Sparrow

IEEE 1394b 工業級 CCD 攝影機

IMS-30/IMS-130

使用說明書

手冊版本: 1.0 版本日期: May 20, 2009

泓格科技股份有限公司

ww.icpdas.com

1.	產品	簡介		5	
	1.1	產品特	F色	5	
	1.2	產品應用			
	1.3	系統需	;求	5	
	1.4	功能說	2明	7	
		1.4.1	局部取像 (AOI, Area of Interest)	7	
		1.4.2	亮度(Brightness)	8	
		1.4.3	銳利度(Sharpness)	8	
		1.4.4	白平衡(White Balance)	8	
		1.4.5	色調(Hue)	9	
		1.4.6	飽合度(Saturation)	9	
		1.4.7	Gamma 及查詢表	10	
		1.4.8	增益(Gain)	10	
		1.4.9	快門(Shutter)	10	
		1.4.10	觸發控制(Trigger Control)	10	
		1.4.11	數位輸出入埠(GPIO)	13	
		1.4.12	閃光燈控制(Strobe Control)	16	
		1.4.13	儲存攝影機設定	16	
		1.4.14	快閃記憶體存取	16	
		1.4.15	AES 專案加密	17	
		1.4.16	測試畫面	17	
	1.5	光譜反	應(Spectral Response)	18	
	1.6	效能(B	Benchmarks)	19	
		1.6.1	標準模式(Standard Video Mode)	19	
		1.6.2	局部取像模式(AOI Video Mode)		
		1.6.3	ICP DAS IEEE 1394 相關產品		
2	硒融	相故		21	
2.	21	Sparros	w/IMS-30 / IMS-130	21	
	2.1	2 1 1	播影機損格	21	
		2.1.1	攝影機介面		
		2.1.2	一种 沙 伐 升 凶 ·································	22	
	2.2	可强配	12 產品		
		2.2.1	VISION BOX 嵌入式平台		
		2.2.2	1394 介面卡		
		2.2.3	1394 訊號線		
		2.2.4	1394 訊號中繼器: 1394R3B		

		2.2.5	1394 CAT5/CAT6 訊號中繼器: FW-UTPS400	
3.	安裝	說明		27
	3.1	硬體安	安裝	27
		3.1.1	VISION BOX 嵌入式平台	
		3.1.2	工業電腦或商用桌上型電腦	
		3.1.3	筆記型電腦或具備 PCMCIA 插槽	
	3.2	驅動利	呈式安裝	
		3.2.1	Visual Studio (VC/VB/BCB/VC.NET)使用者	
		3.2.2	NI LabVIEW 使用者	
		3.2.3	Windows XP SP1 返回安裝	
4.	EzVi	ew Pro)工具程式	37
	4.1	Overv	iew	
	4.2	Menu.		
		4.2.1	Camera	
		4.2.2	Configure	
		4.2.3	Function	
		4.2.4	About	
	4.3	工具拍	安鍵(Tool Icons)	43
	4.4	Camer	ra List	43
	4.5	Displa	y Window	44
	4.6	Camer	ra Feature	44
	4.7	Color	Parameter	45
5.	功能	函式庫((Function Library)	46
	5.1	功能明	月細	47
	5.2	程式編	烏寫流程圖	
	5.3	攝影機	幾管理(Camera Management)	54
	5.4	事件回	习傳(Callback Event)	
	5.5	攝影機	幾取像(Camera Acquisition)	65
	5.6	攝影機	幾設定(Camera Configuration)	
	5.7	觸發言	发定(Trigger Setting)	
	5.8	GPIO	控制設定	
	5.9	閃光燈	登(Strobe)控制	
	5.10	查詢表	長設定(Lookup Table)	92
	5.11	快閃訂	己憶體(Data Flash)	94
	5.12	AES	專案加密	96
	5.13	測試景	珍像(Test Image)	

6.	機構	100	
	6.1	Sparrow 攝影機	
	6.2	三角架固定片	
7.	附錄		
	7.1	安規認證	
	7.2	專有名詞	
	7.3	改版記錄	
8.	保固	聲明	106
9.	泓格	科技全球據點	107

1. 產品簡介

Sparrow 是泓格科技針對機械視覺檢測應用所推出的工業級攝影機產品線, Sparrow IMS 系列具備高感度工業級 CCD 設計可擷取彩色或黑白影像. IMS-30 提供 640x480 解析度同時最高取像速度可達每秒 83 張. IMS-130 提供 1288 x 964 解析度同時取像 速度可達每秒 31 張.

此外, Sparrow 系列提供工業級數位 I/O 及 1394b 接頭防鬆脫鎖固設計. Sparrow IMS 系列具備超小尺寸及輕巧堅固的工業級外型設計,適合架設於各類檢測系統甚至是架設在機械手臂上的檢測操作. Sparrow IMS 系列適合應用於半導體,電子零件,高速組裝及製造品質控制等各類影像檢測應用.

1.1產品特色

- 漸進式掃描(Progressive-scan) 適合高速動態影像檢測應用
- VGA 至 1.3 百萬畫素高解析度
- 超小尺寸及輕巧堅固的工業級外型設計
- 內建 32MB 緩衝記憶體
- 64KB 快閃記憶體及 AES 專案加密功能
- 堅固的外部觸發 I/O 介面
- 免費的 SDK 提供 VC, VB, BCB,及 VC.Net 2005 開發語言 API
- 支援 Windows XP Driver

1.2產品應用

- 半導體/電子元件檢測
- 光學檢測定位系統
- 製造品質控制
- 食品/加工生產檢測
- 工廠自動化檢測
- 醫療/科學研究分析

1.3系統需求

為了確保攝影機可以在您的系統順暢的操作,泓格科技建議系統的規格如下:

- 系統平台: Pentium III 800MHz CPU, 256 MB DRAM 或規格以上等級.
- 顯示晶片: AGP 4X 或規格以上等級
- 顯示設定: 1024 x 768 pixels 或規格以上等級.
 - ▶ 僅適用於 32 位元系統 OS:
 - 如果使用 Windows XP SP2(含)以上之版本,請 rollback 至 SP1
 1394b 之全速(S800)驅動只有 Windows XP SP1 有支援,因此泓格科技有

提供'fixSP2g'程式提供客戶將全速之 1394b 驅動 rollback 至 Windows XP SP2(含) 以上版本之系統(請參閱章節 3.2.3 Windows XP SP1 rollback 說明)

關於各類系統平台的操作效能及上限說明,請參閱 1.6 效能說明

1.4功能說明

本章節我們將會介紹 Sparrow IMS 系列攝影機的主要控制功能,請仔細閱讀特別 是有關於警告說明,參數限制以及相關的公式計算方法.

1.4.1 局部取像 (AOI, Area of Interest)

局部取像(AOI, Area of Interest)功能可以讓使用者選擇某些特定區域作局部取像. 在設定好局部取像區域範圍之後,攝影機上面的 CCD 感光元件陣列就會將範圍內 的影像資料傳送出來.

Sparrow IMS 系列提供包括:Mono 8-bit, Mono 16-bit, 及 RGB 24-bit 共三種色彩格式,而且每種色彩格式會產生不且同的資料結構如下:

- Mono 8-bit: 這是黑白的影像資料同時以 8-bit 作灰階深度表現,每個畫素大小為
 1byte.
- Mono 16-bit: 這是黑白的影像資料同時以 16-bit 作灰階深度表現,每個畫素大小為
 2bytes.
- RGB 24-bit: 這是彩色的影像資料,分別獨立成紅色,綠色及藍色的彩色資料,每個 畫素的大小為 3bytes.

圖 1-1 彩色 AOI 取像

圖 1-2 黑白 AOI 取像

當使用者想要使用 AOI 功能時請先確認有將 Video Mode 設為 AOI Mode, 否則 AOI 的功能將無法生效.

AOI功能會需要指定欲選擇的AOI範圍之左邊及上面起始點位置以及寬高的值,由於AOI影像資料結構的關係,因此使用者必需要遵循以下AOI定義的有效值作設定才行.

- AOI Left: 有效值必需為 2*N, 當 N 為整數
- AOI Top: 有效值必需為 2*N, 當 N 為整數
- AOI Width: 有效值必需為 8*N, 當 N 為整數
- AOI Height: 有效值必需為 2*N, 當 N 為整數
- AOI Left + AOI Width 必需小於整張影像的總寬度
- AOI Top + AOI Height 必需小於整張影像的總高度

此外 AOI 功能會改變取像 Frame Rate, 但是如果使用者設的 Frame Rate 已超過 攝影機本身的有效範圍時, 這種狀況下 Sparrow 會自動轉換為可容許的最高取像 Frame Rate.

1.4.2 亮度(Brightness)

亮度(Brightness)功能可以增加或減少影像的明亮度進而改變整個影像的資料. Sparrow IMS 系列提供可以調整亮度的功能,其百分比有效絕對值範圍為 0.0 ~ 6.2439%.

1.4.3 銳利度(Sharpness)

銳利度(Sharpness)功能可以增加或減少影像的對比度進而改變整個影像的資料. Sparrow IMS 系列提供可以調整銳利度的功能,其有效值範圍 0~4095.

1.4.4 白平衡(White Balance)

Sparrow IMS 系列攝影機的 CCD 是採用 Bayer 濾鏡技術來呈現彩色畫素的資料, 因此白平衡(White Balance)功能可以有助於在不同光線條件下的色彩修正.

有關白平衡的組合依據 IIDC 規範說明是只能調整藍色及紅色;但是綠色則不行.因此 Sparrow 的白平衡(White Balance)功能分別提供藍色及紅色的增益值(有效範圍皆為 0~1024) 功能讓攝影機可以依據環境光線去調整正確的色彩平衡.

1.4.5 色調(Hue)

色調(Hue)功能將會改變整個影像的彩色區間因此預設值皆為 0 度,但 Sparrow IMS 系列仍提供可以調整色調的功能,其色彩區間度數之有效絕對值範圍為-180.0 ~ 179.912.

1.4.6 飽合度(Saturation)

飽合度(Saturation)功能可以增加或減少影像的色純度,因此會改變整個影像的資料. Sparrow IMS 系列提供可以調整色彩飽合度的功能,其有效絕對值範圍為 0.0~399.902.

1.4.7 Gamma 及查詢表

目前 Sparrow 預設出廠的 Gamma 值為 1.0, 當 Gamma 未變更維持在預設值時便不會去改變查詢表 的內容結構.因此影像只會呈現線性轉換的結果.

Gamma 及查詢表(LUT, Lookup Table)功能將會改變 影像資料的轉換結構. 一旦改變 Gamma 的值則查詢 表 (LUT)的資料結構便會連帶立即改變. Sparrow IMS 提供可以調整 Gamma 的功能, 其有效絕對值範圍為 0.50~3.99902.

Sparrow IMS 攝影機系列的查詢表可以輸入三組 11-bit 轉成 9-bit 輸出的查詢表,這三組分別是給紅色, 綠色及藍色的彩色資料輸出,亦或者全部設成一樣的 值時即代表為黑白影像格式.

它可以讓影像呈現非線性轉換的結果,查詢表的檔案 為標準的.txt 文字檔格式,使用者可以非常容易的打開 或修改查詢表的內容.使用者可以使用這個功能上傳 查詢表至攝影機或下載目前攝影機的查詢表.

1.4.8 增益(Gain)

增益(Gain)功能可以調整攝影機訊號的放大幅度,因此會改變整個影像的資料. Sparrow IMS 系列提供可以調整增益(Gain)的功能,其有效絕對值範圍為 -6.26386 ~ 24.0001. 然而一旦提高影像的增益(Gain),另一個需要考量的就是影像的雜訊 (Noise)也會跟著放大.因此我們強烈建議將增益(Gain)值保持在預設值 0.

1.4.9 快門(Shutter)

快門(Shutter)功能可以調整快門的速度來決定影像的曝光成像時間. 然而攝影機的快門成像時間必需低於攝影機的取像速度. 因此 Sparrow IMS 系列提供可調整快門 (Shutter)速度的功能, 其有效的時間範圍為 4.65us ~ 133ms.

1.4.10 觸發控制(Trigger Control)

Sparrow IMS 系列提供兩種觸發(Trigger)控制模式,包括標準觸發模式(Standard Trigger Mode)以及光源快門模式(Bulb Shutter Mode). 觸發控制的來源必需指定是

[ICPDAS IMS-1:	30]	F-4-4	0.01-0
e e e	RICNEDCU: A	Entries:	2048
0,0,0 0 0 0			
0,0,0 0 0 0			
0,0,0 1 1 1			
1,1,1			
1 1 1			
1 1 1			
2 2 2			
2,2,2			
2,2,2			
2 2 2			
3.3.3			
3.3.3			
3.3.3			
3.3.3			
4.4.4			
4.4.4			
4.4.4			
4.4.4			
5,5,5			
5.5.5			
5,5,5			
5,5,5			
6,6,6			
506,506,506			
506,506,506			
506,506,506			
506,506,506			
507,507,507			
507,507,507			
507,507,507			
507,507,507			
508,508,508			
508,508,508			
508,508,508			
508,508,508			
509,509,509			
509,509,509			
509,509,509			
509,509,509			
510,510,510			
510,510,510			
510,510,510			
210,210,210			

由硬體或軟體作觸發.

Sparrow IMS 系列的 GPIO 介面的 pin 1 是專門設計用於接收外部硬體觸發訊號, 它具備光電隔離保護的開放式集電器電路設計(詳細的電路圖,請參閱章節 1.4.11), 輸入的電壓範圍為 +3.3VDC 到 +30VDC,最大電流輸入 8.3mA.

▶ 標準觸發模式(Standard Trigger Mode)

標準觸發模式(Standard Trigger Mode) 可以選擇來源由硬體或軟體作觸發控制. 如果使用者選擇由軟體作為觸發控制, 那麼就表示使用者可以利用軟體編程的觸 發指令去要求攝影機取像.

當使用者選擇觸發來源是由硬體送出觸發訊號時,其觸發訊號便可以選擇是上升邊緣(Rising Edge)或下降邊緣(Falling Edge)時作觸發.

