

I-7565-DNM

USB / DeviceNet Master Converter

User’s Manual

Warranty
All products manufactured by ICP DAS are warranted

against defective materials for a period of one year from the
date of delivery to the original purchaser.

Warning

ICP DAS assumes no liability for damages consequent
to the use of this product. ICP DAS reserves the right to
change this manual at any time without notice. The
information furnished by ICP DAS is believed to be accurate
and reliable. However, no responsibility is assumed by ICP
DAS for its use, or for any infringements of patents or other
rights of third parties resulting from its use.

Copyright

Copyright 2009 by ICP DAS Co., LTD. All rights
reserved worldwide.

Trademark

The names used for identification only may be
registered trademarks of their respective companies.

Revision

Version Firmware
Version

Date Author Description

1.9 1.9
2023/
12/19

Terry
Update the installation steps

1.8 1.9
2021/
10/04

Johney
Add new function
1. I7565DNM_DisableKeepAliveMsg

1.7 1.6
2016/
06/23

Johney

*Update I7565DNM_TotalI7565DNMModule
*Add new functions
1. I7565DNM_PauseIOConnection
2. I7565DNM_ResumeIOConnection

1.6 1.5
2015/
09/15

Johney
1. Add C++ demo code

1.5 1.5
2013/
10/01

Johney
1. Update the CAN pin description and CAN
bus wire connection.

1.4 1.5
2013/
06/04

Johney

Add new function
1. I7565DNM_GetAttributeW
2. I7565DNM_SetAttributeW
3. I7565DNM_SendExplicitMSG_W

1.3 1.3
2013/
04/19

Johney
1.Update the supported OS.

1.2 1.2
2009
07/14

Johney
Add new function
1. I7565DNM_ReadbackOutputData

1.1 1.1
2009
06/20

Johney

Add new function
1. I7565DNM_SendExplicitMSG
2. I7565DNM_IsExplicitMSGRespOK
3. I7565DNM_GetExplicitMSGRespValue

1.0 1.0
2008
12/15

Johney

This manual is for the I-7565-DNM module.

