U16	rw	Υ	N	01F4h
	04h	Axis3 Hold Current	0 - 3368	U16	rw	Υ	N	01F4h
0x3003		Axes Encoder PPR pulse per revolution of						

		the en	code	r										
	00h	Highes	t		4		U1	.6	ro	N	١	١	4	
		sub-in	dex											
		suppoi	rted											
	01h	Axis0 E	Encod	ler	0 -		U3	32	rw	Υ	1	١	0000	0000h
		PPR			4294	967295								
	02h	Axis1 E	ncoc	ler	0 -		U3	32	rw	Υ	1	١	0000	0000h
		PPR			4294	967295								
	03h	Axis2 E	Encod	ler	0 -		U3	32	rw	Υ	1	١	0000	0000h
		PPR				967295								
	04h				0 -		U3	32	rw	Υ	1	١	0000	0000h
					4294	967295								
0x3004			Axes Encoder											
		Mode	_								_		_	
	00h	Highes			4		U1	.6	ro	N	[١	4	
		sub-in												
	016	suppoi		امیا	0 - 1	27	111			Υ			0000	<u> </u>
	01h	Axis0 E Mode	encoc	ier	0-1.	21	U1	.0	rw	Y	I`	١	0000	n
	02h	Axis1 E	ncoc	lor	0 - 1	27	U1	6	rw	Υ		١	0000	h
	UZII	Mode	IIICOC	iei	0-1.	27	01	.0	I VV	I	l'	V	0000	11
	03h				0 - 1	 27	U1	6	rw	Υ	ı	١	0000	h
		Mode										•		
	04h	Axis3 E			0 - 1	27	U1	.6	rw	Υ	ı	١	0000	h
		Mode												
	Bit		7	ϵ	5	5			4	3	2		1	0
	Function		_	EZ	INV	EB IN\	,	ΕA	INV	_	PUL	SE	MODE	I .

PULSE_MODE (R/W):

0: OUT/DIR pulse

1: CW/CCW pulse

2: 1 x AB phase pulse, the minimum pulse width is 80ns

3: 2 x AB phase pulse, the minimum pulse width is 80ns

4: 4 x AB phase pulse, the minimum pulse width is 160ns

EA_INV: Write '1' to invert A signal (default: '0')
EB_INV: Write '1' to invert B signal (default: '0')
EZ_INV: Write '1' to invert C signal (default: '0')

0x3005		Axes Torque Off Mode								
	00h	Highest sub-index supported	4	U16	ro	N	N	4		
	01h	Axis0 Torque Off Mode	0 - 1	U16	rw	Y	N	0000h		
	02h	Axis1 Torque Off Mode	0 - 1	U16	rw	Υ	N	0000h		
	03h	Axis2 Torque Off Mode	0 - 1	U16	rw	Υ	N	0000h		
	04h	Axis3 Torque Off Mode	0-1	U16	rw	Y	N	0000h		
		en Servo Off, the m			nt					
		motor has no curr	ent when Serv	o Off						
0x3006		Axes Motor PPR								
		pulse per								
		revolution of								
	001-	the motor	4	1116		N.	N.	4		
	00h	Highest	4	U16	ro	N	N	4		
		sub-index								
	01h	supported Axis0 Motor	200 - 51200	U16	rw	Υ	N	0xC800		
		PPR			1 VV					
	02h	Axis1 Motor PPR	200 - 51200	U16	rw	Υ	N	0xC800		
	03h	Axis2 Motor PPR	200 - 51200	U16	rw	Υ	N	0xC800		
	04h	Axis3 Motor PPR	200 - 51200	U16	rw	Y	N	0xC800		
	200(F	ull step)								
	400									
	800									
	1600									
	3200									
	6400									
	12800									
	25600	1								

	51200)						
0x3007		Axes DRVCONF						
	00h	Highest	4	U16	ro	N	N	4
		sub-index						
		supported						
	01h	Axis0 DRVCONF	0 -	U32	rw	Υ	N	0x000EA07
			4294967295					1
	02h	Axis1 DRVCONF	0 -	U32	rw	Υ	N	0x000EA07
			4294967295					1
	03h	Axis2 DRVCONF	0 -	U32	rw	Υ	N	0x000EA07
			4294967295					1
	04h	Axis3 DRVCONF	0 -	U32	rw	Υ	N	0x000EA07
			4294967295					1
0x3008		Axes						
		CHOPCONF						
	00h	Highest	4	U16	ro	N	N	4
		sub-index						
		supported						
	01h	Axis0	0 -	U32	rw	Υ	N	0x0008847
		CHOPCONF	4294967295					5
	02h	Axis1	0 -	U32	rw	Υ	N	0x0008847
		CHOPCONF	4294967295					5
	03h	Axis2	0 -	U32	rw	Υ	N	0x0008847
		CHOPCONF	4294967295					5
	04h	Axis3	0 -	U32	rw	Υ	N	0x0008847
		CHOPCONF	4294967295					5
0x3009		Axes SMARTEN						
	00h	Highest	4	U16	ro	N	N	4
		sub-index						
		supported						
	01h	Axis0 SMARTEN	0 -	U32	rw	Υ	N	0x000A000
			4294967295					0
	02h	Axis1 SMARTEN	0 -	U32	rw	Υ	N	0x000A000
			4294967295					0
	03h	Axis2 SMARTEN	0 -	U32	rw	Υ	N	0x000A000
			4294967295					0
	04h	Axis3 SMARTEN	0 -	U32	rw	Υ	N	0x000A000
			4294967295					0