圖 1.4.10.1 上升邊緣(Rising Edge)訊號的標準觸發

圖 1.4.10.2 下降邊緣(Falling Edge)訊號的標準觸發

➢ 光源快門模式(Bulb Shutter Mode)

光源快門模式(Bulb Shutter Mode) 可以選擇來源由硬體或軟體作觸發控制.如果 使用者選擇由軟體作為觸發控制, 那麼就表示使用者可以利用軟體編程的觸發指 令去要求攝影機取像.

當使用者選擇觸發來源是由硬體送出觸發訊號時,攝影機的快門曝光時間將會根 據觸發訊號持續多久的時間而決定,其觸發訊號便可以選擇是上升邊緣(Rising Edge)或下降邊緣(Falling Edge)時作觸發的開始,直到收到結束的反相的邊緣訊 號才結束.

圖 1.4.10.3 上升邊緣(Rising Edge)訊號的光源快門觸發

圖 1.4.10.4 下降邊緣(Falling Edge)訊號的光源快門觸發

1.4.11 數位輸出入埠(GPIO)

Opanow IND 东列派 历数位期山八年(OF IO/I) 面共 凯 流 按 阿 足 我 如	Sparrow IMS	NS 系列提供數位輸出	入埠(GPIO	1)介面其訊號接腳定。	義如下:
--	-------------	-------------	---------	-------------	------

8-Pin Hirose GPIO 接頭介面	Pin	定義	說 明
	1	GPIO0	光電隔離輸入,預設為外部觸發輸入 (+3.3V
		0.100	到 +30V), 輸入延遲時間:4us
	2	GPIO1	光電隔離輸出,預設為閃光燈輸出,推送電壓
234		GFIOT	為 30V, 電流為 25mA.
567	3	GPIO2	TTL 訊號, 可指定為輸入或輸出
8	4	GPIO3	TTL 訊號, 可指定為輸入或輸出
	5	IGND	TTL IO 訊號, 外部電源(Vext.), +3.3V 訊號之接
			地
	6	GND	光電隔離 IO 訊號專用接地
		Vext	允許攝影機可以透過外部提供電源.
	7		(例如: 接 iLink 不供電之 1394 埠時, 攝影機
			便需額外供電才行, 電源需為標準 DC12V)
	8	+3.3V	可供電給外部裝置最高電流到 150mA

1.4.11.1 GPIO0 光電隔離輸入(Opto-Isolated Input)電路

下圖為光電隔離輸入的電路示意圖.

- Logical 0 輸入電壓為: 0VDC 到 +1DC (電壓在 OPTO_IN)
- Logical 1 輸入電壓為: +1.5VDC 到 +30VDC(電壓在 OPTO_IN)
- 最大輸入電流:8.3mA
- 介於 1VDC 到 1.5VDC 未明確定義其動作, 輸入的電壓應避免介於這中 間的值以避免誤動作.
- 輸入延遲時間:4us

1.4.11.2 GPIO1 光電隔離輸出(Opto-Isolated Output) 電路

下圖為光電隔離輸出電路之示意圖.最大可輸出電流為 25mA(PTC 電阻限流),輸出阻抗為 1400hm.

■ 響應時間 (Response Time)

以下表格所列為光隔離輸出的開關時間. 若以 5V 電壓搭配 1K Ohm 電阻時.

Parameter	Value
Delay Time	9us
Rise Time	16.8us
Storage Time	0.52us
Fall Time	2.92us

■ 電壓/電阻之組合範例

以下表格列出數種經過測試可用於 GPIO1 光電隔離輸出使用的外部電壓及 電阻的組合範例.

External	External	OPTO_OUT	OPTO_OUT	Short Current
Voltage	Resistor	Voltage	Current	Short Current
3.3V	1K Ohm	0.56V	2.7mA	43mA
5V	1K Ohm	0.84V	4.2mA	47mA
12V	2.4K Ohm	0.91V	4.6mA	21.5mA
24V	4.7K Ohm	1.07V	5.1mA	13.5mA
30V	4.7K Ohm	1.51V	13.3mA	6.1mA

1.4.11.3 GPIO2 及 GPIO3 輸出/輸入的雙向電路

下圖為 GPIO2 及 GPIO3 可定義為輸出或輸入的雙向電路示意圖.

■ 輸入方(Input Side)

- ▶ Logic 0 輸入電壓: 0VDC 到 +0.5VDC (電壓在 GPIO2/GPIO3)
- ▶ Logic 1 輸入電壓: +1.5VDC 到+30VDC (電壓在 GPIO2/GPIO3)
- ▶ 介於 1VDC 到 1.5VDC 未明確定義其動作, 輸入的電壓應避免介於這中 間的值以避免誤動作.
- ➢ 為避免損壞請在接入 GPIO 的輸入電壓線前先接上接地(GND)線.

■ 輸出方(Output Side)

雙向電路最大可輸出電流為25mA(PTC 電阻限流),輸出阻抗為400hm.以下 表格列出數種經過測試可用於當GPIO2/GPIO3 設為輸出時使用的外部電壓及 電阻的組合範例.

External	External	GPIO2/3	Short Current
Voltage	Resistor	Voltage	Short Current
3.3V	1K Ohm	0.157V	62mA
5V	1K Ohm	0.218V	45mA
12V	1K Ohm	0.46V	23mA
24V	1K Ohm	0.86V	7.5mA
30V	1K Ohm	0.966V	0.1mA

以下表格所列的響應時間為GPIO2/GPIO3 的開關時間. 若以5V 電壓搭配1K

Ohm 電阻時.

Parameter	Value
Delay Time	0.28us
Rise Time	0.06us
Storage Time	0.03us
Fall Time	0.016us

1.4.12 閃光燈控制(Strobe Control)

此功能可以允許使用者設定最多三組閃光燈控制輸出訊號的參數.訊號可以指定為 Strobe 1, Strobe 2, 以及 Strobe 3. 每個閃光燈訊號可以透過邏輯去設定為 active high 或 active low. 請參閱第五章"功能函式庫"裡的指令定義說明.

閃光燈是結合兩個值去作決定的, 第一個設定是延遲時間(Delay Value) 及第二個閃光燈持續時間(Strobe Duration), 兩個值的有效範圍皆為 Osec. ~ 10sec.

閃光燈延遲的時間才會決定影像開始曝光, 如圖 1-13 所示當閃光燈訊號的狀態改變.

圖 1-13: 閃光燈訊號(Strobe Signal)

1.4.13 儲存攝影機設定

Sparrow IMS 系列提供儲存攝影機設定的功能, 它可以幫助客戶很簡單的去設定或 維護攝影機的參數設定. 使用者可以使用 EzView Pro 工具程式去即時的調整攝影 機的參數並將設定存入攝影機或存檔於電腦上. 參數設定檔案可以被上傳至任何 Sparrow IMS 攝影機系列上.

1.4.14 快閃記憶體存取

Sparrow IMS 系列有提供 64K byte 的快閃記憶可以讓客戶儲存或還原攝影機的設定, 也可放置 AES 專案加密過的註冊碼. 快閃記憶體的位址是可以被讀取或寫入的, 其位址範圍為 0x0 ~0xFFF. 請在寫入資料進入快閃記憶體時需保持攝影機的供電; 否則一旦攝影機有斷電的情形寫入中的資料將會遺失.

1.4.15 AES 專案加密

Sparrow IMS 系列攝影機有提供一個 AES 專案加密功能. 系統設計者可以使用這個 功能去產生唯一的安全密碼鎖用來保護其開發系統的智慧財產權. 使用 IMS_Get_CameraInform 功能便可以取得攝影機唯一的硬體編號訊息, 再呼叫 AES_GET_REG 功能便可以設定 16 位元的 AES 金鑰之後便可以得到一組 16 位元 的 AES 專案加密註冊碼.

一般而言 AES 專案加密註冊碼可以儲存在任何客戶需要的週邊設備上. 同時使用 者也可以將註冊碼透過 IMS_Write_DataFlash 功能將註冊碼寫入攝影機的快閃記憶 體, 系統設計者可以在系統開始操作之前使用 IMS_Read_DataFlash 去取得註冊碼 用來確認整個系統的狀態是否合法.

1.4.16 測試畫面

Sparrow IMS 系列攝影機提供一個內部產生的測試畫面(Test Image)可以用來測試 攝影機的傳輸是否正常. 當使用者啟動測試畫面功能並開始取像時, 便會顯示灰階菱 形式樣的圖案影像.

1.5光譜反應(Spectral Response)

以下為 Sparrow IMS 系列攝影機 CCD 感應器不含鏡頭及燈源特性下的光譜反應曲線.

IMS-30 黑白模式

IMS-130 黑白模式 光譜感光度

IMS-30 彩色模式

IMS-130 彩色模式

1.6效能(Benchmarks)

Sparrow IMS 系列可以接至 IEEE 1394a (400Mbps) 或 IEEE 1394b (800Mbps) 介面埠上使用. 然而 IEEE 1394 的介面埠頻寬會決定攝影機取像頻率,同時分享頻寬式的結構也會降低攝影機的取像速度.

以下的效能(Benchmarks)訊息是基於 IEEE 1394 埠的頻寬狀況,使用者可以參考作為 系統效能的考量.

解析度	Video Mode	1394a	1394b
640 x 480	MONO8 - 30FPS	0	0
	MONO8 - 15FPS	0	0
	MONO8 - 7.5FPS	0	0
	MONO16 - 30FPS	0	0
	MONO16 - 15FPS	0	0
	MONO16 - 7.5FPS	0	0
	RGB - 30FPS	0	0
	RGB - 15FPS	0	0
	RGB - 7.5FPS	0	0
800 x 600	MONO8 - 30FPS	0	0
(限 IMS-130)	MONO8 - 15FPS	0	0
	MONO8 - 7.5FPS	0	0
	MONO16 - 30FPS	0	0
	MONO16 - 15FPS	0	0
	MONO16 - 7.5FPS	0	0
	RGB - 30FPS	×	0
	RGB - 15FPS	0	0
	RGB - 7.5FPS	0	0
1024 x 768	MONO8 - 30FPS	0	0
(限 IMS-130)	MONO8 - 15FPS	0	0
	MONO8 - 7.5FPS	0	0
	MONO16 - 30FPS	0	0
	MONO16 - 15FPS	0	0
	MONO16 - 7.5FPS	0	0
	RGB - 15FPS	×	0
	RGB - 7.5FPS	0	0

1.6.1 標準模式(Standard Video Mode)

解析度	Video Mode	1394a	1394b
1280 x 960	MONO8 - 30FPS	0	0
(限 IMS-130)	MONO8 - 15FPS	0	0
	MONO8 - 7.5FPS	0	0
	MONO16 - 30FPS	0	0
	MONO16 - 15FPS	0	0
	MONO16 - 7.5FPS	0	0
	RGB - 15FPS	×	0
	RGB - 7.5FPS	0	0

1.6.2 局部取像模式(AOI Video Mode)

當設定攝影機的取像模式在 VM_AOI 時,其實際的取像速度將會依據 IEEE 1394 頻 寬,影像格式,及解析度去計算取像頻率. 一般而言一個 IEEE 1394a 的主晶片有 效的頻寬約為 30MB/s, 而一個 IEEE 1394b 的主晶片有效頻寬約為 70MB/s.

如果使用者考慮在系統上使用多支 Sparrow 攝影機,使用者必需確定有足夠的 IEEE 1394 頻寬或選用多顆 IEEE 1394 Host 晶片的 IEEE 1394 介面卡.

IEEE 1394 頻寬	1394a S400		1394b S800	
Model No.	IMS-30	IMS-130	IMS-30	IMS-130
640 x 480_Mono8	83fps	52fps	83fps	52fps
640 x 480_Mono16	50fps	50fps	83fps	52fps
640 x 480_RGB	32fps	34fps	65fps	52fps
800 x 600_Mono8	-	44fps	-	44fps
800 x 600_Mono16	-	32fps	-	44fps
800 x 600_RGB	-	22fps	-	36fps
1024 x 768_Mono8	-	36fps	-	36fps
1024 x 768_Mono16	-	20fps	-	36fps
1024 x 768_RGB	-	13fps	-	24fps
1280 x 960_Mono8	-	26fps	-	30fps
1280 x 960_Mono16	-	13fps	-	31fps
1280 x 960_RGB	-	8.5fps	-	18fps

1.6.3 ICP DAS IEEE 1394 相關產品

型 號	IEEE 1394 頻寬
VISION BOX Series (VB-115/VB-216)	400Mbps x 2 ports
IOI-4601-21 2-CH IEEE 1394a interface card	400Mbps x 2 ports
IOI-4601-22 4-CH IEEE 1394a interface card	400Mbps x 2 ports

2. 硬體規格

2.1 Sparrow IMS-30 / IMS-130

2.1.1 攝影機規格

型號	IMS-30*	IMS-130
	1/3" Sony CCD	1/3" Sony CCD
感應器畫素尺寸	7.4um x 7.4um	3.75um x 3.75um
解析度	644 x 488	1288 x 964
最大取像率	黑白模式最高 83fps	黑白模式最高 31fps
(以 1394b S800 計)	彩色模式最高 65fps	彩色模式最高 16fps
A/D Converter	12-bit Analog to I	Digital converter
影像資料格式	Mono 8-bit, Mono	16-bit, RGB 24-bit
快閃記憶體	64K b	bytes
介面	9-pin IEEE 1394b 接頭用於:	攝影機控制及影像資料傳輸
	8-pin Hirose 接頭用	於數位輸出入控制
I/O	光電隔離觸發輸入X	1,光電隔離輸出 x1
	雙向輸出入T	TL GPIO x 2
耗電量	2.5W, max at 12V	
訊噪比(S/N Ratio)	590	βB
尺寸	29 x 29 x 45m	m(不含鏡頭)
重量	58g (不	含鏡頭)
鏡頭接環	C-Mount	
1394 相容規範	IIDC 1394 based digital camera specification V1.31	
工作温度	0°C ~45°C	
儲存溫度	-30°C ~60°C	
工作溼度	20%~80%(非凝結狀態)	
儲存溼度	20%~95%(非凝結狀態)	
安規認證	CE, FCC	

IMS-30* - call for availability

2.1.3 標準包裝內容

2.2可選配之產品

為了提昇您的系統工作效能及穩定性, 泓格科技建議四項可選配之產品.