Contents

REVISION .. 2

1.1 DEVICENET INTRODUCTION ... 6

1.2 DEVICENET APPLICATIONS ... 8

1.3 I-7565-DNM WITH VENDOR’S DEVICENET SLAVES ... 9

1.4 I-7565-DNM ARCHITECTURE... 10

1.5 DEVICENET MASTER CHARACTERISTICS .. 11

1.6 I-7565-DNM FIRMWARE CHARACTERISTICS ... 14

1.7 HARDWARE & FIRMWARE FEATURES ... 16

1.8 BLOCK DIAGRAM .. 18

1.9 PRODUCT CHECK LIST ... 19

2.1 BOARD LAYOUT .. 20

2.2 JUMPER SELECTION.. 21

2.3 CONNECTOR PIN ASSIGNMENT .. 22

2.4 WIRE CONNECTION ... 23

2.5 INDICATOR LED ... 25

2.5.1 NS LED (Red) ... 25

2.5.2 RUN LED (Green) .. 26

2.5.3 MS LED (Yellow) .. 26

2.6 UPDATE FIRMWARE AND INIT/NORMAL SWITCH ... 27

DRIVER INSTALLATION AND SOFTWARE APPLICATION 28

3.1 DRIVER INSTALLATION OF THE I-7565-DNM .. 29

3.2 FLOW DIAGRAM FOR SEARCHING DEVICES .. 33

3.3 FLOW DIAGRAM FOR SLAVE CONFIGURATION ... 34

3.4 FLOW DIAGRAM FOR ON-LINE ADDING/REMOVING DEVICE....................................... 35

3.5 FLOW DIAGRAM FOR “SETATTRIBUTEW” AND “GETATTRIBUTEW” 37

3.6 FLOW DIAGRAM FOR “SENEEXPLICITMSG_W” ... 38

3.7 FLOW DIAGRAM FOR I/O CONNECTION ... 39

3.8 FLOW DIAGRAM FOR PAUSE AND RESUME I/O CONNECTION 40

FUNCTION DESCRIPTION ... 41

4.1 DLL FUNCTION DEFINITION AND DESCRIPTION .. 42

4.2 FUNCTION RETURN CODE .. 46

4.3 FUNCTION DESCRIPTION .. 49

4.3.1 I7565DNM_TotalI7565DNMModule .. 49

4.3.2 I7565DNM_ActiveModule ... 50

4.3.3 I7565DNM_CloseModule .. 51

4.3.4 I7565DNM_GetDLLVersion ... 52

4.3.5 I7565DNM_GetFirmwareVersion .. 53

4.3.6 I7565DNM_ResetFirmware ... 54

4.3.7 I7565DNM_GetMasterMACID ... 55

4.3.8 I7565DNM_SetMasterMACID .. 56

4.3.9 I7565DNM_GetBaudRate .. 57

4.3.10 I7565DNM_SetBaudRate ... 58

4.3.11 I7565DNM_GetMasterStatus ... 59

4.3.12 I7565DNM_GetSlaveStatus ... 60

4.3.13 I7565DNM_StartDevice ... 61

4.3.14 I7565DNM_StopDevice ... 62

4.3.15 I7565DNM_StartAllDevice .. 63

4.3.16 I7565DNM_StopAllDevice .. 64

4.3.17 I7565DNM_AddDevice ... 65

4.3.18 I7565DNM_RemoveDevice ... 66

4.3.19 I7565DNM_AddIOConnection .. 67

4.3.20 I7565DNM_RemoveIOConnection .. 69

4.3.21 I7565DNM_GetAttribute ... 70

4.3.22 I7565DNM_GetAttributeW .. 71

4.3.23 I7565DNM_IsGetAttributeOK ... 74

4.3.24 I7565DNM_GetAttributeValue .. 76

4.3.25 I7565DNM_SetAttribute .. 78

4.3.26 I7565DNM_SetAttributeW .. 79

4.3.27 I7565DNM_IsSetAttributeOK ... 81

4.3.28 I7565DNM_ClearAllConfig ... 83

4.3.29 I7565DNM_SearchAllDevices ... 84

4.3.30 I7565DNM_SearchSpecificDevice .. 85

4.3.31 I7565DNM_IsSearchOK .. 86

4.3.32 I7565DNM_GetSearchedDevices .. 87

4.3.33 I7565DNM_GetDeviceInfoFromScanList ... 88

4.3.34 I7565DNM_GetScanList .. 89

4.3.35 I7565DNM_ImportEEPROM... 90

4.3.36 I7565DNM_ReadInputData ... 91

4.3.37 I7565DNM_WriteOutputData .. 93

4.3.38 I7565DNM_SendExplicitMSG .. 95

4.3.39 I7565DNM_SendExplicitMSG_W... 96

4.3.40 I7565DNM_IsExplicitMSGRespOK .. 97

4.3.41 I7565DNM_GetExplicitMSGRespValue ... 98

4.3.42 I7565DNM_ReadbackOutputData ... 99

4.3.43 I7565DNM_PauseIOConnection .. 100

4.3.44 I7565DNM_ResumeIOConnection .. 101

4.3.45 I7565DNM_DisableKeepAliveMsg (Advanced Option) 102

DEMO PROGRAMS FOR WINDOWS ... 103

5.1 A BRIEF INTRODUCTION TO THE DEMO PROGRAMS ... 103

5.2 WIRE CONNECTION OF THE CAN BUS ... 104

5.3 VC_DEMO1 INTRODUCTION .. 105

5.4 VC_DEMO2 INTRODUCTION .. 108

5.5 BCB_DEMO1 INTRODUCTION .. 110

5.6 BCB_DEMO2 INTRODUCTION .. 112

LABVIEW DRIVER INTRODUCTION ... 114

1.1 SOFTWARE INSTALLATION ... 114

1.2 FUNCTION DESCRIPTION... 116

1.3 LABVIEW DEMO INTRODUCTION ... 120

General Information

1.1 DeviceNet Introduction

The CAN (Controller Area Network) is a serial communication protocol,

which efficiently supports distributed real-time control with a very high level of

security. It is an especially suited for networking "intelligent" devices as well as

sensors and actuators within a system or sub-system. In CAN networks, there

is no addressing of subscribers or stations in the conventional sense, but

instead, prioritized messages are transmitted. DeviceNet is one kind of the

network protocols based on the CAN bus and mainly used for machine control

network, such as textile machinery, printing machines, injection molding

machinery, or packaging machines, etc. DeviceNet is a low level network that

provides connections between simple industrial devices (sensors, actuators)

and higher-level devices (controllers), as shown in Figure 1.1.