0x300		Axes SGCSCONF								
Α	00h	Highest	4	U16	ro	N	N	4		
		sub-index								
		supported								
	01h	Axis0	0 -	U32	rw	Υ	N	0x000C150		
		SGCSCONF	4294967295					8		
	02h	Axis1	0 -	U32	rw	Υ	N	0x000C150		
		SGCSCONF	4294967295					8		
	03h	Axis2	0 -	U32	rw	Υ	N	0x000C150		
		SGCSCONF	4294967295					8		
	04h	Axis3	0 -	U32	rw	Υ	N	0x000C150		
		SGCSCONF	4294967295					8		
0x4000	00h	Station Alias	0 - 1	U8	rw	Υ	N	00h		
		1: 0012h of ESC r	egister reads C	004h o	f SII (Co	nfigured S	Station	Alias)		
		0: 0012h of ESC r	egister reads E	CAT ID	rotary s	witch				
0x4001	00h	ID selector	0 - 255	U16	ro	N	N	0		
0x4002	00h	Moving	0 - 10	U8	rw	N	N	5		
		Average								
		CSP position command moving average filter, valid in interpolation mode,								
		unit: ms								
0x4003	00h	Motion Mode	0 - 1	U8	rw	N	N	0		
		0: interpolation n	node							
		1: high speed mo								
		commands, and t	he command	execution	on time	should be	e less t	han 500ms)		
0x5000		Store								
		parameters								
	00h	Number of		U8	rw	N	N	3		
		entries								
	01h	Save all	0 -	U32	rw	N	N	00000000h		
		Parameters	4294967295							
	02h	Load Factory	0 - 1	U32	rw	Υ	N	00000001h		
	03h	Save counter	0 -	U32	ro	Υ	N	00000000h		
			4294967295							
		able EEPROM, plea		•						
		et Save all Paramet			•		,			
		archive fails, the El	·		U1) IS 1,					
		e reset Save all Para								
	If the save is successful, Save counter + 1									

To restore to the default value, please set Load Factory to 1,

And set Save all Parameters from 0 to 1 to restore to the default value,

If the archive fails, the EEPROM Error is 1

If the save is successful, Save counter + 1

All parameters will be restored to preset values after power on again

0x5001

	Store Status						
00h	Number of		U8	rw	N	N	2
	entries						
01h	EEPROM Error	0 - 1	U32	ro	N	N	00000000h
02h	Load EEPROM	0 - 1	U32	rw	Υ	N	00000000h

If the EEPROM Error is 1 after power-on, it means that the EEPROM reading failed.

Please set Load EEPROM from 0 to 1, if successful, EEPROM Error is 0.

If the EEPROM Error is still 1, it means that a problem occurred during the last archive, but it was not processed.

Please re-archive

6 Drive Profile Area (6000h ~ 6FFFh)

6.1 Object List

 $0x6000^{\sim}0x67FF$ are the Objects of the first axis

0x6800~0x6FFF are the Objects of the second axis

0x7000~0x77FF are the Objects of the third axis

0x7800~0x7FFF are the Objects of the fourth axis

Object Index + 0x800 * (n-1) is the object of the nth axis

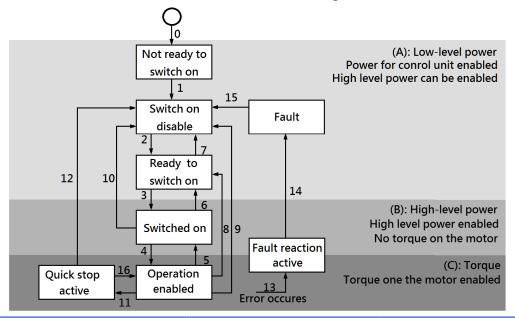
For example:

0x603F is the Object of the first axis

0x683F is the object of the second axis

0x703F is the object of the third axis

0x783F is the object of the fourth axis


Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default
	index			Туре				
0x603F	00h	ErrorCode	0 - 65535	U16	ro	N	Υ	0000h
0x6040	00h	Controlword	0 - 65535	U16	rw	N	Υ	0000h
0x6041	00h	Statusword	0 - 65535	U16	ro	N	Υ	0000h
0x605A	00h	Quick Stop Option	1-3	U16	rw	Υ	N	0002h
		Code	5 - 7					
0x605B	00h	Shutdown Option	1	U16	rw	Υ	N	0001h
		Code						
0x605C	00h	Disable Operation	1	U16	rw	Υ	N	0001h
		Option Code						
0x605D	00h	Halt Option Code	1 - 3	U16	rw	Υ	N	0002h
0x605E	00h	Fault Reaction	1 - 2	U16	rw	Υ	N	0002h
		Option Code						
0x6060	00h	Modes Of	-128 - 127	18	rw	N	Υ	00h
		Operation						
0x6061	00h	Modes Of	-128 - 127	18	ro	N	Υ	00h
		Operation Display						
0x6064	00h	Position Actual	-2147483648	132	ro	N	Υ	00000000h
		Value	-					