2.2.1 VISION BOX 嵌入式平台

型號	VB-115-C10	VB-115-H10	VB-216C	VB-216H
外觀				
處理器	Intel Mobile Cele	ron M 1.5GHz	Intel Core Duo T2	300E 1.66GHz
晶片組	Intel 91	0GM	Intel 945GME	
L2 高速記憶	1 MI	В	2 M	В
體				
記憶體		2 GB DD	R2 533	
系統儲存裝	4GB 233x	2.5" 160GB	2GB 266x CF	2.5" 80GB
置	CF Card	SATA 硬碟	Card	SATA 硬碟
1394 埠		1394a 埠(400M	bps 頻寬 x 2 埠)	
PCI Bus	- #	a 32-bit/33MHz PC	IBus 插槽, 不支援+	長卡
前面板介面	2 x USB 2.0 埠, ATX power on/off switch, Status LEDs (HDD Access, Power,		DD Access, Power,	
	PS/2 接頭, VGA 拍	接頭,4xUSB 2.0 埠		x COM 埠透過一個
背板介面	DB44 接頭 (3 x R	S-232, 1 x RS/232/4	22/485),DVI 介面,	1 x 麥克風輸入, 1 x
	音源輸出, 2-pin 遠端電源開關輸出接頭, +12V~+30V DC 電源輸入		官源輸入接頭	
	系統主板內建 DC to DC 供電設計電路,支援 12 至 30VDC			2
電源	提供外接式 120W /	AC 電源轉接器 (輸)	: 100~240VAC, 2A,	50/60Hz;
	出:19VDC)			
尺寸大小	195 mm (W) x 268 mm (D) x 107 mm (H)			
機身結構	無風扇鋁質散熱機身			
	操作温度			
	週遭環境:0°C to 40°C 時, VISION BOX case (機殼表面温度):			
四位佐丛	● 5°C to 45°C (含硬碟時),			
农境际日	● -10°C to 50°C (只有 CF card 時)			
	儲存温度: -20°C to 80°C			
	相對溼度: 10% to 90% (非凝結狀態)			
安規認証	CE, FCC A			

2.2.2 1394 介面卡

泓格科技目前只提供以下的 1394a 介面卡,但是 Sparrow 攝影機系列可以以支援 連接至標準的 1394b 介面卡上使用,因此若有需要使用者可自行採購 1394b 介面 卡.

2.2.2.1 1394 雙控制晶片卡: IOI-4601-21

IOI-4601-21 是一張內建2 組 1394 控制晶片的 PCI 介面卡, 它具備 2 個獨立通道可以讓 2 個輸入埠同時擷取每秒 400Mb 的影像資料.

Heat Pup	32-bit PCI local bus complies with PCI 2.1 and 2.2 specification	
HUST BUS	Use only one IRQ for both OHCI 1.1 channels	
Bus 介面協議	Bus Master DMA	
1394 Bus 傳輸率	100/200/400 Mbps	
PCI Bus 頻寬	Up to 133 MB/s burst rate	
IEEE-1394 Host 晶片	2x Ti TSB43AB21	
1394 接頭	外部接頭 X 2 (FW-6pin X 2), OHCl 1 (FW-6pin X 1), OHCl 2 (FW-6pin X 1)	
1394 Bus 電源接頭	Mini 4-pin DC +12V power connector	
傳輸效能	最高可傳輸 800Mbps (每個通道 400 Mbps)	

2.2.2.2 1394 四通道介面卡: IOI-46-1-22

The IOI-4601-22 是一張內建 2 組 1394a 控制晶片的 PCI 介面卡, 它具備 4 個 1394a 介面接頭, 可以連結四 支攝影機, 每 2 個通道共享 400Mbps 的頻寬

Heat Pup	32-bit PCI local bus complies with PCI 2.1 and 2.2 specification
HUSI BUS	Use only one IRQ for both OHCI 1.1 channels
Bus 介面協議	Bus Master DMA
1394 Bus 傳輸率	100/200/400 Mbps
PCI Bus 頻寬	Up to 133 MB/s burst rate
IEEE-1394 Host 晶片	2x Ti TSB43AB21
1394 接頭	外部接頭 X4 (FW-6pin X 4),
	OHCI 1 (FW-6pin X 2), OHCI 2 (FW-6pin X 2)
1394 Bus 電源接頭	Mini 4-pin DC +12V power connector
傳輸效能	最高可傳輸 800Mbps (每個通道 400 Mbps)
Heat Due	32-bit PCI local bus complies with PCI 2.1 and 2.2 specification
HUST BUS	Use only one IRQ for both OHCI 1.1 channels

2.2.3 1394 訊號線

泓格科技準備兩種具耐繞曲線材設計的 1394 訊號線. CA-1394AB-45 是 IEEE 1394 雙語線(Bilingual Cable), 它可以連接 1394a 至 1394b. 另外 CA-1394B-45 它是一標準備的 1394b 點對點連接的訊號線.

2.2.3.2 CA-1394B-45: 4.5 米耐繞曲 1394b 訊號線

1394 接頭	9-pin 公頭帶螺絲鎖固設計, PVC 鑄造外殼 x 2
	UL-20279 cable, (26AWG x 1pair + 2 x DRAIN +
Cable willing gauge	AM) x 2pcs, 22AWG x 2 conductors. 雙隔離纖網
長度	450mm

上視圖

右視圖

提供 1 對 2 ports 的 IEEE 1394 訊號線延長中繼器功能. 同時 1394R3B 允許作 1394-1995 標準轉換至 1394a.

左視圖

晶片	PHY: TI. TSB41AB3
1394 傳輸率	100 / 200 / 400 Mbps
介面接頭	A 400-Mbps, 2-port, 3.3V PHY
電源供給	DC 12V ~ 30V, Max. 1.35A
接頭	6 pin 1394a 接頭 x 3, DC 直流電 - Walkman-type 2.0mm DC Jack x1
尺寸	72mm(W) x 58mm(H) x 20mm(D)

2.2.5 1394 CAT5/CAT6 訊號中繼器: FW-UTPS400

FW-UTPS400 訊號中繼器是最適合透過CAT5或CAT6的 UTP 標準雙絞線用來傳輸或接收 1394a 訊號. FW-UTPS400 提供一個 RJ-45 接頭及 2 個 1394a 接頭介 面.

一般而言使用者必需使用 2 個 FW-UTPS400 才可以成對作業,同時 每對的工作距離最遠可到 55 米. RJ-45 的接頭其接線訊號與 100baseT Ethernet (pin1, 2, 3 及 6)相容. 使用者 可以使用 CAT5e 或 CAT6 Crossover 形 式的線即可使用..

E

晶片	PHY: TI. TSB41BA3B
1394a 訊號等級	S100/S200/S400 (Windows XP 必需 rollback 至 SP1)
電源供應	DC 8V~30V, max. 1.35A
接頭	6 pin 1394a 接頭 x 2, RJ-45 接頭 x 1,
	DC 直流電 - Walkman-type 2.0mm DC Jack x1
尺寸	92mm(W) x 62mm(H) x 22mm(D)

3. 安裝說明

Sparrow IMS 系列攝影機 可支援在 VISION BOX, IPC, PC 及筆記型電腦上的操作 使用.本以下的安裝說明包含了許多重要訊息,例如:如何正確安全的使用這台攝影機. 請務必仔細閱讀本安裝說明並依照步驟安裝至您所使用的系統平台.

3.1硬體安裝

3.1.1 VISION BOX 嵌入式平台

VISION BOX 已內建 2 個 1394a 埠同時具備標準的 6-pin 接頭,使用者可以將 Sparrow 攝影機直接使用 1394a 至 1394b 的雙語訊號線連接至 VISION BOX 上 使用.

3.1.2 工業電腦或商用桌上型電腦

- 某些商用桌上型電腦有內建 6-pin 接頭的 1394 埠,因此假若使用者的系統平台是這種規格的話,那便可以直接用 1394a 至 1394b 的雙語訊號線將攝影機連接至系統使用.
- 假如使用者是選用工業電腦,或目前在使用的商用電腦沒有內建 1394 埠時, 則請依照下列步驟安裝 1394 介面卡至系統的 PCI 或 PCI-E bus 上:
- (1) 請依據系統平台的手冊說明將電腦的外殼打開.
- (2) 確認裡面有一個未使用的 PCI 或 PCI-E 插槽可安裝介面卡.
- (3)把選擇的插槽背板上的空白擋片移除,並保留螺絲以供安裝完 1394 卡後鎖固 使用.
- (4) 請將 1394 介面卡小心對齊如下圖所示插入 PCI 插槽中, 假如您的電腦是直立 式也請先轉向將系統平放.

- (5) 一旦將板卡對齊插入 PCI 插槽後, 請小心確實的將板卡壓緊固定.
- (6) 用螺絲將板卡鎖好固定, 打開系統電源後請先參照"3.2 驅動程式安裝"說明步 驟進行安裝.
- (7) 使用 1394 訊號線(1394b 介面卡使用 1394b 訊號線; 1394a 介面卡使用 1394a 至 1394b 雙語訊號線)去連接 Sparrow IMS 系列攝影機至 1394 介面卡, 必要是連接 GPIO 訊號線. 關於影像擷取測試, 請參閱 "4.EzView Pro 工具程 式".

- (8) 這時候可以到系統的裝置管理員底下即 可發現本產品訊息.
- (9) 如果使用者需延長工作距離而訊號線長 不夠時,可以直接用 1394 Repeater 將 訊號線串接使用.

當使用者平台是工業電腦或商用電腦時,便不需要額外提供 DC 直流電給 1394 Repeater. 若不小心額外提供的 DC 直流電可能會損壞使用者的介面卡或 1394 的控制電路.

3.1.3 筆記型電腦或具備 PCMCIA 插糟

 假若使用者的筆記型電腦內建 iLink/S400 的 介面埠時,那就表示該筆記型電腦有內建
 1394 控制迴路,請依照下列步驟進行安裝..

(1) 請準備一個 IEEE 1394 repeater, 一條

4-pin 至6-pin IEEE 1394 訊號線, 一條 IEEE 1394a 至 1394b 雙語訊號線 及一組 DC12V 直流電源轉接器.

(2) 將 4pin 的訊號線接頭接至 iLink/S400 介面埠, 另一頭的 6pin 接頭接至 1394 Repeater.

(3) 將直流電源轉換器接至 1394 Repeater 上,同時用另一條 1394a 至 1394b 雙語訊 號線一頭接至攝影機另一頭接至 1394 Repeater.

(4) 當使用者的系統需要透過 GPIO 去控制攝 影機動作時,請依據 GPIO 的接頭及系統需求自己配接所需之訊號線. 如果使用者的筆記型電腦並未內建 1394 介面 埠時,則請將1394 介面卡插入PCMCIA 插槽, 同時依據下列步驟進行安裝.

(1) 請準備一張 IEEE 1394b PCMCIA 卡, 一條 IEEE 1394b 訊號線, 一條 GPIO 訊號線及一個 DC12V 直流電源供應器.

(2) 將 IEEE 1394b PCMCIA 卡插入筆記型電腦的 PCMCIA 插槽,如下圖所示.

- (3) 使用 1394b 線直接連接 1394b PCMCIA 卡及 Sparrow IMS 系列攝影機的 IEEE 1394b 埠.
- (4) 使用 GPIO 接頭並且將接腳第 7-pin 接線至 外部的 DC 直流電源,接腳第 5-pin 則接到電 源供應器的接地(GND)上.
- (5) 接入 GPIO 線至 Sparrow IMS 系列 GPIO 接 頭, 其它 I/O 控制訊號線若有需要請自行參照 點說明配接線.

3.2驅動程式安裝

在驅動程式安裝完成之前請勿連接任何 Sparrow 攝影機.請依據您的編程方式依照下列族群安裝步驟進行安裝.

3.2.1 Visual Studio (VC/VB/BCB/VC.NET)使用者

- (1) 請將 Sparrow Driver CD 放入 CD-ROM/DVD-ROM 光碟機中.
- (2) Sparrow Driver CD 將會如下圖所示準備開始安裝 Driver.

Sparrow Setup		
	Welcome to the InstallShield Wizard for Sparro w	
	The InstallShieldR Wizard will install Sparrow on your computer. To continue, click Next.	
< <u>Back</u> [<u>Next</u> >] Cancel		

(3) 請按"Next" 鍵進行驅動程式安裝.

Sparrow Setup		
	Welcome to the InstallShield Wizard for Sparro w	
	The InstallShieldR Wizard will install Sparrow on your computer. To continue, click Next.	
< Back Cancel		

(4) Sparrow 系列預設安裝路徑為 C:\ICPDAS\Sparrow\, 使用者可以按"Change.." 鍵更改安裝路徑, 亦或者保持原路徑按 "Next"鍵繼續安裝.

Sparrow Se	tup			X
Choose Destination Location Select folder where setup will install files.				22
	Install Sparrow to: C:\ICPDAS\Sparrow			<u>C</u> hange
InstallShield –		< <u>B</u> ack	Next>	Cancel

(5) 請按"Install" 鍵

Sparrow Setup		
Ready to Install the Program The wizard is ready to begin installation.		
Click Install to begin the installation.		
If you want to review or change any of your installation s the wizard.	ettings, click Back. Click Cancel to exit	
InstallShield		
< <u>B</u> a	ack Install Cancel	

(6)驅動程式安裝中

Sparrow Setup	
Setup Status	No.
Sparrow Setup is performing the requested operations.	
Installing	
C:\WINDOWS\Driver Cache\i386\SP1.CAB	
67%	
	Cancel

(7) 當驅動程式安裝完成後, 請按"Finish"鍵並且系統重新開機.