Figure 1.1 Example of the DeviceNet network

 DeviceNet is a cost effective solution to one kind application of control

c\area network. It reduces the connection wires between devices and provides

rapid troubleshooting function. The transfer rate can be up to 500Kbps within

100 meters. The transfer distance can be up to 500 meters in 125Kbps (See

Table 1.1). It allows direct peer to peer data exchange between nodes in an

organized and, if necessary, deterministic manner. Master/Slave connection

model can be supported in the same network. Therefore, DeviceNet is able to

facilitate all application communications based on a redefine a connection

scheme. However, DeviceNet connection object strands as the communication

path between multiple endpoints, which are application objects that is needed

to share data.

Baud rate (bit/s) Max. Bus length (m)

500 K 100

250 K 250

125 K 500

Table 1.1 The Baud rate and the Bus length

I-7565-DNM can represent an economic solution of DeviceNet application

and be a DeviceNet master device on the DeviceNet network. I-7565-DNM

supports Group 2 only Server and UCMM functions to communication with

slave devices. It has an independent CAN bus communication port with the

ability to cover a wide range of DeviceNet applications. Besides, I-7565-DNM

uses the new CAN controller Phillips SJA1000T and transceiver 82C250,

which provide bus arbitration, error detection with auto correction and re-

transmission function. It can be installed on almost any windows-based system,

for example WinXP/Win7/Win10/Linux. It is popularly applied in the industrial

automation, building automation, vehicle, marine, and embedded control

network. Therefore, that is an easy way to develop the DeviceNet network with

I-7565-DNM.

1.2 DeviceNet Applications

DeviceNet is the standardized network application layer optimized for

factory automation. It is mainly used in low- and mid-volume automation

systems. Some users have also implemented DeviceNet for machine control

systems. The main DeviceNet application fields include the following

application area (For more information, please refer to www.odva.org):

● Production cell builds and tests CPUs ● Dinnerware production

● Beer brewery ● HVAC module production

● Equipment for food packing ● Textile machines

● Fiberglass twist machine ● Trawler automation system

● Sponge production plant ● LCD manufacturing plant

● Isolation wall manufacturing ● Rolling steel door production

● Overhead storage bin production ● Bottling line

● Pocket-bread bakery ● Tight manufacturing

http://www.odva.org/

1.3 I-7565-DNM with Vendor’s DeviceNet Slaves

 We have communicated with the following DeviceNet slaves.

● Allen-Bradley PowerFlex series DeviceNet Inverters.

● BECKHOFF CX1500-B520 series DeviceNet I/O modules.

● BECKHOFF BK5250 series DeviceNet I/O modules.

● MKS 683 series DeviceNet exhaust throttles.

● MKS MFC (Mass Flow Controller) series DeviceNet devices.

● MKS DELTA-II FRC (Flow Ratio Controller) series DeviceNet devices.

● MKS DC Power Generator (OPT- xxx) series DeviceNet devices.

● OMRON DRT1-ID/ODxx series DeviceNet I/O modules.

● OMRON DRT2-MDxx series DeviceNet I/O modules.

● COSMOS PS-7 series DeviceNet gas detectors.

● CELERITY UNIT IFC-125 series DeviceNet devices.

● Allen-Bradley PowerFlex AC Drives / DC Drivers

● Allen-Bradley PowerFlex AC Drives with DriveLogix

● OMRON DRT2-ID08(-1)/MD16(-1)/OD08(-1)

● OMRON DRT2-ID16(-1)/OD16(-1)