			2147483647					
0x606C	00h	Velocity Actual Value	-2147483648 - 2147483647	132	ro	N	Y	00000000h
0x607A	00h	Target Position	-2147483648 - 2147483647	132	ro	N	Y	00000000h
0x607C	00h	Home Offset	-2147483648 - 2147483647	132	rw	N	N	00000000h
0x607D		Software Position Limit						
	00h	Number of entries	2	U8	ro	N	N	2
	01h	Min position limit	-2147483648 - 2147483647	132	rw	Y	N	00000000h
	02h	Max position limit	-2147483648 - 2147483647	132	rw	Y	N	00000000h
0x607E	00h	Polarity	0 ` 224	U8	rw	Υ	N	00h
0x607F	00h	Max. Profile Velocity	0 - 4294967295	U32	rw	Y	N	7FFFFFFFh
0x6081	00h	Profile Velocity	0 - 4294967295	U32	rw	Y	N	0000C350h
0x6083	00h	Profile Acceleration	0 - 4294967295	U32	rw	Y	N	0000C350h
0x6084	00h	Profile Deceleration	0 - 4294967295	U32	rw	Y	N	0000C350h
0x6085	00h	Quick Stop Deceleration	0 - 4294967295	U32	rw	Y	N	0007A120h
0x6098	00h	Homing method	-128 - 127	18	rw	Υ	N	00h
0x6099		Homing Speeds					N	
	00h	Number of entries	2	U16	ro	N	N	2
	01h	Speed during search for switch	0 - 4294967295	U32	rw	Y	N	0000C350h
	02h	Speed during	0 -	U32	rw	Υ	N	000007D0h

		search for zero	4294967295					
0x609A	00h	Homing	0 -	U32	rw	Υ	N	0000C350h
		acceleration	4294967295					
0x60C5	00h	Max Acceleration	0 -	U32	rw	Υ	N	7FFFFFFFh
			4294967295					
0x60C6	00h	Max Deceleration	0 -	U32	rw	Υ	N	7FFFFFFFh
			4294967295					
0x60FD	00h	Digital Inputs	0 -	U32	ro	N	Υ	00000000h
			4294967295					
0x60FF	00h	Target Velocity	-2147483648	132	rw	N	Υ	00000000h
			-					
			2147483647					

6.2 PDS State Machine

According to the user command or abnormal detection, etc., the PDS state machine transition of the drive is defined as shown in the figure below

PDS T	ransition	Event(s)	Action(s)
0	Auto skip 0	Automatically changes after	The drive functions are
		control power-on or after	self-diagnosed and
		resetting application	initialized
1	Auto skip 1	Automatic transition after	The communication is
		the completion of	established
		initialization	
2	Shutdown	The Shutdown command is	-
		received	
3	Switch on	The Switch on command is	-
		received	
4	Enable operation	The Enable operation	The drive functions are
		command is received	validated
5	Disable operation	The Disable operation	The drive functions are
		command is received	disabled
6	Shutdown	The Shutdown command is	-
		received	
7	Disable voltage	The Disable voltage	-
		command is received	
		The Quick stop command is	

		received	
8	Shutdown	The Shutdown command is	The drive functions are
		received	disabled
9	Disable voltage	The Disable voltage	The drive functions are
		command is received	disabled
10	Disable voltage	The Disable voltage	-
		command is received	
		The Quick stop command is	
		received	
11	Quick stop	The Quick stop command is	The Quick stop function
		received	starts
12	Disable voltage	Quick stop function is	The drive functions are
		completed and quick stop	disabled
		option code is 1, 2 or 3.	
		After Quick stop function is	
		completed, received Disable	
		voltage command quick stop	
		option code is 5, 6, or 7.	
13	Error occurs	An error is detected	Performs the established
			Fault reaction function
14	Auto skip2	After completing the	The drive functions are
		deceleration process	disabled
		due to an error detection,	
		the state transitions	
		automatically	
15	Fault reset	After releasing factor error,	Resets the Fault state when
		The Fault reset command is	there is no Fault factor
		received	
16	Enable operation	When the Quick stop option	The drive functions are
		code is 5, 6, or 7, the Enable	validated
		operation command is	
		received	

6.3 Controlword(6040h)

Index	sub- index	Name	Range	Data Type	Access	EEPROM	PDO			
6040h	00h	controlword	0-65535	U16	rw	N	Υ			
		Set a command to a servo driver including the PDS state transition.								

Bit	15 ~ 10	9	8	7	6~4	3	2	1	0			
	r	oms	h	fr	oms	eo	qs	ev	so			
r = reser	r = reserve					eo = Enable operation						
oms = o	oms = operation mode specific					qs = quick stop						
(D	ifferent d	efinitions	according	g to	ev = enable voltage							
r	modes of	operation)		so = swit	tch on						
fr = fault	fr = fault reset											
h = halt												

Bit7, 3 \sim 0(fault reset / Enable operation / quick stop / enable voltage / switch on): The following table indicates the PDS command.

		bits	of the control	word		
Command	bit 7	bit 3	bit 2	bit 1	bit 0	PDS
Command	fault	enable	quick stop	enable	switch	State
	reset	operation	quick stop	voltage	on	
Shutdown	0	-	1	1	0	2, 6, 8
Switch on	0	0	1	1	1	3
Switch on +	0	1	1	1	1	3+4
Enable operation	U	1	ı I	1	1	3+4
Enable operation	0	1	1	1	1	4, 16
Disable voltage	0	-	-	0	-	7, 9, 10, 12
Quick stop	0	-	0	1	-	7, 10, 11
Disable operation	0	0	1	1	1	5
Foult recet	rising					15
Fault reset	edge	-	-	-	-	15

Note: The bit logic of the quick stop command is valid at 0, please note that it is different from other bit logic

The following shows the definition of oms bit under each control mode (modes of operation)

-: reserve

Op-mode	bit 9	bit 6	bit 5	bit 4
csp	-	-	-	-
CSV	-	-	-	-
hm	-	-	-	start homing
рр		absolute/	change set	new set-point
		relative	immediately	·

6.4 Statuslword(6041h)

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default
	index			Туре				
6041h	00h	Statusword	0-65535	U16	ro	N	Υ	0
		Displays the servo driver st	tate					