Sparrow Setup			
	InstallShield Wizard Complete The InstallShield Wizard has successfully installed Sparrow. Click Finish to exit the wizard.		
< <u>B</u> ack Finish Cancel			

(8) 系統重開機後,請接上 Sparrow IMS 系列攝影機並至系統的"裝置管理員"下 確認有看到"ICPDAS IEEE-1394 digital camera Device"在"ICPDAS Sparrow"的項目下.

- (9) 假如您的系統曾經安裝過其它供應商的 1394 攝影機驅動程式, 那麼您可能需要將它移除或手動將驅動程式變更為 Sparrow 的驅動程式..
- (10) 一旦安裝完成,便可打開 EzView Pro 工具程式作影像撷取测试,詳細操 作請參閱 "4. EZView Pro 工具程式".

3.2.2 NI LabVIEW 使用者

假如使用者是屬於慣用 NI 的 LabVIEW 進行系統開發的話,則泓格科技建議您 可以直接使用 NI-IMAQ 驅動程式.

Sparrow IMS 系列與 NI-IMAQ-1394 驅動程式完全相容,因此請直接選擇 "NI-IMAQ IEEE 1394 IIDC Digital Camera" 選項的驅動程式即可使用,千萬不要 安裝 Sparrow 本身的驅動程式會造成相衝突.

在安裝完成之後,使用者可以透過 NI 的 Measurement & Automation Explorer 工具程式,如下圖所示直接設定 Sparrow 攝影機進行取像測試.

當安裝 NI-IMAQ-1394 驅動程式之後,原本 Sparrow 本身的驅 動程式,API 函式庫以及 EZView Pro 工具程式等都將無法使 用.

3.2.3 Windows XP SP1 返回安裝

因為 Microsoft 的疏失關係, 在安裝 Windows XP Service Pack 2(含)以上版本後, 1394 裝置的效能有可能會降低. 因此使用者必需返回安裝 Service Pack1 以取得 1394 裝置正確的系統檔.

這裡提供兩種方法用來取得解決 SP2 問題的安裝檔.

● 請連線至 Microsoft 下載中心下載下列路徑的檔案 <u>http://www.microsoft.com/downloads/details.aspx?FamilyId=CA0F2007-18B5-4</u> <u>112-8BD6-8BF4BD3130B9&displaylang=en</u>

 或者在安裝完 Sparrow 的驅動程式後,使用者便可在 Sparrow 程式集底下找 到一個 'FixSP2g' 的工具程式,之後使用者只要依照它的步驟操作直到看到" rollback to SP1 successfully" 的訊息即可!.

在安裝此更新之後,如果要將新 1394 裝置的主機控制器新增至電腦,您必須在 Windows 登錄中為新的 1394 主機控制器新增或修改 SidSpeed 項目。如果要 執行這項操作,請依照下列步驟執行:

- 按一下 [開始],按一下 [執行],輸入 regedit,然後按一下 [確定]。
- (2) 找出並按一下下列登錄子機碼:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\PCI\1394 _hc_hw_id\1394_instance_id\Device Parameters

- (3) 按一下步驟 2 中的 [Device Parameters] 子機碼之後,如果右窗格中沒有 出現 SidSpeed 值,請建立該值。如果要執行這項操作,請指向 [編輯] 功 能表上的 [新增],按一下 [DWORD 值],輸入 SidSpeed,然後按下 ENTER。
- (4) 用滑鼠右鍵按一下 [SidSpeed],然後按一下 [修改]。
- (5) 在 [數值資料] 方塊中,輸入下列表格所顯示的其中一個值,然後按一下 [確定]。

摺疊此表格展開此表格

- 值 速度
- 0 S100 速度
- 1 S200 速度
- 2 S400 速度 (預設值)
- 3 S400/S800 速度 (Windows XP Service Pack 1 [SP1] 值)

注意 如果您嘗試使用大於 3 的值, SidSpeed 將會使用 0 的值 (S100 速度)。

(6) 結束 [登錄編輯程式]。
4. EzView Pro 工具程式

一旦驅動程式及硬體都安裝完成後, 在操作 EZView Pro 工具程式前請先確認設定是 否正確, 本章節將概略介紹如何作測試取像以及如何正確的操作控制 Sparrow 攝影 機. EZView Pro 工具程式是一個簡單快速可以作攝影機的功能設定, 測試操作及幫助 影像系統除錯十分好用的工具程式.

註明: EZView Pro 只能在Windows XP 系統環境下操作,建議螢幕解析度至少調至 1024 x 768.

4.10verview

圖 4-1 EzView_Pro 工具程式配置

4.2 Menu

EZView Pro 工具程式的 Menu 提供 Sparrow 攝影機主要的功能控制. 功能控制的 種類包括: Camera, Configure, Function 以及 About.

4.2.1 Camera

點 Camera 的功能選單將會顯示的功能控制包含:Scan Camera, Select Camera, Video Mode, Camera Info, Check Bus Rate 以及 Exit.

Scan Camera

本功能與 Scan Camera 的圖形按鍵功能一樣, EzView Pro 工具程式會掃描 並且列出目前已接上本機電腦有效的 Sparrow 1394 攝影機明細.

Select Camera

本功能與 Camera Information 選單明細功能一樣,使用者可以使用這個功能去選擇有效明細裡的某一台攝影機.

Video Mode

➢ General Video Mode 設定

Sparrow 攝影機 General Video Mode 提供四種標準解析度及三種不同的色彩模式. 根據不同的解析度及色彩模式組合提供最大可能性取像率.

Video Mode			×
-Video Mode			
Resolution:	640 × 480 🔻	Color: Gray 8 bit 💌	FPS: 7.5 💌
	640 × 480		
⊢AOI Setting	800 X 600 1024 X 768		
Position-	1280 × 960		
X: 0			
, , ,			

➤ AOI 設定

AOI 設定只有當使用者選擇 Video Mode 為 AOI 時才可以操作.使用者 可以設定想要取得的目標區域影像的 AOI 起始位置及大小.同時 Sparrow 攝影機會自動依據不同的 AOI 大小及色彩模式的組合計算最大 可能性的取像率.

Video Mode	X
Video Mode Resolution: A01 Color: Gray 8 bit FPS: 7.5]
AOI Setting	
X: 66 Y: 40	
Size	
H: 756	
AOI Color Mode AOI Frame Rate	
Gray 8 bit Gray 16 bit Color PGB	

Camera Info

當按下 Camera Info 功能便會顯示一個訊息視窗列出目前攝影機的型號名 稱及產品訊號訊息.

Check Bus Rate

當按下 Check Bus Rate 功能便會顯示一個訊息視窗顯示目前攝影機所連接的 1394 bus 頻寬.

4.2.2 Configure

Configure 功能允許使用者將目前攝影機的操作參數設定存作 Sparrow 攝影機內 的設定記憶體中或者存至指定的檔案路徑下.同時使用者也可以使用下載的功能 去將目前的 Sparrow 攝影機設定記憶體裡的設定下載下來,或者載入指定路徑 下的攝影機參數設定檔進行操作.

Camera
File video l
s ! C

4.2.3 Function

Function 選單將會顯示功能控制包括:Ext. Trigger, GPIO & Strobe, Enable Test Image, LUT 以及 AES encrypted SN code.

🧱 EzView Pro			
<u>C</u> amera C <u>o</u> nfigure	Function	<u>A</u> bout	
2	Ext. Trigger <u>G</u> PIO & Strobe		
Camera Scann	Enable Test Image LUT ►		
•	<u>A</u> ES er	icryped SN code	

Ext. Trigger

當按下 Ext. Trigger 功能將會顯示一個 Ext. Trigger Setting 對話視窗. 使用 者可以選擇觸發來源(Trigger Source)及觸發模式(Trigger Mode). 觸發功能 只有當 Enable Trigger 被勾選時才生效.

Ext Trigger Setting	
Fnable Trigger	
Trigger Source:	
	thaut
U: GPIU_U,Falling Edge	ADUUT
T N I	
Irigger Mode:	1
0: Standard Trigger Mode 🔹 💌	About

■ GPIO & Strobe

當按下GPIO & Strobe 便會顯示GPIO 對話視窗.使用者可以選擇GPIO 的 管道及以設定它為輸出或輸入點(I/O)或者高準位作動 (High Active)或低準 位作動 (Low Active) 的閃光燈功能.此外針對閃光燈的輸出時間使用者可 以設定閃光燈的延遲時間(Delay Time)及持續時間(Duration Time).

GPIO	
Channel 1 C General purposed input C High active strobe output	• General purposed output High Low • Low active strobe output
⊂Channel 2 ⓒ General purposed input ⓒ High active strobe output	C General purposed output High Low C Low active strobe output
Channel 3 © General purposed input © High active strobe output	C General purposed output High Low C Low active strobe output
Strobe Timing Setting Delay Time (ms) : 0 (Range: 0 ~ 10,000.0 ms	Duration (ms) : 0 (Range: 0 ~ 10,000.0 ms)

Enable Test Image

當按下 Enable Test Image 選項並按 Snapshot 或 Live Capture 功能圖形按 鍵後. Sparrow 攝影機便會內部產生一個測試影像並且傳輸如下圖所示的顯 像資料出來. Sparrow 攝影機在使用者未將 Test Image 功能關掉之前將無 法取得任何實際影像.

41 -

■ LUT

LUT 功能允許使用者可以下載或上傳攝影機的查詢表(Look up Table)資訊. 查詢表(LUT)資訊以txt檔案格式呈現,使用者可以修改LUT 資訊並且上傳至 Sparrow 攝影機去修改影像由類比轉數位的資料結構.

AES encrypted SN code

當按下 AES encrypted SN code 便會顯示 AES encryption 對話視窗. 使用 者可以輸入16位元的密碼與目前的 Sparrow 攝影機的唯一硬體識別碼結合, 便可產生一組 AES 加密註冊碼. 一般而言使用者可以儲存這組 AES 註冊碼 用來保護系統的智財權.

AES Register C	ode Generator	
Camera ID:	019DB000B5308000	(Can't be Modified)
AES Key:	test1234567890ee	(Max 16 Characters)
Reg Code:	23badf1e0e9b5552	1

4.2.4 About

當按下 About 將會顯示一個訊息視窗顯示目前的 EzView_Pro 工具程式的智財版 權所有及版本訊息.

About Ea	:View_Pro	
EZview	EzView_Pro Version 1.0 Copyright (C) 2009. ICPDAS Co.	<u> </u>

4.3工具按鍵(Tool Icons)

0	Camera Scan
Camera Scann	按下 Camera Scan 按鍵便會掃描目前已接上本機電
	腦上之有效 Sparrow 1394 攝影機.
19	Snap Shot
	按下 SnapShot 按鍵. 攝影機便會取一張影像同時顯示在
SnapShot	全畫面(Full Image)及局部畫面(Partial Image)顯示視窗
	上.
	Live/Stop Capture
Hand Hand	按下 Live Capture 按键. 攝影機便會取連續影像同時顯
Stop Capture	示在全畫面(Full Image)及局部畫面(Partial Image)顯示
	視窗上,按下 Stop Capture 狀態按鍵便停止取像.
	Video Mode
video Mode	按下 Video Mode 按鍵. 便會顯示 Video Mode 對話視窗
	可以作參數的設定.
nn	IO Setting
GPIO IO Setting	按下 IO Setting 按鍵. 便會顯示 GPIO 對話視窗可以選
	擇 GPIO 及閃光燈的控制設定.
Q	AES Encryption
•	按下 AES Encryption 按鍵, 便會顯示 AES 對話視窗,
AES Encryption	使用者可以設定 AES 密碼來產生註冊碼.

4.4Camera List

Camera List 會顯示目前在主機電腦上已接上的有效攝影機,一旦點選其中一台攝影機時其識別碼(ID)資訊便會顯示出來.

Camera List: —		
Camera 0	•	ID: 019DB000B5308000

4.5Display Window

EzView_Pro 工具程式有針對即時的影像顯示提供兩個顯示視窗. 右下角為全畫面的 影像縮小顯示視窗, 裡面有一個 ROI 方框允許使用者去移動它的位置, ROI 方框所選 到的影像原始資料即會顯示在左邊的局部影像顯示視窗上.

4.6Camera Feature

Camera Feature 可以讓使用者在攝影機取像時即時的去調整攝影機的參數. 每個參數的有效範圍及功能的詳細說明請參閱章節 1.4.

Camera Feature	
🔽 Brightness (%)	0.0915527
V Sharpness	1440 •
🔽 Shutter (second)	0.0187213
🔽 Gain (DB)	
🔽 Gamma	0.999023

4.7Color Parameter

Color Parameter 功能只有在攝影機的 Video Mode 設為 RGB 時才可以操作. 使用者可以在攝影機取像時即時去調整色彩的參數. 每個參數的有效範圍及功能的詳細說明 請參閱章節 1.4.

Color Mode Only	
✓ Saturation (degree)	
🔲 Hue (degree)	
🔽 White Balance (R)	550
	810

5. 功能函式庫(Function Library)

本章節將介紹可以用來控制 Sparrow IMS 系列攝影機的功能函式庫. 使用者可以利用這些功能函式庫在 Visual C++, Visual Basic, Boland C++ Builder 以及 VC.NET 2005 等開發語言環境下進行應用系統程式的編程開發.

Sparrow 所提供的功能函式庫 DLL 檔 (IMSCamera.dll) 是可以共用於 Visual C++, Visual Basic, Boland C++ Builder 以及 VC.NET 2005 等開發語言.

若您使用 Visual C++, Boland C++ Builder 以及 VC.NET 2005 等開發語言,只需要依據 標準的語法敍述去使用即可!

若您使用 Visual Basic 開發語言, Sparrow 的 VB 範例程式裡有提供一個(IMSCamera.bas) module 檔, 同時使用者也可以自行依據需求去宣告或修改 module 檔裡的功能.

請參閱表 5-1 是目前 Sparrow 有提供的主要功能明細,請使用者依據各個功能所對應的章節查 看詳細的編程語法說明,目前功能函式庫內所有指令的參數型式都依據 Microsoft 的標準資料型 式定義.