● OMRON GRT1-DRT

● OMRON C200HW-DRT21

● Swagelok MS-VCM-D-6-0, MS-VCM-D-6-2 Digital DeviceNet Valve

● Swagelok SS-PTX-D-G500-S4-K Digital DeviceNet Pressure-Temperature Transducer

● Swagelok SS-PTX-D-G500-SM-K Digital DeviceNet Pressure-Temperature Transducer

● Weidmueller SAI-AU M12 DN 16DI/8DO/AI/AO

● Weidmueller SAI-AU M12 DN GW

● ADVANCED ENERGY Apex RF generators and power-delivery

● SMC ITV series Electro-Pneumatic Regulator

● SMC Directional Control Valves

● SICK DME500 series Distance Sensor

● MTS Temposonics R-Series Position Sensors

● PFEIFFER VACUUM HiPace series turbo pumps

1.4 I-7565-DNM Architecture

The I-7565-DNM provides users to establish DeviceNet network rapidly by

Master/Slave connection model. The I-7565-DNM is a high-performance

DeviceNet master board with one CPU inside. This architecture of the I-7565-

DNM almost doesn’t cost CPU resource and really increases the work

efficiency on DeviceNet network. Applying the I-7565-DNM, users don’t need

to take care of the detail of the DeviceNet protocol. The inside firmware

implements the DeviceNet protocol to help users to establish the connection

with DeviceNet slave devices easily. The illustration about the idea is shown as

Figure 1.2.

Figure 1.2 I-7565-DNM architecture.

1.5 DeviceNet Master Characteristics

 Using the API functions, users don’t need to take care of the detail of the

DeviceNet protocol. It can reduce the complexity of user’s DeviceNet Master

Software. The firmware mainly supports the Predefined Master-Slave

Connection Set and UCMM functions to allow users to merge third party’s

DeviceNet devices into the DeviceNet network. It can help users to establish

the connection with DeviceNet slave devices easily. The general application

architecture is demonstrated as Figure 1.3.

Figure 1.3 Application architecture

The DeviceNet protocol firmware provides the DeviceNet Master

mechanism to communicate with slave devices by the Predefined Master/Slave

Connection Set and UCMM Connection Set. In the DeviceNet communication

protocol can be clarify as two forms: One is the Explicit Message and others

are I/O Messages. Here, we only provide one explicit message connection and

four I/O connections as depicted in Figure 1.4.

Figure 1.4 DeviceNet Messaging

The DeviceNet Communication Protocol is based on the concept of

connections method. Master should create connections with slave devices

based on the command of exchanging information and I/O data. To establish

the master control mechanism, there are only four main steps to be followed.

Figure 1.5 demonstrates the basic process for the DeviceNet master

communication. The every step function is described in below:

Figure 1.5 Four steps to establish connection

1. Add device into firmware

You should provide the slave device’s MAC ID to add into firmware by

using API function.

2. Configure connection

You can check the slave device’s I/O connection type and the I/O data

length. When configuring the I/O connection, you should provide these

parameters.

3. Start Device

After configuring connections, users should start device by using API

function. The master will communicate with the slave device.

4. Access I/O data

After communicating with slave devices, you can access the I/O data with

corresponding read/write function.

After adding the device into the firmware, the master will wait for the I/O

configuration information. Then users can create the I/O connections in the

next step. Once I/O connections have been created and started, I/O data may

be exchanged among devices in the DeviceNet network according to master

device demand. Therefore, the master device can access I/O data of the slave

devices by one of the four I/O connection methods. The API functions are not

only easy to use but also providing a lot of the DeviceNet Master functions to

retrieve and deliver the slave’s I/O data. For more information, please refer to

functions description and demo programs in section 4.

1.6 I-7565-DNM Firmware Characteristics

The I-7565-DNM is a high-performance DeviceNet master module. The

firmware inside the board implements DeviceNet protocol automatically when

the module is active. The firmware always listens to the bus and receives the

message at the same time. It works as shown in Figure 1.6.

Figure 1.6 Message Router

The I-7565-DNM firmware has a “ScanList” to store the remote slave

devices information. After power off, the information still exists in the EEPROM.

When the users turn on the PC next time, the “ScanList” will be loaded from

EEPROM. The users can easily use the DLL functions to configure it, including

adding devices or removing devices. It works as shown in Figure 1.7. There is

more information about the library functions in chapter 4.

Figure 1.7 ScanList data structure

1.7 Hardware & Firmware Features

Hardware Features

 USB interface connector: USB Type B.

 CAN controller: Philip SJA1000T.