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		oms		ila	oms	rm	r	w	sod	qs	ve	f	oe	so	rtso
r = r	r = reserve w = warning															
oms	= ope	eratio	n mod	le spe	cific			so	od = s	witch	on dis	sabled	t			
	(Dif	ferent	defin	itions	ассо	rding t	0	q:	qs = quick stop							
	m	odes c	of ope	ratior	1)			V	ve = voltage enabled							
ila =	inter	nal lim	nit act	ive				f :	f = fault							
rm =	remo	ote						0	oe = operation enabled							
						so	so = switched on									
rtso = ready to switch on																

Bit 6, 5, 3 - 0(switch on disabled/ quick stop/ fault/ operation enabled/ switched on/ ready to switch on): This bit enables to confirm the PDS state

Statu	sword			PDS State	
xxxx	xxxx	x0xx	0000 b	Not ready to switch on	Initialization non-completed
xxxx	xxxx	x1xx	0000 b	Switch on disabled	Initialization completed
xxxx	xxxx	x01x	0001 b	Ready to switch on	Main circuit power OFF
xxxx	xxxx	x01x	0011 b	Switched on	Servo-off/servo ready
xxxx	xxxx	0x1x	0111 b	Operation enabled	Servo-on
xxxx	xxxx	x00x	0111 b	Quick stop active	Immediate stop
xxxx	xxxx	х0хх	1111 b	Fault reaction active	Error (alarm) discriminated
xxxx	xxxx	x0xx	1000 b	Fault	Error (alarm) state

Bit 5(quick stop):

If 0, it indicates PDS responds to quick stop request.

Quick stop enabled if the bit is '0'.

Please keep in mind that the bit performs reverse operation compared to other bits.

Bit 7(warning):

If 1, it is indicating a warning. The PDS state does not change during the warning, also, continues the motor operation.

Bit 13, 12, and 10(operation mode specific):

Below table shows the behavior of the operation mode (Op-mode) specific bits.

Op-mode	bit 13	bit 12	bit 10
csp	-	drive follows command value	-
csv	-	drive follows command value	-
hm	homing error	homing attained	target reached
рр	-	set-point acknowledge	target reached

6.5 Operation mode Setting

6.5.1 Supported drive modes(6502h)

This driver can confirm the supported control modes (Modes of operation) according to 6502h.

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default
	index			Туре				
6502h	00h	Supported drive modes	0-	U32	ro	N	N	0x1A1
			4294967295					

bit	Modes of operation		
0	Profile position mode	рр	Yes
1	Velocity mode	vl	No
2	Profile velocity mode	pv	No
3	Torque profile mode	tq	No
5	Homing mode	hm	Yes
6	Interpolated position mode	ip	No
7	Cyclic synchronous position mode	csp	Yes
8	Cyclic synchronous velocity mode	CSV	Yes
9	Cyclic synchronous torque mode	cst	No

6.5.2 Modes of operation (6060h)

The operation mode is set by 6060h (Modes of operation)

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default
	index			Туре				
6060h	00h	Modes of operation	-128 -	18	rw	N	Υ	0x00
			127					

bit	Modes of operation	
1	Profile position mode	рр
6	Homing mode	hm
8	Cyclic synchronous position mode	csp
9	Cyclic synchronous velocity mode	CSV

Because 6060h (Modes of operation) is default=0 (No mode change/no mode assigned), please set the control mode value before the PDS state transitions to Operation enabled.

6.5.3 Modes of operation display (6061h)

The 6061h (Modes of operation display) enables to confirm the internal operation mode of this servo driver.

After setting 6060h (Modes of operation), monitor this object to confirm that the system operation is set as expected

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default		
	index			Туре						
6061h	00h	Modes of operation	-128 -	18	ro	N	Υ	0x00		
			127							
		Displays the operation mo	isplays the operation mode at present.							

bit	Modes of operation	
1	Profile position mode	рр
6	Homing mode	hm
8	Cyclic synchronous position mode	csp
9	Cyclic synchronous velocity mode	CSV

6.5.4 Caution for Changing Operation mode

- > The operation mode can be switched by changing the value of 6060h (Modes of operation).
- > The 6061h (Modes of operation display) enables to confirm the operation mode of the servo driver at present.
- > About 2 ms is required from the time when the operation mode is changed until the completion of the change.
- > When changing the operation mode, make sure that the motor is stopped.
- > If the control mode is changed during a motor operation (including during an origin return operation and deceleration stop), the operation cannot be guaranteed.

6.6 Position Control Function

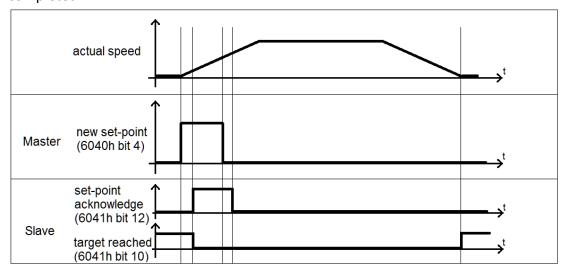
6.6.1 Software position limit (Software position limit:607Dh)

Index	sub-	Name	Range	Data	Access	EEPROM	PDO	default
	index			Туре				
0x607D		Software Position						
		Limit						
	00h	Number of entries	2	U8	ro	N	N	2
	01h	Min position limit	-2147483648	132	rw	Υ	N	00000000h
			-					
			2147483647					
	02h	Max position limit	-2147483648	132	rw	Υ	N	00000000h
			-					
			2147483647					

The following conditions are invalidation of the software limit function

607Dh-01h >= 607Dh-02h

Example) 607Dh-01h = 0


607Dh-02h = 0

6.6.2 Profile Position Mode(pp mode)

In this mode, specify the target position, target speed, acceleration and deceleration, etc., and the driver will drive the motor to move after generating instructions internally in accordance with the motion parameters.