5.1功能明細

Category	Section	Function
	5.3	IMS_ScanCamera
攝影機管理		IMS_InitCamera
		IMS_InitCamera_SC
(Camera Management)		IMS GetLastError
		IMS_CloseCamera
		IMS Check BusRate
事件回傳	- /	IMS Register Callback
(Callback Event)	5.4	CallBackRoutine
攝影機影像擷取	5 5	IMS_Start_Acquire
(Camera Acquisition)	5.5	IMS_Stop_Acquire
		IMS_Set_VideoMode
		IMS_Get_VideoResolution
田口心在山口山		IMS_Get_ColorFormat
攝影機 参數設 定	5.6	IMS_Set_AOI_Parameter
(Carriera Corniguration)		IMS_Get_AOI_Parameter
		IMS_Set_Feature
		IMS_Get_Feature
		IMS_Set_Trigger
胸發設足 (Triagor Sotting)	陶贺設定 5.7 (Trigger Setting)	IMS_Get_Trigger
(Trigger Setting)		IMS_Do_SWTrigger
		IMS_Set_GPIOMode
GPIO 控制 _	50	IMS_Get_GPIOMode
(GPIO Control)	5.8	IMS_GPIO_Read
		IMS_GPIO_Write
閃光燈控制	5.0	IMS_Set_Strobe
(Strobe Control)	5.9	IMS_Get_Strobe
查詢表	E 10	IMS_Set_LUT
(Look Up Table)	5.10	IMS_Get_LUT
快閃記憶體控制	E 44	IMS_Read_DataFlash
(Data Flash Control)	5.11	IMS_Write_DataFlash
AFS 專案加密		IMS_Get_CameraInform
(AES Project Encryption)	5.12	AES GET REG
測試畫面	5 1 2	IMS Enable Testimore
(Test Image)	5.13	

表 5-1 功能明細

5.2程式編寫流程圖

• 掃描攝影機及初始化(Camera scan & initial)

IMS_ScanCamera	┝	IMS_InitCamera
----------------	---	----------------

• 關閉攝影機(Camera close)

• 確認 1394 bus 頻寬(Check 1394 Bus Rate)

• 攝影機功能設定(Camera feature setting)

• 確認攝影機功能設定(Check camera feature setting)

• 攝影機影像模式設定(Camera video mode setting)

• 確認攝影機解析度(Check camera video resolution)

• 確認攝影機色彩格式(Check camera color format)

• 攝影機取像(Camera Acquisition)

• 攝影機 AOI 取像設定(Camera AOI setting and acquisition)

• 確認攝影機 AOI 設定(Check Camera AOI setting)

• 攝影機透過外部觸發設定取像(External trigger setting for camera acquisition)

• 攝影機透過軟體觸發取像(Camera acquisition by software trigger)

• 使用攝影機測試畫面(Enable camera test image)

• 攝影機數位輸入/輸出設定(Camera digital input/output setting)

• 確認攝影機數位輸入/輸出設定(Check Camera digital input/output setting)

• 數位輸入/輸出控制寫入攝影機(Write digital input/output control into camera)

 · 讀取攝影機的數位輸入/輸出控制狀態(Read digital input/output control status from camera)

• 設定閃光燈控制(Set strobe control)

• 取得閃光燈控制狀態(Get strobe control)

• 查詢表寫入攝影機(Set LUT into camera)

• 取得攝影機查詢表(Get LUT from camera)

• 資料寫入至攝影機快閃記憶體(Write data into camera data flash)

• 讀取攝影機上的快閃記憶體資料(Read data from camera data flash)

• 取得攝影機資訊(Get camera information)

• 取得攝影機最新錯誤訊息(Get the last error of camera)

• AES 專案加密碼寫入攝影機(AES project encrypted code write into the camera)

5.3攝影機管理(Camera Management)

IMS_ScanCamera

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0: stdcall IMS_ScanCamera(U16* numCam)

Visual Basic 6.0

IMS_ScanCamera (ByRef numCam As Integer) As Integer

VC.NET 2005

short IMS_ScanCamera(IntPtr numCam)

說明:

本功能會掃描系統所有連接的 ICP DAS 1394 攝影機, 掃描後的攝影機總數量便會存於 numCam.

参數(Parameters):

numCam 指向的變數會填入被掃描到的 ICP DAS 1394 攝影機的數量.

回傳值(Return):

RETURN_SUCCESSFUL 表示成功

備註:

本功能應該永遠只回傳 RETURN_SUCCESSFUL

IMS_InitCamera

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_InitCamera(I16 CamID)

Visual Basic 6.0

IMS_InitCamera (ByVal CamID As Integer) As Integer

VC.NET 2005

short IMS_InitCamera_SC(Int16 CamID)

說明:

此為攝影機初始化功能,在攝影機設定參數及取像前必需呼叫此函式. 在呼叫此函式之前使用者必需先呼叫 IMS_ScanCamera() 以判斷有多少有效的攝影機.

* 呼叫 IMS_CloseCamera()功能可以關閉攝影機.

参數(Parameters):

CamID 此攝影機之識別碼將會被初始化. 假如 *IMS_ScanCamera()* 回傳有 3 台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2.

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

目前攝影機狀態:

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

IMS_InitCamera_SC

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

I16 __stdcall IMS_InitCamera_SC(I16 CamID)

Visual Basic 6.0

IMS_InitCamera (ByVal CamID As Integer) As Integer

VC.NET 2005

short IMS_InitCamera(Int16 CamID)

說明:

本功能是攝影機初始化功能, 它可以讓攝影機在成功初始化後將存入內部快閃記憶體的設定 設成目前攝影機的初始化設定. 它的效用與呼叫 IMS_InitCamera()一樣, 請參照下列功能進 行攝影機設定:

- <u>IMS_Set_VideoMode()</u>
- <u>IMS_Set_AOI_Parameter()</u>
- IMS Set Feature(),所有的特徵功能.
- IMS_Set_Trigger()
- <u>IMS_Set_GPIOMode()</u>
- IMS_Set_Strobe()

請使用 EzView Pro 工具程式去操作修改攝影機設定及儲存至快閃記憶體.

参數(Parameters):

CamID 此攝影機之識別碼將會被初始化. 假如 *IMS_ScanCamera()* 回傳有 3 台有效 的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2.

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

目前攝影機狀態:

攝影機狀態 CAM_State_0_NOT_SCANNED CAM_State_1_NOT_INIT

<u>說明</u> 攝影機未被掃描到 攝影機已掃描到但尚未初始化

- 56 -

CAM_State_2_INIT_NOT_ACQUIRING CAM_State_3_ACQUIRING_IMAGE 攝影機已初始化但並未在取像中 攝影機正在取像中

GetLastError

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_GetLastError(I16 CamID)

Visual Basic 6.0

IMS_GetLastError (ByVal CamID As Integer) As Integer

VC.NET 2005

short IMS_GetLastError(Int16 CamID)

說明:

當您上個功能呼叫回傳值為 **RETURN_CHECK_LASTERROR** 時,可以使用這個功能去取 得詳細的錯誤訊息!

参數(Parameters):

CamID 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效的 攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2.

回傳值(Return):

錯誤代碼(Error Code)定義如下

代碼	錯誤訊息(Error Messages)	錯誤說明
0	CAM SUCCESS	無任何錯誤
-1	CAMERROR	一般錯誤
		此錯誤為典型指向來自 Windows I/O 次系統的問題.
		呼叫 Win32 的 GetLastError() 即可得到驗證.
-10	CAM_ERROR_UNSUPPORTED	此特徵或功能不支援.
-11	CAM_ERROR_NOT_INITIALIZED	攝影機並未被正確初始化
-12	CAM_ERROR_INVALID_VIDEO_SETTING	所選的影像設定並未支援
	S	
-13	CAM_ERROR_BUSY	取像中多數功能皆不被允許, 您應先停止取像才可執
		行此功能.
-14	CAM_ERROR_INSUFFICIENT_RESOURC	生在量十日光质将敌子分子困死
	ES	礼 隐距个尺 义 须 見 恶 広 兀 成 安 不

-15	CAM_ERROR_PARAM_OUT_OF_RANGE	許多參數有被限制,其中一個已超出限制.
-16	CAM_ERROR_FRAME_TIMEOUT	此錯誤表示已暫停終止同時沒有任何影像資料.
-17	CAM_ERROR_FEATURE_UNAVAILABLE	此錯誤表示該特徵尚未有效
-18	CAM_ERROR_SW_TRIGGER_NOT_SET	此錯誤表示軟體觸發功能並未設定正確
-19	CAM_ERROR_CANNOT_OPEN_FILE	此錯誤說明指定的檔名或路徑不正確
-20	CAM_ERROR_LUT_FILE_DATA_ERROR	此錯誤說明查詢表(LUT)檔案內部資料不正確.

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_CloseCamera(I16 CamID)

Visual Basic 6.0

IMS_CloseCamera (ByVal CamID As Integer) As Integer

VC.NET 2005

short IMS_CloseCamera(Int16 CamID)

說明:

此為關閉攝影機功能. 在呼叫此功能之前攝影機必需先停止取像,在呼叫完此功能後, 將會從 1394 bus 上移除此 *CamID* 所代表的攝影機. 如果您想要再度操作此攝影機, 在將它插回 1394 bus 時, 請確認有再度呼叫 *IMS_ScanCamera()*及 *IMS_InitCamera()*方可執行操作.

参數(Parameters):

CamID 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2.

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.

目前攝影機狀態:

攝影機狀態	<u> </u>
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

IMS_Check_BusRate

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Check_BusRate(I16 CamID, U16* BusRate)

Visual Basic 6.0

IMS_Check_BusRate (ByVal CamID As Integer, ByRef BusRate As Integer) As Integer

VC.NET 2005

short IMS_Check_BusRate(Int16 CamID, IntPtr BusRate)

說明:

此功能是用來確認目前 IEEE 1394 bus 頻寬.

参數(Parameters):

CamID	此攝影機之識別碼將會被初始化.	假如 IMS_ScanCamera()	回傳有3台有效
	的攝影機,那麼有效的攝影機識別。	碼(ID)即為 0,1 及 2.	

BusRate 當功能回傳成功時,所指向的變數便會填入 bus 的頻寬訊息. 假如回傳值為 RETURN_UNAVAILABLE 或 RETURN_CHECK_LASTERROR BusRate 仍保持不變. BusRate 的單位為 Mbps. 因此假設 busRate = 400 即代表 400 Mbps

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

目前攝影機狀態:

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

5.4事件回傳(Callback Event)

IMS_Register_Callback

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Register_CallBack(I16 CamID, void* UserData, void (__stdcall *CallBackRoutine)(I16 CamID, U8* pBuffer, U32 size, void* UserData, U8 TimeOutFlag))

Visual Basic 6.0

IMS_Register_CallBack (ByVal CamID As Integer, ByVal UserData As Long, ByVal CallBackRoutine As Long) As Integer

VC.NET 2005

short IMS_Register_CallBack(Int16 CamID, IntPtr UserData, Callback CallBackRoutine)

說明:

此功能是用來記錄例行性事件回傳(Callback Routine).

備註: 假如您已成功呼叫 IMS_Register_CallBack() 两次(含)以上,最後一次的呼叫將會覆蓋上一次的回傳記錄.

参數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有
	3台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
CallBackRoutine	例行性事件回傳(Callback Routine)範例如下:
	- voidstdcall CallBackRoutine(I16 CamID, U8* pBuffer, U32
	size, void* UserData, U8 TimeOutFlag)
	詳細訊息請參閱 CallBackRoutine();
UserData	加入使用者指定資料. 此資料可以在呼叫 Callback Routine 時一併傳
	送.

回傳值(Return):

	目前攝影機狀態下是不能使用的.
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
RETURN_SUCCESSFUL	表示成功

攝影機狀態 CAM_State_0_NOT_SCANNED CAM_State_1_NOT_INIT CAM_State_2_INIT_NOT_ACQUIRING CAM_State_3_ACQUIRING_IMAGE

<u>說明</u> 攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中 攝影機正在取像中

CallbackRoutine

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall CallBackRoutine(I16 CamID, U8* pBuffer, U32 size, void* UserData, U8 TimeOutFlag)

Visual Basic 6.0 (Callback.bas)

CallBackRoutine(ByVal CamID As Integer, ByVal pFrameBuffer As Long, ByVal size As Long, ByVal UserData As Long, ByVal TimeOutFlag As Byte)

VC.NET 2005

*請參考 C# sample 的寫法

說明:

此為使用者定義碼,當影像準備好時或者執行 *IMS_Start_Acquire()*的 *TimeOut_ms* 暫停, CallbackRoutine 便會被呼叫.

假如 CallbackRoutine 因為暫停而被呼叫時, 那麼 TimeOutFlag 將會被設為 1.

假如 CallbackRoutine 因為影像準備好而被呼叫時, 那麼 TimeOutFlag 將會被設為 0.

CallbackRoutine 需使用 IMS_Register_CallBack() 函式記錄.

参數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有3台
	有效的攝影機,那麼有效的攝影機識別碼(ID)即為0,1及2
pBuffer	緩衝記憶體的起始位址用來指向影像資料被暫存在何處. 假如
	TimeOutFlag = 1, 那麼 pBuffer 便會為 NULL.
size	影像緩衝區的大小,假如 TimeOutFlag = 1, size 便會為 0.
UserData	在 IMS_Register_CallBack() 函式參數裡.加入使用者資料
<i>TimeOutFlag</i>	假如 TimeOutFlag=0,表示一張影像資料已準備好了.
	假如 TimeOutFlag = 1, 表示出現暫停.
	暫停值是在 IMS_Start_Acquire()的 TimeOut_ms 作說明.

回傳值(Return):

無

5.5攝影機取像(Camera Acquisition)

IMS_Start_Acquire

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Start_Acquire(I16 CamID, U32 NumFrames, U32 TimeOut_ms)

Visual Basic 6.0

IMS_Start_Acquire (ByVal CamID As Integer, ByVal NumFrames As Long, ByVal TimeOut_ms As Long) As Integer

VC.NET 2005

short IMS_Start_Acquire(Int16 CamID, UInt32 NumFrames, UInt32 TimeOut_ms)

說明:

本功能會開始執行取像程序, 在成功取像後 IMS_Register_CallBack()裡的 CallBackRoutine() 便會被觸發.