 CAN transceiver: Philip 82C250.

 Signal support: CAN_H, CAN_L.

 Power requirements: USB(5V@200mA).

 Power consumption : 1W.

 CAN interface connector: 9-pin D-Sub male.

 80186-80 MHz CPU

 512K bytes SRAM.

 16K bytes EEPROM.

 Built-in watchdog timer.

 It is powered by USB bus.

 4 indicating LED (RUN, NS, MS and Power).

 Baud rate of USB is 921.6 Kbps.

 Jumper select 120Ω terminator resistor for CAN port.

 2500Vrms photo-isolation protection on CAN bus.

 3000Vrms galvanic DC/DC isolation on CAN side.

 Driver supported for WinXP/Win 7 /Win 10.

 Linux driver supported.

 Environmental:

Operating temp: -25 ~ +75℃

Storage temp: -30 ~ +80℃

Humidity: 5% ~ 95% non-condensing
Dimensions: 108mm x 72mm x 33mm (H x W x D)

DeviceNet Firmware Features

 Programmable Master MAC ID.

 Programmable transfer-rate 125K, 250K, 500K.

 Each port support maximum nodes up to 64

 Support Group 2 Only Server functions

 Support UCMM functions

 Predefined Master-Slave Connection Set

 The maximum Fragment number is (Input/Output) up to 64

 Support I/O Operation Mode: Poll, Bit-Strobe and Change Of

State/Cyclic

 Support Auto-Scan slave device function.

 Support on-line adding and removing devices.

 Support Auto-Reconnect when the connection is broken.

1.8 Block Diagram

The figure 1.8 shows the block diagram of the I-7565-DNM board.

1. USB Driver :

The USB port provides the communication channel between PC and I-

7565-DNM.

2. EEPROM :

The EEPROM stores the configuration information. After restarting the

PC, the configuration data will be loaded form the EEPROM automatically.

3. Control CPU :

The CPU inside implementing the DeviceNet firmware.

4. CAN Controller :

The CAN controller is used for sending and receiving the CAN messages.

There is photo isolation between CAN controller and CAN bus.

Figure 1.8 Block diagram of the I-7565-DNM

1.9 Product Check List

In addition to this manual, the package includes the following items:

 I-7565-DNM module;

 Software CD ROM;

 Quick Start manual;

It is recommended that users should read the quick start manual first.

There shows how to get start quickly. All of the important information

needed will be provided in this manual and website as follows:

 Where you can find the software driver, utility and demo programs.

 How to install software & utility.

 Where is the diagnostic program?

 FAQ’s and answers.

Attention !

If any of these items are missing or damaged, please contact your local

field agent. Keep aside the shipping materials and carton in case you want to

ship or store the product in the future.

Hardware Configuration

This section will describe the hardware settings of the I-7565-DNM. This

information includes the wire connection and terminal resistance configuration

for the CAN network.

2.1 Board Layout

Figure2.1 I-7565-DNM Board LAYOUT

2.2 Jumper Selection

The following table shows the definition of jumpers. Users need to refer to

this table to configure the I-7565-DNM hardware.

Jumper Description Status

JP1 No use. None

JP2
No use.

(Don’t change the default setting.)

JP3
No use.

(Don’t change the default setting.)

JP4 CAN Port 120Ω terminal resistance.

 Table 2.1 Jumper selections

Enable

Disable

2.3 Connector Pin Assignment

The I-7565-DNM is equipped with one 9-pin D-sub male connector for

wire connection of the CAN bus. The connector’s pin assignment is specified

as follows:

The 9-pin D-sub male connector of the CAN bus interface is shown in

Figure 2.5 and the corresponding pin assignments are given in Table 2.2.

Figure2.5 9-pin D-sub male connector

Pin No. Signal Description

1 N/A No use

2 CAN_L CAN_L bus line (dominant low)

3 CAN_GND CAN Ground

4 N/A No use

5 N/A No use

6 CAN_GND CAN Ground

7 CAN_H CAN_H bus line (dominant high)

8 N/A No use

9 N/A No use

Table 2.2 Pin assignment of the 9-pin D-sub male connector

2.4 Wire connection

In order to minimize the reflection effects on the CAN bus line, the CAN

bus line has to be terminated at both ends by two terminal resistances as in the

following figure. According to the ISO 11898-2 spec, each terminal resistance

is 120Ω (or between 108Ω~132Ω). The length related resistance should have

70 mΩ/m. Users should check the resistances of the CAN bus, before they

install a new CAN network.