Steps

- 1. Set the operation mode (Mode of operation: 6060h) to Profile position mode (pp mode) Value = 0x01, and confirm (Mode of operations Display: 6061h) = 0x01.
- 2. Change (Controlword: 6040h) from the value 0x06 \to 0x07 \to 0x0F to make the control system Servo On state.
- 3. Change the target position (Target Position: 607Ah).
- 4. Change the target velocity (Profile velocity: 6081h), this object is restricted by the setting value of (Max profile velocity: 607Fh).
- 5. Change acceleration (Profile acceleration: 6083h), this object is limited by the setting value of (Max acceleration: 60C5h).
- 6. Change the deceleration (Profile decceleration: 6084h), this object is limited by the setting value of (Max decceleration: 60C6h).
- 7. Set bit 4 (new set-point) of 6040h to change from 0 to 1, and the motor starts to operate.
- 8. Confirm that bit 12 (set-point acknowledge) of 6041h is from 0 to 1.
- 9. Confirm that bit10 (target reached) of 6041h is 1, and the positioning is completed.

Control word: 6040h (under pp mode)

Bit	15 ~ 10	9	8	7	6~4	3	2	1	0		
	r	r	h	fr	oms	eo	qs	ev	so		
r = reser	ve				eo = Enable operation						
fr = fault	t reset				qs = quick stop						
h = halt					ev = enable voltage						
					so = switch on						

bit	Name	Value	Definition
4	new set-point	0 -> 1	Start moving
5	change set immediately	0	After the current positioning action is completed, start the next positioning action
5	change set immediately	1	Interrupt the current positioning action and immediately start the next positioning action
	absolute/ relative	0	(Target position: 607A) is treated as an absolute position
6		1	(Target position: 607A) is treated as a relative position

The difference according to the combined action of bit5 and bit4 is as follows

bit 5	bit 4	Definition
change set immediately	new set-point	
		The next positioning
0	0 -> 1	action is executed after
U	0->1	the current positioning
		action is completed
1	0 -> 1	The next positioning
		action will be executed
		immediately

Status word: 6041h (under pp mode)

Bit	15~13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r	set-point	ila	target	rm	r	w	sod	qs	ve	f	oe	so	rtso
		acknowledge		reached										

r = reserve	w = warning
ila = internal limit active	sod = switch on disabled
rm = remote	qs = quick stop
	ve = voltage enabled
	f = fault
	oe = operation enabled
	so = switched on
	rtso = ready to switch on

bit	Name	Value	Definition
	target reached	0	Command not completed
10		1	When halt = 0: positioning is complete When halt = 1: the axis stops (speed is 0)
12	set point seknowledge	0	new-setpoint is 0, and the buffer is empty
12	set-point acknowledge	1	new-setpoint is 1, or the buffer is not empty

6.6.3 Cyclic Synchronous Position Mode(csp mode)

It is a position control mode to operate by creating a command position in the host controller (MainDevice) and updating (transmitting) the command position in an interpolation cycle.

- **Step 1:** Read (Position Actual Value: 6064h) and write to (Target position: 607Ah).
- **Step 2:** Set (Mode of operation: 6060h) to Cyclic synchronous position mode (csp mode) value = 0x08, and check (Mode of operations Display: 6061h) = 0x08.
- **Step 3:** Change (Controlword: 6040h) from the value 0x06 → 0x07 → 0x0F to make the control system Servo On state, and the drive starts to move according to (Target position: 607Ah).

Control word: 6040h (under csp mode)

Bit	15 ~ 10	9	8	7	6~4	3	2	1	0		
	r	r	h	fr	r	eo	qs	ev	so		
r = reser	ve				eo = Enable operation						
fr = fault	t reset				qs = quick stop						
h = halt					ev = enable voltage						
					so = switch on						

Status word: 6041h (under csp mode)

Bit	15~13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r	driver follows	ila	r	rm	r	w	sod	qs	ve	f	oe	so	rtso
		command value												
r = r	eserve					W	/ = wa	rning						
fe =	following	g error				S	od = s	witch	on d	isable	ed			
ila =	internal	limit active				q	qs = quick stop							
rm =	remote					V	ve = voltage enabled							
						f	f = fault							
						0	oe = operation enabled							
							so = switched on							
						rt	rtso = ready to switch on							

bit	Name	Value	Definition					
12	driver follows command	0	Operation is not performed according to the target position					
12	value	1	Operation is performed according to the target position					

6.6.4 Homing Mode(hm mode)

Specify the action speed, acceleration and homing method, the drive generates a position command and executes homing.

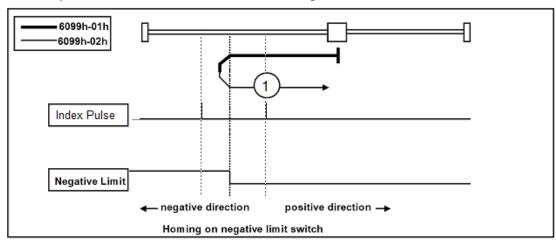
- **Step 1:** Set (Mode of operation: 6060h) to the Homing mode (hm mode) Value = 0x06, and check (Mode of operations Display: 6061h) = 0x06
- Step 2: Set (Home offset: 607Ch), the default is 0
- **Step 3:** Set (Homing method: 6098h)
- **Step 4:** Set (Homing speeds: 6099h Sub-1)
- **Step 5:** Set (Homing speeds: 6099h Sub-2)
- **Step 6:** Set (Homing acceleration: 609Ah)
- **Step 7:** Change (Controlword: 6040h) from the value $0x06 \rightarrow 0x07 \rightarrow 0x0F$ to make the control system Servo On state
- Step 8: Set (Controlword: 6040h)to 0x1F and start homing