取像程序在下列狀況下會被停止:

- 已取得 NumFrames 定義的影像數..
- 出現暫停. 這種情形下 CallBackRoutine 將會被呼叫同時 TimeOutFlag = 1.
- IMS_Stop_Acquire() 被成功呼叫.

参數(Parameters):

- CamID 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有 效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
- NumFrames 說明你想要取得的影像總數.在取得足夠的影像數後取像程序將會自動停止.假如 NumFrames 設為 0 即代表無限制連續取像.除非呼叫 IMS_Stop_Acquire() 或出現暫停才會停止取像.
- *TimeOut_ms* 說明暫停值單位時間為 milliseconds. 假如 *TimeOut_ms* = 0 那麼取像程序將 永遠不會出現暫停.

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

目前攝影機狀態:

攝影機狀態 CAM_State_0_NOT_SCANNED CAM_State_1_NOT_INIT CAM_State_2_INIT_NOT_ACQUIRING CAM_State_3_ACQUIRING_IMAGE

<u>說明</u> 攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中 攝影機正在取像中 IMS_Stop_Acquire

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Stop_Acquire(I16 CamID)

Visual Basic 6.0

IMS_Stop_Acquire (ByVal CamID As Integer) As Integer

VC.NET 2005

short IMS_Stop_Acquire(Int16 CamID)

說明:

此功能將會停止取像程序. 在成功停止取像後 **CallBackRoutine()**將不再被觸發.

参數(Parameters):

CamID 此攝影機之識別碼將會被初始化. 假如 *IMS_ScanCamera()* 回傳有 3 台有 效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態 下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)
目前攝影機狀態:	

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

5.6攝影機設定(Camera Configuration)

IMS_Set_VideoMode

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Set_VideoMode(I16 CamID, U32 VideoMode)

Visual Basic 6.0

IMS_Set_VideoMode (ByVal CamID As Integer, ByVal VideoMode As Long) As Integer

VC.NET 2005

short IMS_Set_VideoMode(Int16 CamID, UInt32 VideoMode)

說明:

此功能是用來設定影像模式(Video Mode). 根據攝影機的型式決定可用的影像模式. 請確認回傳值用以確保影像模式已設定成功.

有效的影像模式(Available Video Modes)

≻ 640 x 480

VM_640X480_MONO8_30FPS, VM_640X480_MONO16_30FPS, VM_640X480_RGB_30FPS VM_640X480_MONO8_15FPS, VM_640X480_MONO16_15FPS, VM_640X480_RGB_15FPS VM_640X480_MONO8_7.5FPS, VM_640X480_MONO16_7.5FPS, VM_640X480_RGB_7.5FPS

➢ 800 x 600 (限 IMS-130)

VM_800X600_MONO8_30FPS, VM_800X600_MONO16_30FPS, VM_800X600_RGB_30FPS VM_800X600_MONO8_15FPS, VM_800X600_MONO16_15FPS, VM_800X600_RGB_15FPS VM_800X600_MONO8_7.5FPS, VM_800X600_MONO16_7.5FPS, VM_800X600_RGB_7.5FPS

➢ 1024 x 768 (限 IMS-130)

VM_1024X768_MONO8_30FPS, VM_1024X768_MONO16_30FPS,

VM_1024X768_MONO8_15FPS, VM_1024X768_MONO16_15FPS, VM_1024X768_RGB_15FPS VM_1024X768_MONO8_7.5FPS, VM_1024X768_MONO16_7.5FPS, VM_1024X768_RGB_7.5FPS

▶ 1280 x 960 (限 IMS-130)

VM_1280X960_MONO8_30FPS,

VM_1280X960_MONO8_15FPS, VM_1280X960_MONO16_15FPS, VM_1280X960_RGB_15FPS VM_1280X960_MONO8_7.5FPS, VM_1280X960_MONO16_7.5FPS, VM_1280X960_RGB_7.5FPS VM_AOI

参數(Parameters):

CamID 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台 有效的攝影機,那麼有效的攝影機識別碼(ID)即為0,1及2 VideoMode 欲設定的影像模式

回傳值(Return):

RETURN_SUCCESSFUL 表示成功 RETURN_UNAVAILABLE 表示目前的 CamID 是無效的或者此功能在 目前攝影機狀態下是不能使用的.

RETURN_CHECK_LASTERROR

發生某些錯誤, 請呼叫 IMS_GetLastError() 以取得錯誤代碼(error code)

目前攝影機狀態:

攝影機狀態 說明 CAM_State_0_NOT_SCANNED 攝影機未被掃描到 CAM_State_1_NOT_INIT 攝影機已掃描到但尚未初始化 CAM_State_2_INIT_NOT_ACQUIRING 攝影機已初始化但並未在取像中 CAM_State_3_ACQUIRING_IMAGE 攝影機正在取像中

IMS_Get_VideoResolution

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Get_VideoResolution(I16 CamID, U32 *Width, U32 *Height)

Visual Basic 6.0

IMS_Get_VideoResolution (ByVal CamID As Integer, ByRef Width As Long, ByRef Height As Long) As Integer

VC.NET 2005

short IMS_Get_VideoResolution(Int16 CamID, IntPtr Width, IntPtr Height)

說明:

此功能是用來取得影像的尺寸包括寬跟高.

Parameters:

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效
	的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
Width	指向的變數將會填入影像畫面的寬度資訊以畫素(Pixel)為單位.
Height	指向的變數將會填入影像畫面的高度資訊以畫素(Pixel)為單位

回傳值(Return):

	目前攝影機狀態 下是不能使用的.
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
RETURN_SUCCESSFUL	表示成功

目前攝影機狀態:

攝影機狀態	<u> </u>
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

IMS_Get_ColorFormat

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Get_ColorFormat(I16 CamID, U32 *Color)

Visual Basic 6.0

IMS_Get_ColorFormat (ByVal CamID As Integer, ByRef Color As Long) As Integer

VC.NET 2005

short IMS_Get_ColorFormat(Int16 CamID, IntPtr Color)

說明:

此功能是用來取得影像的色彩格式.

假若回傳成功, Color 將會填入色彩格式的資訊.

色彩格式(Color Format)

- VM_MONO8: 黑白 8-bit 模式. 每個畫素為 1 byte.
- VM_MONO16: 黑白 16-bit 模式.每個畫素為 2 bytes.
- VM_RGB: 彩色 24-bit 模式. 每個畫素為 3 byte, 分別為紅色, 綠色, 藍色.

参數(Parameters):

- CamID 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效的 攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
- Color 指向的變數將會填入影像的色彩資訊:VM_MONO8, VM_MONO16 或 VM_RGB

回傳值(Return):

	目前攝影機狀態 下是不能使用的.
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
RETURN_SUCCESSFUL	表示成功

目前攝影機狀態:

CAM_State_0_NOT_SCANNED

CAM_State_2_INIT_NOT_ACQUIRING

CAM_State_3_ACQUIRING_IMAGE

CAM_State_1_NOT_INIT

攝影機狀態

<u>說明</u> 攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中 攝影機正在取像中

IMS_Set_AOI_Parameter

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Set_AOI_Parameter(I16 CamID, U32 Color, F32 FrameRate, U16 Left, U16 Top, U16 Width, U16 Height)

Visual Basic 6.0

IMS_Set_AOI_Parameter (ByVal CamID As Integer, ByVal Color As Long, ByVal FrameRate As Single, ByVal Left As Integer, ByVal Top As Integer, ByVal Width As Integer, ByVal Height As Integer) As Integer

VC.NET 2005

short IMS_Set_AOI_Parameter(Int16 CamID, UInt32 Color, Single FrameRate, UInt16 Left, UInt16 Top, UInt16 Width, UInt16 Height)

說明:

呼叫此功能之前,您必需先將 IMS_Set_VideoMode 設定在 VM_AOI 才行. 此功能是用來設定局部取像(AOI)的參數. Color 參數是用來說明色彩格式.

- VM_MONO8: 黑白 8-bit 模式. 每個畫素為 1 byte.
- VM_MONO16: 黑白 16-bit 模式.每個畫素為 2 bytes.
- VM_RGB: 彩色 24-bit 模式. 每個畫素為 3 byte, 分別為紅色, 綠色, 藍色.

FrameRate 參數是用來說明期望的取像速率,例如:FrameRate = 15.0 即代表每秒取15張. 備註:如果 FrameRate 超過可能範圍,將會自動轉換成最接近的允許取像速率.

使用 IMS_Get_AOI_Parameter() 去確認實際的取像速率.

Left, Top, Width, Height 等參數是用來說明 AOI 的範圍. 請牢記在心其有效值有以下限制:

- Left 值必需為 2*N, 且 N 為整數(integer).
- Top 值必需為 2*N, 且 N 為整數(integer)..
- Width 值必需為 8*N, 且 N 為整數(integer)..
- Height 值必需為 2*N, 且 N 為整數(integer)..
- Left + Width <= 全畫面的寬
- Top + Height <= 全畫面的高

参數(Parameters):

CamID 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有3台有
效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2

 Color
 影像的色彩格式: VM_MONO8, VM_MONO16 或 VM_RGB.

 FrameRate
 期望的取像速率以 FPS 為單位,例如:15.0

 Left
 AOI 啟始位置的 X 座標

 Top
 AOI 啟始位置的 Y 座標

 Width
 AOI 水平寬度大小

 Height
 AOI 垂直高度大小

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

IMS_Get_AOI_Parameter

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Get_AOI_Parameter(I16 CamID, U32 *Color, F32 *FrameRate, U16 *Left, U16 *Top, U16 *Width, U16 *Height)

Visual Basic 6.0

IMS_Get_AOI_Parameter (ByVal CamID As Integer, ByRef Color As Long, ByRef FrameRate As Single, ByRef Left As Integer, ByRef Top As Integer, ByRef Width As Integer, ByRef Height As Integer) As Integer

VC.NET 2005

short IMS_Get_AOI_Parameter(Int16 CamID, IntPtr Color, IntPtr FrameRate, IntPtr Left, IntPtr Top, IntPtr Width, IntPtr Height)

說明:

呼叫此功能之前,您必需先將 IMS_Set_VideoMode 設定在 VM_AOI 才行. 本功能是用來讀取目前所執行的 AOI 功能之相關參數,請參閱 IMS_Set_AOI_Parameter().

参數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有
	效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
Color	指向的變數會被填入影像的色彩訊息 VM_MONO8, VM_MONO16 或
	VM_RGB
FrameRate	指向的變數會被填入目前的取像速率單位為 FPS
Left	指向的變數會被填入目前 AOI 的啟始位置的 X 座標
Тор	指向的變數會被填入目前 AOI 的啟始位置的 Y 座標
Width	指向的變數會被填入目前 AOI 的水平寬度大小
Height	指向的變數會被填入目前 AOI 的垂直高度大小

回傳值(Return):

RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.

目前攝影機狀態:

攝影機狀態

說明

CAM_State_0_NOT_SCANNED CAM_State_1_NOT_INIT CAM_State_2_INIT_NOT_ACQUIRING CAM_State_3_ACQUIRING_IMAGE 攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中 攝影機正在取像中

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Set_Feature(I16 CamID, U32 FeatureID, F32 FeatureValue, bool FeatureOnOff)

Visual Basic 6.0

IMS_Set_Feature (ByVal CamID As Integer, ByVal FeatureID As Long, ByVal FeatureValue As Single, ByVal FeatureOnOff As Boolean) As Integer

VC.NET 2005

short IMS_Set_Feature(Int16 CamID, UInt32 FeatureID, Single FeatureValue, bool FeatureOnOff)

說明:

本功能是用來設定 ICP DAS 1394 攝影機的特徵功能. FeatureID 參數是用來說明那一個特徵會被設為新的值,有效的特徵包括:

<u>FeatureID</u>	有效值範圍	單位
CAMERA_FEATURE_BRIGHTNESS	0.0 ~ 6.2439	%
CAMERA_FEATURE_SHARPNESS	0 ~ 4095	-
CAMERA_FEATURE_WHITE_BALANCE_R	0 ~ 1023	-
CAMERA_FEATURE_WHITE_BALANCE_B	0 ~ 1023	-
CAMERA_FEATURE_HUE	-180.0 ~ 179.912	Degree
CAMERA_FEATURE_SATURATION	0.0 ~ 399.902	%
CAMERA_FEATURE_GAMMA	0.50 ~ 3.99902	-
CAMERA_FEATURE_SHUTTER	4.65e-6~0.133263 或 1/fps	us / ms
CAMERA_FEATURE_GAIN	-6.26386 ~ 24.0001	dB

FeatureValue 參數是用來說明特徵的設定值,當使用者設定的值超出範圍時便可能會失效.

FeatureOnOff 參數是用來開啟或關閉該特徵功能.

備註-CAMERA_FEATURE_BRIGHTNESS 此特徵是永遠開啟的功能,因此您無法關閉它.

Parameters:

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3
	台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
FeatureID	攝影機的特徵

FeatureValue	此特徵所設定的值
<i>FeatureOnOff</i>	True: 開啟此特徵
	False: 關閉此特徵

回傳值(Return):

RETURN_SUCCESSFUL 表示成功 RETURN_UNAVAILABLE 表示目前的 CamID 是無效的或者此功能在 目前攝影機狀態下是不能使用的.

RETURN_CHECK_LASTERROR

目前攝影機狀態:

攝影機狀態 CAM_State_0_NOT_SCANNED CAM_State_1_NOT_INIT CAM_State_2_INIT_NOT_ACQUIRING CAM_State_3_ACQUIRING_IMAGE 表示目前的 CamID 是無效的或者此功能在 目前攝影機狀態下是不能使用的. 發生某些錯誤,請呼叫 IMS_GetLastError() 以取得錯誤代碼(error code)

說明

攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中 攝影機正在取像中

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Get_Feature(I16 CamID, U32 FeatureID, F32 *FeatureValue, bool *FeatureOnOff)

Visual Basic 6.0

IMS_Get_Feature (ByVal CamID As Integer, ByVal FeatureID As Long, ByRef FeatureValue As Single, ByRef FeatureOnOff As Boolean) As Integer

VC.NET 2005

short IMS_Get_Feature(Int16 CamID, UInt32 FeatureID, IntPtr FeatureValue, IntPtr FeatureOnOff)

說明:

本功能是用來取得目前指定的特徵值.