Figure 2.4 CAN bus network topology

Figure 2.5 CAN bus wire connection without DC power

Figure 2.6 CAN bus wire connection with 24VDC power

12
0Ω

120Ω

CAN_H

CAN_L

Device NDevice 2Device 1 . . .

Moreover, to minimize the voltage drop over long distances, the terminal

resistance should be higher than the value defined in the ISO 11898-2. The

following table can be used as a good reference.

Bus Length

(meter)

Bus Cable Parameters
Terminal

Resistance

(Ω)

Length Related

Resistance

(mΩ/m)

Cross Section

(Type)

0~40 70 0.25(23AWG)~

0.34mm2(22AWG)

124 (0.1%)

40~300 < 60 0.34(22AWG)~

0.6mm2(20AWG)

127 (0.1%)

300~600 < 40 0.5~0.6mm2

(20AWG)

150~300

600~1K < 20 0.75~0.8mm2

(18AWG)

150~300

Table 2.4 Relationship between cable characteristics and terminal resistance

2.5 Indicator LED

2.5.1 NS LED (Red)

The [NS] LED means Network Status. It indicates that there are errors on

the bus or there is any slave device's MAC ID collides with the I-7565-DNM's

MAC ID. There are two situations in [NS] LED.

 (1). LED off:

This indicates that there is no error on the bus and about the MAC ID.

 (2). LED twinkle (Red) :

This indicates that there are errors on the bus which maybe the

situations as shown below:

 (a) The CAN connector doesn't connect to the slave devices.

 (b) The power of the slave devices is off.

 (c) The MAC ID collision between master and slave devices is occurring.

2.5.2 RUN LED (Green)

The [RUN] LED indicates the I-7565-DNM's firmware status. There are

three situations in [RUN] LED.

 (1). LED off :

This indicates that there are some errors on the bus or in the I-7565-

DNM module. The DeviceNet firmware is not running.

 (2). LED twinkle (Green) :

This indicates that the CAN bus works fine. But there is no any slave

devices configuration in the I-7565-DNM's EEPROM. The DeviceNet

firmware is waiting for configuration.

 (3). LED solid on (Green) :

This indicates that the DeviceNet firmware is running. The I-7565-DNM

module is communicating with the slave devices.

2.5.3 MS LED (Yellow)

The [MS] LED means Module Status. It indicates any slave devices which

is disconnecting with the I-7565-DNM module. There are two situations in [MS]

LED.

 (1). LED off :

This shows that all of the slave devices are communicating with the I-

7565-DNM normally.

 (2). LED twinkle (Yellow) :

This shows that at least one slave device occurs communication errors.

Maybe the configuration errors or slave devices errors happened.

2.6 Update firmware and Init/Normal Switch

When the users want to download the new firmware into the I-7565-DNM,

the users need to follow the steps as described below.

Step 1: Close all programs which are communicating with the I-7565-DNM.

Step 2: Unplug the USB wire of the I-7565-DNM from the USB port.

Step 3: The Init/Normal switch locates on the reverse side of the I-7565-DNM.

 Switch it to the “Init” mode as shown below.

Step 4: Plug the USB wire of the I-7565-DNM into the USB port.

Step 5: The users would see those three indicators LED turn on one by one.

Step 6: Open the DNM_Utility software located at C:\ICPDAS\DNM_Utility

 If you do not find DNM_Utility in your PC, please install it at the path.

 1. Fieldbus CD : \DeviceNet\Master\DNM_Utility\

 2. Website :

https://www.icpdas.com/en/download/index.php?model=I-7565-DNM-G

Step 7: Follow the process of updating firmware described in the manual of the

DNM_Utility.

https://www.icpdas.com/en/download/index.php?model=I-7565-DNM-G

Driver Installation and Software Application

The DeviceNet DLL driver (I7565DNM.dll) collection of function calls for

the I-7565-DNM module used in Windows systems. The application structure is

presented in the following figure. The user’s DeviceNet application programs

can be developed by the following designated tools: VB, Delphi and Borland

C++ Builder…etc. In these tools, the application program can call the

I7565DNM.DLL driver to implement DeviceNet network application. And then

the DeviceNet DLL driver will throughout the [UART.DLL] into the

[SER2PL.SYS] to access the hardware system, as shown in the following

Figure.