Control word: 6040h (under hm mode)

Bit	15 ~ 10	9	8	7	6~5	4	3	2	1	0			
	r	r	h	fr	r	start	eo	qs	ev	so			
						homing							
r = rese	erve				eo = Enable operation								
fr = fau	fr = fault reset				qs = quick stop								
h = hal	h = halt					ev = enable voltage							
					so = switch on								

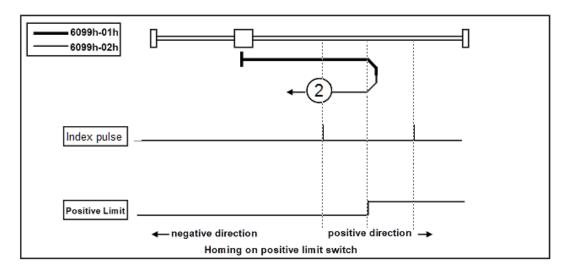
bit	Name	Value	Definition
4	start homing	0 -> 1	Start homing

Status word: 6041h (under hm mode)

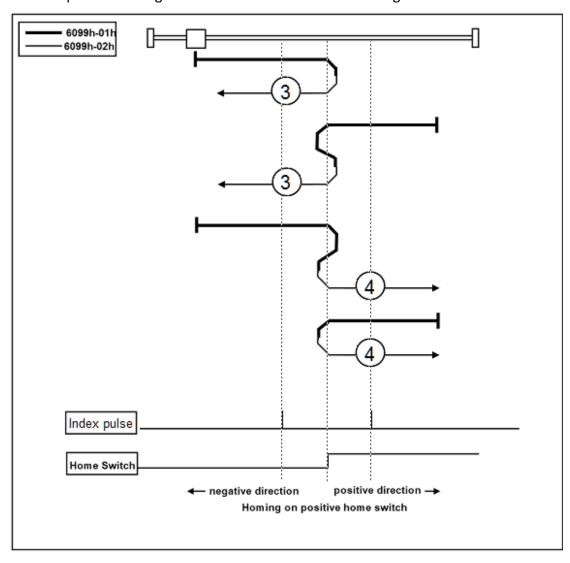

Bit	15~14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r	homing	homing	ila	target	rm	r	w	sod	qs	ve	f	oe	so	rtso
		error	attained		reached										
r = r	r = reserve						١	w = v	warni	ng					
ila =	ila = internal limit active							sod = switch on disabled							
rm = remote							qs = quick stop								
							ve = voltage enabled								
							f	= fa	ault						
							(e =	oper	atior	n ena	ble	d		
							9	so =	switc	hed	on				
								tso	= rea	dy to	swi	tch	on		

bit	Name	Value	Definition
10	target reached	0	In operation
10	target reached	1	Stopped state
	12 homing attained	0	The homing operation is incomplete
12		1	The homing operation complete to be performed successfully
		0	A homing error does not occur (normal)
13	13 homing error		A homing error occurs (The homing operation is not performed successfully)

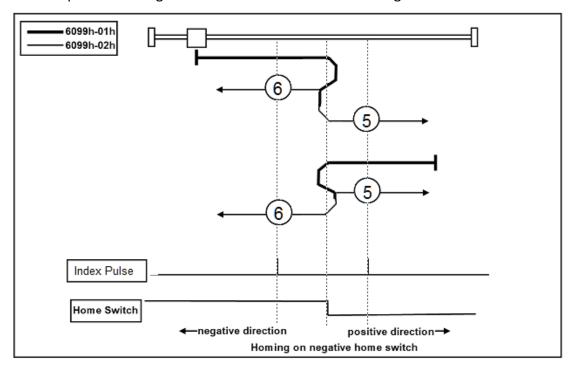
bit 13	bit 12	bit 10	Definition
0	0	0	Homing
0	0	1	The homing operation is suspended or not started
0	1	0	The homing operation is completed, but the operation
			does not arrive at the target position
0	1	1	The homing operation is completed successfully
1	0	0	The homing error is detected but still working
1	0	1	The homing error is detected and stopped


Method 1

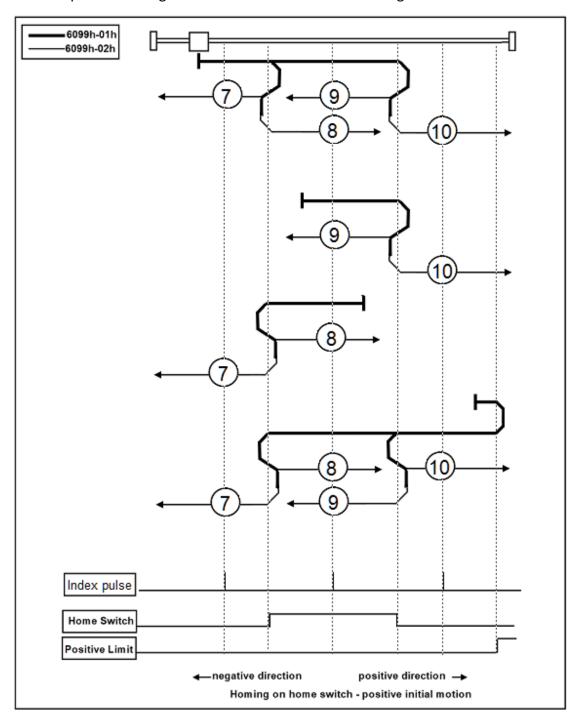
- If LL switch is not activated at the beginning of the action, the initial action direction is the negative direction.
- If the LL switch has been activated at the beginning of the action, the initial action direction is the positive direction.
- The home detection position is the first Index pulse detection position in the positive direction after the status change of LL.