FeatureID 參數是用來說明讀取那個特徵的值, 有效的特徵包括:

<u>FeatureID</u>	有效值範圍	單位
CAMERA_FEATURE_BRIGHTNESS	0.0 ~ 6.2439	%
CAMERA_FEATURE_SHARPNESS	0 ~ 4095	-
CAMERA_FEATURE_WHITE_BALANCE_R	0 ~ 1023	-
CAMERA_FEATURE_WHITE_BALANCE_B	0 ~ 1023	-
CAMERA_FEATURE_HUE	-180.0 ~ 179.912	Degree
CAMERA_FEATURE_SATURATION	0.0 ~ 399.902	%
CAMERA_FEATURE_GAMMA	0.50 ~ 3.99902	-
CAMERA_FEATURE_SHUTTER	4.65e-6~0.133263 或 1/fps	us / ms
CAMERA_FEATURE_GAIN	-6.26386 ~ 24.0001	dB

参數(Parameters)

CamID 此攝影機之識別碼將 台有效的攝影機,那麼	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3
	台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
FeatureID	攝影機的特徵 The camera features
FeatureValue	指向的變數會被填入目前的特徵值
FeatureOnOff	指向的變數會被填入目前的特徵是開/關的狀態

回傳值(Return):

表示成功

RETURN_UNAVAILABLE

RETURN_CHECK_LASTERROR

目前攝影機狀態:

攝影機狀態 CAM_State_0_NOT_SCANNED CAM_State_1_NOT_INIT CAM_State_2_INIT_NOT_ACQUIRING CAM_State_3_ACQUIRING_IMAGE 表示目前的 CamID 是無效的或者此功能在 目前攝影機狀態下是不能使用的. 發生某些錯誤, 請呼叫 IMS_GetLastError() 以取得錯誤代碼(error code)

說明

攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中 攝影機正在取像中

5.7觸發設定(Trigger Setting)

IMS_Set_Trigger

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Set_Trigger(I16 CamID, bool On_Off, U16 TriggerSource, U16 TriggerMode)

Visual Basic 6.0

IMS_Set_Trigger (ByVal CamID As Integer, ByVal on_off As Boolean, ByVal TriggerSource As Integer, ByVal TriggerMode As Integer) As Integer

VC.NET 2005

short IMS_Set_Trigger(Int16 CamID, bool On_Off, UInt16 TriggerSource, UInt16 TriggerMode)

說明:

本功能是用來設定觸發(Trigger)的功能.

On_Off 參數決定觸發(Trigger)的功能是將被開啟(*on_off* = true)或關閉(*on_off* = false) *TriggerSouce* 用來說明觸發的來源,可能的觸發來源有:

- TriggerSource = 0, GPIO pin 0 的下降邊緣(falling edge) 觸發(變化由 3.3V 或 5V 降至 0V)
- TriggerSource = 1, GPIO pin 0 的上升邊緣(rising edge) 觸發(變化由 0V 升至 3.3V 或 5V)
- TriggerSource = 15, 軟體控制觸發, 請參閱 IMS_Do_SWTrigger()

TriggerMode = 0 或 1 分別用來說明這裡的兩種觸發模式.

- TriggerMode 0: 標準的外部觸發模式(Standard External Trigger Mode).
 攝影機由外部的觸發輸入訊號(falling edge /rising edge)開始感光成像.
 CAMERA_FEATURE_SHUTTER 特徵可以控制成像的時間
- TriggerMode 1: 燈源快門觸發模式(Bulb Shutter mode).
 攝影機的成像時間與外部觸發輸入訊號的高低狀態變化時間一致.
- 假如觸發來源設為軟體觸發(TriggerSource =15), 那麼即便設定 TriggerMode 為 1, 它仍只 會執行標準外部觸發模式.

参數(Parameters):

	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3
CamID	台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
On_Off	True: 開啟觸發功能
	False: 關閉觸發功能

TriggerSouce觸發的來源,同時也說明是上升或下降邊緣觸發TriggerMode說明觸發的模式.0 代表標準觸發模式(Standard External Trigger Mode),1 代表燈源快門觸發模式(Bulb Shutter mode).

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

目前攝影機狀態:

攝影機狀態
CAM_State_0_NOT_SCANNED
CAM_State_1_NOT_INIT
CAM_State_2_INIT_NOT_ACQUIRING
CAM_State_3_ACQUIRING_IMAGE

說明

攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中 攝影機正在取像中

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Get_Trigger(I16 CamID, bool *On_Off, U16 *TriggerSource, U16 *TriggerMode)

Visual Basic 6.0

IMS_Get_Trigger (ByVal CamID As Integer, ByRef on_off As Boolean, ByRef TriggerSource As Integer, ByRef TriggerMode As Integer) As Integer

VC.NET 2005

short IMS_Get_Trigger(Int16 CamID, IntPtr On_Off, IntPtr TriggerSource, IntPtr TriggerMode)

說明:

本功能是用來取得目前所設定的觸發功能,請參閱 IMS_Set_Trigger()

Parameters:

	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台
CamID	有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
On_Off	指向的變數將會被填入目前觸發是開啟/關閉(on/off)的狀態
TriggerSouce	指向的變數將會被填入目前的觸發來源,同時也會說明是上升邊緣/下降
	邊緣(rising edge/falling edge)訊號
TriggerMode	指向的變數將會被填入目前的觸發模式

回傳值(Return):

	目前攝影機狀態下是不能使用的.
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
RETURN_SUCCESSFUL	表示成功

攝影機狀態	<u> </u>
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

IMS_Do_SWTrigger

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Do_SWTrigger(I16 CamID)

Visual Basic 6.0

IMS_Do_SWTrigger (ByVal CamID As Integer) As Integer

VC.NET 2005

short IMS_Do_SWTrigger(Int16 CamID)

說明:

此功能是用來產生一個軟體的非同步觸發(Asynchronous Trigger),請參閱

IMS_Set_Trigger().

本功能只限於 TriggerSource 設為 15 才生效. 但您仍必需先呼叫 IMS_Start_Acquire() 才能 呼叫 IMS_Do_SWTrigger().

参數(Parameters):

此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效
 CamID
 的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態 下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

5.8GPIO 控制設定

IMS_Set_GPIOMode

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Set_GPIOMode(I16 CamID, U16 Channel, U16 Mode)

Visual Basic 6.0

IMS_Set_GPIOMode (ByVal CamID As Integer, ByVal Channel As Integer, ByVal Mode As Integer) As Integer

VC.NET 2005

short IMS_Set_GPIOMode(Int16 CamID, UInt16 Channel, UInt16 Mode)

說明:

本功能是用於設定 GPIO 模式. 每個 GPIO 管道可以被單獨選取去定義的工作模式如下:

- 泛用輸入(General purposed input) (Mode = 0)
- 泛用輸出(General purposed output) (Mode = 1)
- 閃光燈 High active 輸出(Mode = 2)
- 閃光燈 Low active 輸出(Mode = 3)

Channel 參數是用來說明那一個 GPIO 管道被設定.

参數(Parameters):

- CamID 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效 的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
- Channel GPIO 管道 ID, 值=1~3 各別代表 GPIO pin 1~3
- Mode GPIO 的模式

回傳值(Return):

表示成功
表示目前的 CamID 是無效的或者此功能在
目前攝影機狀態下是不能使用的.
發生某些錯誤, 請呼叫 IMS_GetLastError()
以取得錯誤代碼(error code)

目前攝影機狀態:

摄影機狀態

說明

CAM_State_0_NOT_SCANNED CAM_State_1_NOT_INIT CAM_State_2_INIT_NOT_ACQUIRING CAM_State_3_ACQUIRING_IMAGE 攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中 攝影機正在取像中

IMS_Get_GPIOMode

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Get_GPIOMode(I16 CamID, U16 Channel, U16 *Mode)

Visual Basic 6.0

IMS_Get_GPIOMode (ByVal CamID As Integer, ByVal Channel As Integer, ByRef Mode As Integer) As Integer

VC.NET 2005

short IMS_Get_GPIOMode(Int16 CamID, UInt16 Channel, IntPtr Mode)

說明:

本功能是用來取得指定管道(Channel)目前 GPIO 的模式設定.請參閱 IMS_Set_GPIOMode().

參數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有
	效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
Channel	GPIO 管道 ID, 值=1~3 各別代表 GPIO pin 1~3
Mode	指向的變數將會被填入目前的 GPIO 模式設定

回傳值(Return):

	目前攝影機狀態 下是不能使用的.
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
RETURN_SUCCESSFUL	表示成功

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_GPIO_Read(I16 CamID, U16 Channel, bool *Value)

Visual Basic 6.0

IMS_GPIO_Read (ByVal CamID As Integer, ByVal Channel As Integer, ByRef value As Boolean) As Integer

VC.NET 2005

short IMS_GPIO_Read(Int16 CamID, UInt16 Channel, IntPtr Value)

說明:

當 GPIO 1~3 被設定為泛用的輸入或輸出模式時. 您可以使用這個功能去讀取它的值. 針對 3.3V 或 5V 輸入, *Value* 值會為 true. 針對 0 V 輸入, *Value* 值會為 false. 針對 GPIO 模式設定,請參閱 *IMS_Set_GPIOMode()*.

参數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效
	的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
Channel	GPIO 管道 ID, 值=1~3 各別代表 GPIO pin 1~3
Value	指向的變數將會被填入目前 GPIO pin 的狀態值

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

IMS_GPIO_Write

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_GPIO_Write(I16 CamID, U16 Channel, bool Value)

Visual Basic 6.0

IMS_GPIO_Write (ByVal CamID As Integer, ByVal Channel As Integer, ByVal value As Boolean) As Integer

VC.NET 2005

short IMS_GPIO_Write(Int16 CamID, UInt16 Channel, bool Value)

說明:

當 GPIO 1~3 設為泛用型輸出模式時, 您可以使用這個功能去設定它的值 針對 3.3V 輸出, 設 Value 值為 true. 針對 0 V 輸出, 設定 Value 值為 false. 針對 GPIO 模式設定, 請參閱 *IMS_Set_GPIOMode()*.

Parameters:

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效
	的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
Channel	GPIO 管道,值=1~3 各別代表 GPIO pin 1~3
Value	GPIO pin 的輸出值. false 代表 0V 輸出, true 代表 3.3V 輸出

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態 下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

5.9 閃光燈(Strobe)控制

IMS_Set_Strobe

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Set_Strobe(I16 CamID, F32 Delay_ms, F32 Duration_ms)

Visual Basic 6.0

IMS_Set_Strobe (ByVal CamID As Integer, ByVal Delay_ms As Single, ByVal Duration_ms As Single) As Integer

VC.NET 2005

short IMS_Set_Strobe(Int16 CamID, Single Delay_ms, Single Duration_ms)

說明:

本功能是用來設定閃光燈(Strobe)參數.

Delay_ms 用來定義閃光燈訊號輸出直到開始曝光中間的延遲時間週期單位為 ms.

Duration_ms 用來定義閃光燈訊號的長度單位為 ms.

您可以使用 IMS_Set_GPIOMode().去選擇由那個 GPIO pin(s) 去輸出閃光燈訊號

参數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有
	效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
Delay_ms	閃光燈訊號輸出直到開始曝光中間的延遲時間, 範圍: 0~10,000.0 ms
Duration_ms	閃光燈訊號的持續時間. 範圍: 0 ~ 10,000.0 ms

回傳值(Return):

表示成功
表示目前的 CamID 是無效的或者此功能在
目前攝影機狀態 下是不能使用的.
發生某些錯誤, 請呼叫 IMS_GetLastError()
以取得錯誤代碼(error code)

目前攝影機狀態:

攝影機狀態 CAM_State_0_NOT_SCANNED CAM_State_1_NOT_INIT CAM_State_2_INIT_NOT_ACQUIRING

說明

攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中

- 89 -

CAM_State_3_ACQUIRING_IMAGE

攝影機正在取像中

IMS_Get_Strobe

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Get_Strobe(I16 CamID, F32 *Delay_ms, F32 *Duration_ms)

Visual Basic 6.0

IMS_Get_Strobe (ByVal CamID As Integer, ByRef Delay_ms As Single, ByRef Duration_ms As Single) As Integer

VC.NET 2005

short IMS_Get_Strobe(Int16 CamID, IntPtr Delay_ms, IntPtr Duration_ms)

說明:

本功能是用來取得目前閃光燈參數,請參閱 IMS_Set_Strobe().

参數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有
	效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
Delay_ms	指向的變數將會被填入閃光燈延遲的時間值
Duration_ms	指向的變數將會被填入閃光燈持續的時間值

回傳值(Return):

	目前攝影機狀態 下是不能使用的.
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
RETURN_SUCCESSFUL	表示成功

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

5.10 查詢表設定(Lookup Table)

IMS_Set_LUT

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Set_LUT(I16 CamID, char* LUT_FileName)

Visual Basic 6.0

IMS_Set_LUT (ByVal CamID As Integer, ByVal LUT_FileName As String) As Integer

VC.NET 2005

short IMS_Set_LUT(Int16 CamID, string LUT_FileName)

說明:

本功能是用來設定查詢表(Look up Table). LUT_FileName 用來說明查詢表的檔名,包括路徑. 假如未指定路徑那麼將會搜尋目前的目錄.

参數(Parameters):

 CamID
 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3

 台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2

 LUT_FileName

 查詢表的檔名及路徑

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamlD 是無效的或者此功能在
	目前攝影機狀態 下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

攝影機狀態	說明
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

IMS_Get_LUT

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Get_LUT(I16 CamID, char* LUT_FileName)

Visual Basic 6.0

IMS_Get_LUT (ByVal CamID As Integer, ByVal LUT_FileName As String) As Integer

VC.NET 2005

short IMS_Get_LUT(Int16 CamID, string LUT_FileName)

說明:

本功能是用來取得目前查詢表(Look up Table)的內容. LUT_FileName 用來說明取得的查詢表所儲存的檔名包括路徑.如果未指定路徑那麼將會存 至目前的目錄下.

