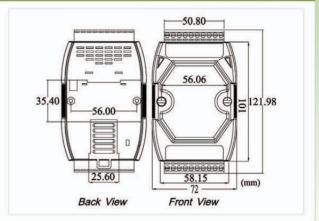
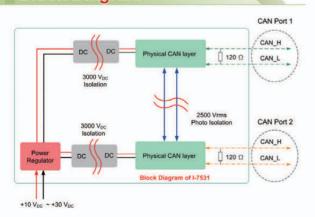


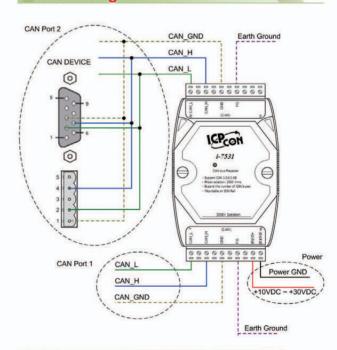
CAN bus Converter

Two-channel CAN Bus Isolated Repeater




Dimensions

The I-7531 is a CAN repeater used to establish a physical coupling of two or more segments of a CAN bus system. Users can implement tree or star topologies as well as the long drop lines with the I-7531. Users can also increase the maximum number of bus nodes by using the I-7531. The I-7531 is an optically isolated CAN repeater which provides 2500Vrms of optical isolation. This feature helps you to separate and protect critical segments of the system from the rest of the CAN network. And its galvanic protection isolates among two both CAN segments and the power supply.


Features

- Compatible with CAN specification 2.0A and
- Fully compatible with the ISO 11898-2 stan-
- Maximum communication baud: 800 kbps
- 2500 Vrms photo-couple isolation on the CAN
- 3 kV galvanic isolation among the power supply and 2 CAN ports
- Jumper for 120 Ω terminator resistor of the CAN bus
- Two CAN channels
- Detect baud rate automatically
- up to 100 nodes on each CAN port
- Removable terminal block
- Mount easily on DIN-rail

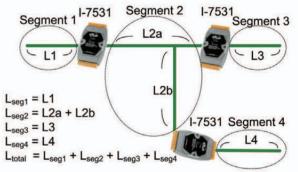
Block Diagram

Pin Assignments

CAN Bus Speed & Distance

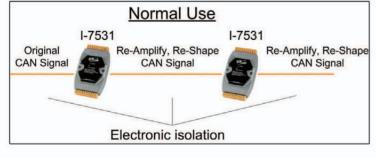
Baud Rate [bit/sec]	Ideal Bus Length without I-7531 [m]	
800 k	50	
500 k	100	
250 k	250	
125 k	500	
50 k	1000	
20 k 2500		
10 k	5000	

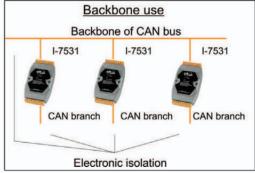
Hardware Specifications


CAN Interface		
Transceiver	NXP 82C250	
Channel number	2	
Connector	3-pin screwed terminal block (CAN_GND, CAN_L, CAN_H)	
Baud Rate (bps)	5 k ~ 800 k	
Isolation	3000 V _{DC} for DC-to-DC, 2500 Vrms for photo-couple	
Terminator Resistor	Jumper for 120 Ω terminator resistor	
Specification	ISO-11898-2, CAN 2.0A and CAN 2.0B	
Power		
Power supply	Unregulated +10 ~ +30 V _{DC}	
Protection	Power reverse polarity protection, Over-voltage brown-out protection	
Power Consumption	2 W	
Mechanism		
Installation	DIN-Rail	
Dimensions	72mm x 118mm x 33mm (W x L x H)	
Environment		
Operating Temp.	-25 ~ 75 °C	
Storage Temp.	-30 ~ 80 °C	
Humidity	10 ~ 90% RH, non-condensing	

Baud Rate & Bus Length

Applying the I-7531 into a CAN network, the ideal total bus length will reduce because of the signal propagation delay.


Users can use the following table to know the maximum node number in each segment and the maximum segment length when using different type of wire.


Wire Cross- Section [mm2]	The maximum segment length [m] under the case of specific node number in this segmen		
	32 Nodes	64 Nodes	100 Nodes
~0.25 (AWG23)	<200 m	<170 m	<150 m
~0.5 (AWG20)	<360 m	<310 m	<270 m
~0.8 (AWG18)	<550 m	<470 m	<410 m
~1.3 (AWG16)	<900 m	<780 m	<670 m

The definition of segment and the relationship between segment length (Lseg1, Lseg2 ...) and ideal total bus length (Ltotal) are shown in the figure.

Applications

Ordering Information

I-7531-G	Two-channel CAN Bus Isolated Repeater
I-7531-G CR	Two-channel CAN Bus Isolated Repeater (RoHS)