Method 2

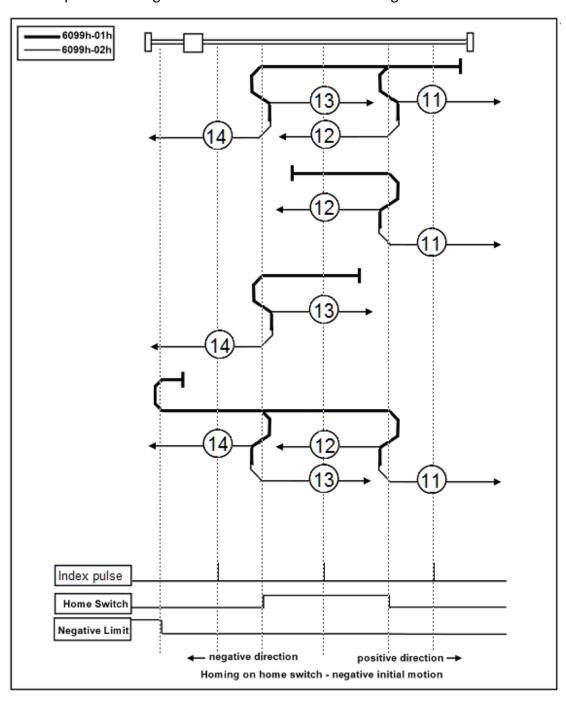
- If RL switch is not activated at the beginning of the action, the initial action direction is the positive direction.
- If the RL switch has been activated at the beginning of the action, the initial action direction is the negative direction.
- The home detection position is the first Index pulse detection position in the negative direction after the status change of RL.


Method 3 \ 4

- If Home switch is not activated at the beginning of the action, the initial action direction is the positive direction.
- If the Home switch has been activated at the beginning of the action, the initial action direction is the negative direction.
- The home detection position is the first Index pulse detection position in the positive or negative direction after the status change of ORG.

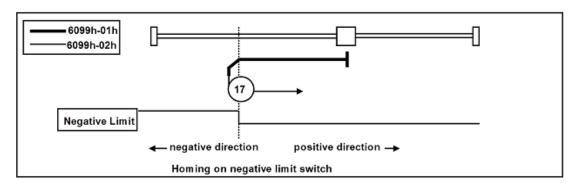

> Method 5 \ 6

- If Home switch is not activated at the beginning of the action, the initial action direction is the negative direction.
- If the Home switch has been activated at the beginning of the action, the initial action direction is the positive direction.
- The home detection position is the first Index pulse detection position in the positive or negative direction after the status change of ORG.

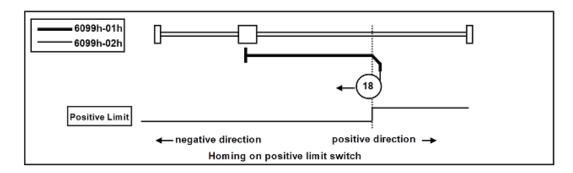


Method7 \ 8 \ 9 \ 10

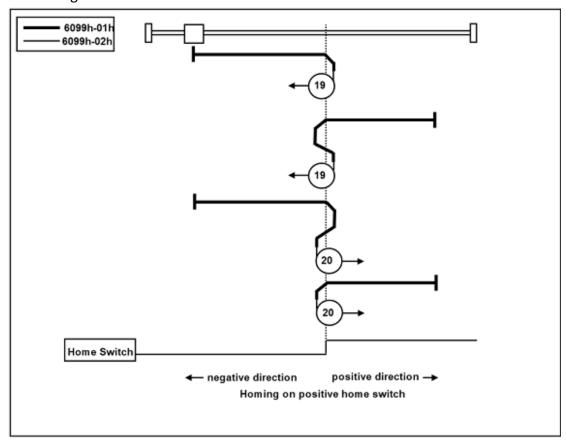
- If Home switch of Method 7 and 8 is activated at the beginning of the action, the initial action direction is the negative direction.
- If Home switch of Method 9 and 10 is activated at the beginning of the action, the initial action direction is the positive direction.
- The home detection position is the first Index pulse detection position in the positive or negative direction after the status change of ORG.



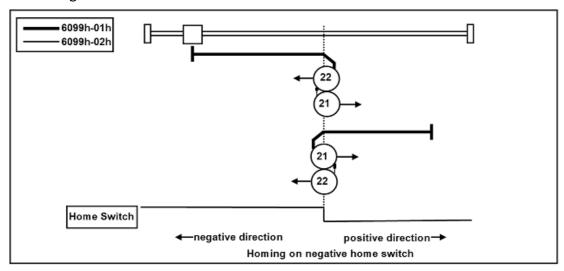
- Method11 \ 12 \ 13 \ 14
 - If Home switch of Method 13 and 14 is activated at the beginning of the action, the initial action direction is the negative direction.
 - If Home switch of Method 11 and 12 is activated at the beginning of the action, the initial action direction is the positive direction.
 - The home detection position is the first Index pulse detection position in the positive or negative direction after the status change of ORG.