参數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有3
	台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
LUT_FileName	取得的查詢表所儲存的檔名及路徑

回傳值(Return):

	目前攝影機狀態 下是不能使用的.
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
RETURN_SUCCESSFUL	表示成功

攝影機狀態	<u> </u>
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

5.11 快閃記憶體(Data Flash)

IMS_Read_DataFlash

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Read_DataFlash(I16 CamID, U32 Address, U8 *Data)

Visual Basic 6.0

IMS_Read_DataFlash (ByVal CamID As Integer, ByVal Address As Long, ByRef Data As Byte) As Integer

VC.NET 2005

short IMS_Read_DataFlash(Int16 CamID, UInt32 Address, IntPtr Data)

說明:

本功能是用來讀取 Sparrow IMS 系列攝影機的快閃記憶體(Data flash)內的值. Address 用來說明快閃記憶體會被讀取的位元位址(Byte address), 範圍由 0x0 ~ 0xFFFF(總 共 64K)

参數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效
	的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
Address	位元位址(Byte address)

Data 指向的變數將會被填入讀取到的值

回傳值(Return):

	目前攝影機狀態下是不能使用的.
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
RETURN_SUCCESSFUL	表示成功

攝影機狀態	<u> </u>
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Write_DataFlash(116 CamID, U32 Address, U8 Data)

Visual Basic 6.0

IMS_Write_DataFlash (ByVal CamID As Integer, ByVal Address As Long, ByVal Data As Byte) As Integer

VC.NET 2005

short IMS_Write_DataFlash(Int16 CamID, UInt32 Address, Byte Data)

說明:

本功能是用來寫入位元值(byte value)到 Sparrow IMS 系列攝影機的快閃記憶體(data flash) 裡面.

Address 用來說明寫入快閃記憶體資料的位元位址(byte address), 範圍由 0x0 ~ 0xFFFF (總 共 64K)

参數(Parameters):

CamID 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2

Address 位元位址(Byte address)

Data 寫入快閃記憶體的資料值

回傳值(Return):

	目前攝影機狀態 下是不能使用的.
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
RETURN_SUCCESSFUL	表示成功

目前攝影機狀態:

CAM_State_0_NOT_SCANNED

CAM_State_2_INIT_NOT_ACQUIRING

CAM_State_3_ACQUIRING_IMAGE

CAM_State_1_NOT_INIT

攝影機狀態

<u>說明</u> 攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中 攝影機正在取像中

5.12 AES 專案加密

IMS_Get_CameraInform

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Get_CameraInform(I16 CamID, PCAM_INFO CamInfo)

Visual Basic 6.0

IMS_Get_CameraInform (ByVal CamID As Integer, CamInfo As CAM_INFO) As Integer

VC.NET 2005

short IMS_Get_CameraInform(Int16 CamID, ref CAM_INFO CamInfo)

說明:

本功能是用來取得攝影機的型號及唯一硬體識別序號(unique serial number).

這個訊息是利用 CAM_INFO 的結構取得內含 2 個部份.

第一個部份: char ModelName[32], 儲存攝影機的型號名稱

第二個部份: U8 SerialNumber[16], 儲存攝影機的唯一硬體識別序號

参數(Parameters):

- CamID 此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
- CamInfo 指向的 CAM_INFO 結構將會填入攝影機的訊息包括型號名稱及唯一硬體識別 序號

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態 下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 IMS_GetLastError()
	以取得錯誤代碼(error code)

目前攝影機狀態:

攝影機狀態 CAM_State_0_NOT_SCANNED CAM_State_1_NOT_INIT CAM_State_2_INIT_NOT_ACQUIRING

說明

攝影機未被掃描到 攝影機已掃描到但尚未初始化 攝影機已初始化但並未在取像中

- 96 -

CAM_State_3_ACQUIRING_IMAGE

攝影機正在取像中

AES_GET_REG

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall AES_GET_REG(char raw[16],char AES_Key[16],char Encrypted[16])

Visual Basic 6.0

AES_GET_REG (ByVal raw As Variant, ByVal AES_Key As Variant, ByVal Encrypted As Variant) As Long

VC.NET 2005

long AES_GET_REG(Byte[] raw, Byte[] AES_Key, IntPtr Encrypted)

說明:

本功能是用來產生 AES 加密註冊碼.

参數(Parameters):

raw	將被加密的原始資料, 原始資料的大小為 16 bytes
AES_Key	由使用者自行定義的 AES 加密金鑰. 加密金鑰的大小為 16 bytes
Encrypted	AES 加密過的結果. 加密過的大小為 16 bytes

回傳值(Return):

RETURN_SUCCESSFUL 表示成功

5.13 测試影像(Test Image)

IMS_Enable_TestImage

語法(Syntax):

Visual C++ 6.0 / Boland C++ Builder 6.0:

stdcall IMS_Enable_TestImage(I16 CamID, bool On_Off)

Visual Basic 6.0

IMS_Enable_TestImage (ByVal CamID As Integer, ByVal on_off As Boolean) As Integer

VC.NET 2005

short IMS_Enable_TestImage(Int16 CamID, bool On_Off)

說明:

此功能是用來開啟或關閉測試影像輸出功能.

參數(Parameters):

CamID	此攝影機之識別碼將會被初始化. 假如 IMS_ScanCamera() 回傳有 3 台有效
	的攝影機,那麼有效的攝影機識別碼(ID)即為 0,1 及 2
On_Off	true: 開啟測試影像輸出, false: 關閉測試影像輸出

回傳值(Return):

RETURN_SUCCESSFUL	表示成功
RETURN_UNAVAILABLE	表示目前的 CamID 是無效的或者此功能在
	目前攝影機狀態下是不能使用的.
RETURN_CHECK_LASTERROR	發生某些錯誤, 請呼叫 <i>IMS_GetLastError()</i>
	以取得錯誤代碼(error code)

攝影機狀態	<u> </u>
CAM_State_0_NOT_SCANNED	攝影機未被掃描到
CAM_State_1_NOT_INIT	攝影機已掃描到但尚未初始化
CAM_State_2_INIT_NOT_ACQUIRING	攝影機已初始化但並未在取像中
CAM_State_3_ACQUIRING_IMAGE	攝影機正在取像中

6. 機構尺寸

6.1Sparrow 攝影機

7. 附錄

7.1安規認證

FC

For customers in the U.S.A.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense. You are cautioned that any changes or modifications not expressly approved in this manual could void your authority to operate this equipment. The shielded interface cable recommended in this manual must be used with this equipment in order to comply with the limits for a computing device pursuant to Subpart J of Part 15 of FCC Rules.

For customers in Canada

This apparatus complies with the Class A limits for radio noise emissions set out in the Radio Interference Regulations.

Pour utilisateurs au Canada

Cet appareil est conforme aux normes classe A pour bruits radioélectriques, spécifiées dans le Règlement sur le brouillage radioélectrique.

Life support applications

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Allied customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Allied for any damages resulting from such improper use or sale.

CE

The equipment was passed the test performed according to:

European Standard EN 55022:1998/A1:2000/A2:2003 Class A, EN 61000-3-2:2000, EN 61000-3-3:1995/A1:2001, EN 55024:1998/A1:2001/A2:2003(IEC 61000-4-2:1995/A2:2000, IEC 61000-4-3:2002, IEC 61000-4-4:1995/A2:2001, IEC 61000-4-5:1995/A1:2000, IEC 61000-4-6:1996/A1:2000, IEC 61000-4-8:1993/A1:2000, IEC 61000-4-11:1994/A1:2000)

7.2專有名詞

AOI (Area of Interest)指的就是使用 者可以用矩形定義某些區域要求感 光元件只針對該區域去曝光處理影 像.就影像處理的領域而言,AOI 也 代表特別指定的區域,用於檢查或 量測應用可以節省系統影像處理時 間,另外也有 ROI(Region of Interest)這種說法,2者的意思是相 同的.

何謂位元深度 (Bit Depth)?

Bit Depths 位元深度是指一個單一像素可以 有多少種的顏色變化(色彩深度)。舉例而言: 1-bit 的圖像就只能顯示黑白兩色;而 8-bit (相當於2的8次方)則可以顯示256的顏 色變化(灰階或彩色);而 10-bit 的話即可顯 示1024種顏色的變化。

CMOS 是 互 補 性 氧 化 金 屬 半 導 體 (Complementary Metal-Oxide Semiconductor)的縮寫, CMOS 的材質主要是 利用矽和鍺這兩種元素所做成的半導體,使其在 CMOS 上共 存著帶 N (帶負電) 和 P (帶正電)級的半導體,這兩個互 補效應所產生的電流即可被處理晶片紀錄和解讀成影像。 CMOS 對抗 CCD的優勢在於成本低,耗電需求少,便於製造, 可以與影像處理電路同處於一個晶片上。

何謂 IEEE 1394/Firewire?

所謂的 IEEE 1394 的標準是 1986 年由蘋果電腦公司針對高速資料傳輸所開發的一種

傳輸介面當時蘋果將它的名稱定為火線(Firewire), 在 1995 年美國電機電子工程師協會(IEEE, Institute of Electrical and Electronic Engineers)將 它定義為 IEEE1394, Sony 所主導的消費性電子產

6-pin with power

品則將它稱為 iLINK. 目前市面上的 IEEE 1394 有 IEEE 1394/Firewire iLink 分 2 種規格, 一種叫 1394a 的資料傳輸速度可以到 400Mbps, 另一種則叫 1394b 資料 傳輸速度可以到 800Mbps.

何謂增益(Gain)?

Gain 常解釋為影像訊號增益, 講白一點就是影像訊號的振幅區間, 就肉眼所看到的直接影響就是影像的對比 (銳利度)會變得比較強或比較弱, 調高 Gain 值等於是 放大影像訊號但同時也會一起放大雜訊的訊號.

何謂畫素尺寸(Pixel Size)?

大部份的 CCD 或 CMOS 影像都是由畫素所構成 的.所謂的畫素(Pixel)指的是感光元件的陣列裡 的其中一個單位,而依據製造廠商及規格的不同, 典型的畫素尺寸(Pixel Size)的大小有 8~20 微米 左右,由於感光元件尺寸的關係,畫素的結構尺 寸同時也會影響解析度,通常解析度越高畫素就 越小.

何謂漸進式掃描 (Progressive-scan)?

此種影像輸出模式是基於漸進 式/非交錯式 CCD 感光元件的工 作特性,其原理是將感光影像之 水平掃描線資料依序送出,影像 訊號則是連續資料一次輸出並 非像交錯式的分 2 個圖場送出. 此種模式常應用於 DVD 錄影或

高解析度影像輸出同時也十分適合用於高速影像之應用.

何謂感光元件尺寸(Sensor Size)?

所謂的感光元件尺寸 (Sensor Size) 指的是 CCD/CMOS 感光元件上面可感應光線傳輸轉換 成電子訊號的區域尺寸. 典型尺寸由 1/4"~1"都有 一般以量測對角線尺寸為依據.

7.3改版記錄

Revision Date	Change Description

8. 保固聲明

泓格科技提供 Sparrow IMS-30/IMS-130 IEEE 1394 攝影機系列產品保固期一年. 然 而當發生下列的狀況下, 泓格科技將不需負任何保固責任.

- 當使用者打開攝影機的機殼時,保固將立即失效.
- 發生火災, 地震或其它不可抗拒之天災因素或第三者所造成的損害或遺失, 或使用者 蓄意或不當的操作所致.
- 與其它設備作不當的錯誤連接所導致的損害
- 當使用者未依照本產品之使用說明書操作所造成的損害
- 當系統設備故障或無法動作時所造成的間接損失(暫停商業行為所造成的預期利息 損失) 泓格科技將免除上述情形的間接責任.

9. 泓格科技全球據點

總公司

泓格科技股份有限公司 303 新竹縣湖口鄉新竹工業區光復北路 111 號 TEL: +886-3-597-3366

FAX: +886-3-597-3733

service@icpdas.com

台灣地區

板橋辦事處

220 台北縣板橋市民生路一段 33 號 16 樓之 1 TEL: +886-2-2950-0655 FAX:+886-2-2950-0807 <u>banciao@icpdas.com</u>

新店辦事處

231 台北縣新店市寶橋路 235 巷 137 號 7 樓之 2 TEL:(02)8919-2216 FAX:(02)8919-2221 <u>hsintien@icpdas.com</u>

台中辦事處

407 台中市西屯區台中港路三段 123 號 9 樓之 6 TEL: (04)2358-2815 FAX: (04)2358-9114 taichung@icpdas.com

高雄辦事處

801 高雄市前金區中山二路 505 號 3 樓 TEL:(07)215-7688 FAX:(07)216-2602 <u>kaoshiung@icpdas.com</u>

美國分公司

ICP DAS USA, Inc. 2531 West 237th Street, Suite 121 Torrance, CA 90505, USA TEL: 1-310-517-9888

FAX: 1-310-517-0998

Sales@icpdas-usa.com

歐洲分公司

ICPDAS-EUROPE GmbH

Humboldtstrasse 36 70771 Leinfelden-Echterdingen Germany

TEL: 0049-711-9 97 37 75

FAX: 0049-711-9 97 37 84

info@icpdas-europe.com

中國大陸地區

北京辦事處 北京市海淀区上地六街17号康得大厦五层6512 室 TEL:86-10-6298-0924 FAX:86-10-6296-2890 <u>beijing@icpdas.com.cn</u>

上海辨事處

上海市镇宁路 200 号欣安大厦西峰 6B 室 TEL: 86-21-6247-1722 FAX: 86-21-6247-1725 shanghai@icpdas.com.cn

武漢辨事處

武汉市汉口江汉区新华路 186 号 福星城市花园 小区 星海阁 1004 室 TEL: 86-27-8548-3302

昆明辨事處

TEL: 86-13113689519 86-87-1294-5396