Method 17

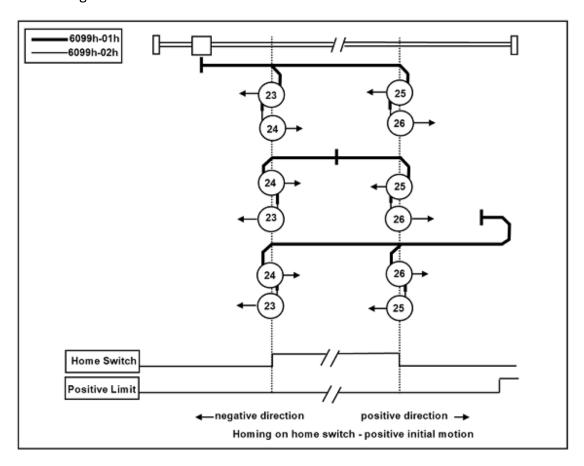
- If LL switch is not activated at the beginning of the action, the initial action direction is the negative direction.
- If the LL switch has been activated at the beginning of the action, the initial action direction is the positive direction.
- The home detection position is the position when the status of LL changes.


Method 18

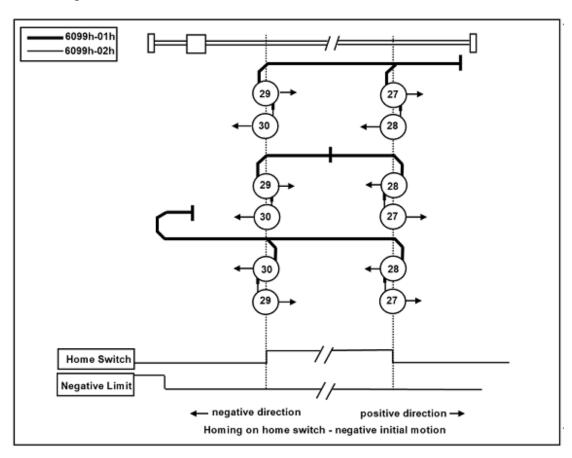
- If RL switch is not activated at the beginning of the action, the initial action direction is the positive direction.
- If the RL switch has been activated at the beginning of the action, the initial action direction is the negative direction.
- The home detection position is the position when the status of RL changes.


> Method 19 \ 20

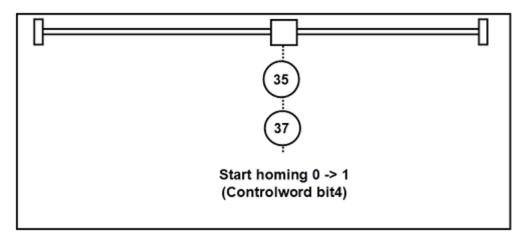
- If Home switch is not activated at the beginning of the action, the initial action direction is the positive direction.
- If the Home switch has been activated at the beginning of the action, the initial action direction is the negative direction.
- The home detection position is the position when the status of ORG changes.



Method 21 \ 22


- If Home switch is not activated at the beginning of the action, the initial action direction is the negative direction.
- If the Home switch has been activated at the beginning of the action, the initial action direction is the positive direction.
- The home detection position is the position when the status of ORG changes.

- Method23 \ 24 \ 25 \ 26
 - If Home switch of Method 23 and 24 is activated at the beginning of the action, the initial action direction is the negative direction.
 - If Home switch of Method 25 and 26 is activated at the beginning of the action, the initial action direction is the positive direction.
 - The home detection position is the position when the status of ORG changes.



- > Method27 \ 28 \ 29 \ 30
 - If Home switch of Method 29 and 30 is activated at the beginning of the action, the initial action direction is the negative direction.
 - If Home switch of Method 27 and 28 is activated at the beginning of the action, the initial action direction is the positive direction.
 - The home detection position is the position when the status of ORG changes.

> Method35 \ 37

• The home detection position is the current position.

6.7 Velocity Control Function

6.7.1 Cyclic Synchronous Velocity Mode(csv mode)

It is a velocity control mode to operate by creating a command velocity in the host controller (MainDevice) and updating (transmitting) the command velocity in an interpolation cycle.

- **Step 1:** Set (Target velocity: 60FFh) to 0.
- **Step 2:** Set (Mode of operation: 6060h) to Cyclic synchronous position mode (csv mode) value = 0x09, and check (Mode of operations Display: 6061h) = 0x09.
- **Step 3:** Change (Controlword: 6040h) from the value 0x06 → 0x07 → 0x0F to make the control system Servo On state, and the drive starts to move according to the (target velocity: 60FFh).

Control word: 6040h (under csv mode)

Bit	15 ~ 10	9	8	7	6~4	3	2	1	0			
	r	r	h	fr	r	eo	qs	ev	so			
r = reser	ve				eo = Enable operation							
fr = faul	t reset				qs = quick stop							
h = halt					ev = enable voltage							
					so = switch on							

Status word: 6041h (under csv mode)

Bit	15~13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r	driver follows	ila	r	rm	r	w	sod	qs	ve	f	oe	so	rtso
		command value												
r = r	r = reserve						/ = wa	rning	,					
fe =	following	g error				sod = switch on disabled								
ila =	internal	limit active				qs = quick stop								
rm =	remote					V	ve = voltage enabled							
						f = fault								
						0	oe = operation enabled							
						S	so = switched on							
							rtso = ready to switch on							

bit	Name	Value	Definition
12	driver follows command	0	Operation is not performed according to the target velocity
12	value	1	Operation is performed according to the target velocity

6.8 Common Motion Function

6.8.1 Digital inputs

Bit	2	1	0
Function	Home switch	Positive direction	Negative direction
	[HOME/ORG]	hardware limit	hardware limit
		input [POT/RL]	input
			[NOT/LL]

7 Alarm List

Alarm	Description
0x7500	EtherCAT Communication error
0xFF03	Changing (mode of operation: 6060h)
	during the running of the motor
0xFF04	EEPROM failed
0xFF05	over temperature
0xFF06	SPI Error
0xFF07	short circuit