Figure 3.1 Software architecture in the Windows system

In the following sub-section, we show some flow diagrams to describe how

to apply the DeviceNet protocol (I7565DNM.DLL) to build a master device.

Section 3.2 ~ 3.10 show the flow diagram for users to understand easily. Note

that users need to follow the operation principle of the DeviceNet protocol

correctly and easily to communicate with the remote nodes by these

connection methods.

3.1 Driver Installation of the I-7565-DNM

The software Installation for DeviceNet application is demonstrated as the

following descriptions. After finishing the procedure, the driver, demos, manual

and Utility can be in your PC. For the advance application, users can refer to

the basic demo programs to develop the customized DeviceNet master

application.

The driver of I-7565-DNM can be used in Windows environments. There

are three installations. Here shows the illustration below.

Step 1: The users can visit the ICPDAS’s website and search the “I-7565-

 DNM”.

Step 2: Click the “Download Center” icon to visit the download page of the I-

7565-DNM.

Step 3: Visit the “Download Center” page of the I-7565-DNM. The users also

can visit the link below.

https://www.icpdas.com/en/download/index.php?model=I-7565-DNM-G

For these Windows operation systems, the recommended installation

procedure is given as follows:

Step 1: Install the USB driver of the I-756x.

https://www.icpdas.com/en/download/index.php?model=I-7565-DNM-G

Step 2: Install the SDK of the I-7565-DNM which including the I7565DNM.dll

and other development files.

Step 3: Install the DNM_Utility for all DeviceNet master products. DeviceNet

Master Utility is a useful tool for users to configure and test the

DeviceNet slave devices. The users can download the manual of

the DNM_Utility to read more information. After installing the

software, the utility is installed in the path below.

Step 4: After installing those three installations, please restart your PC.

Then the installations would copy the related material to the indicated

directory and register the driver on your computer. The driver target directory

is different according to the different systems as follows.

Windows XP – WINDOWS\SYSTEM32\DRIVERS

Windows 7/10 – WINDOWS\SYSWOW64\DRIVERS

The other data and resource is copied to the following directory:

C:\ICPDAS\ I-7565-DNM \

The program files picture is shown as follow.

3.2 Flow Diagram for Searching Devices

Before developing the DeviceNet applications, users should diagnose the

connection between the slave devices. First, the users can search the slave

devices in the network by using the searching functions. If the connection

between the master with other slave devices is fine, the uses can find the

information of the corresponding slave devices. When the users have no idea

to communicate with the slave devices, users can follow these steps shown in

figure 3.2. The following functions can help users to get the DeviceNet

information of the slave devices. The users can find out the problem of the

slave devices by using these functions. The detail information about those

functions is in the next chapter.

Figure 3.2 Searching Diagram

3.3 Flow Diagram for Slave Configuration

After getting the DeviceNet I/O information of the slave devices, users

should save the parameters into the EEPROM within the I-7565-DNM module.

The firmware in the I-7565-DNM module will load the previous configuration

from the EEPROM in the next boot-up. When the devices in the DeviceNet

network are changed, the users must set the configuration data to fit the

application. The configuration diagram is shown in Figure 3.3. There is more

information about those functions in the next chapter.

Figure 3.3 Slave Configuration Diagram

3.4 Flow Diagram for On-line Adding/Removing Device

The I-7565-DNM provides the on-line adding/removing slave device

functions. The users need not to break the communication between original

slaves device when adding or removing the slave devices. The users can

follow the steps to achieve this function. The steps are shown in Figure 3.6 and

Figure 3.7.

1. On-line Adding Devices :

Figure 3.6 On-line Add Device Diagram

2. On-line Removing Devices :

Figure 3.7 On-line Remove Device Diagram

3.5 Flow Diagram for “SetAttributeW” and “GetAttributeW”

The users can set or get DeviceNet device's property via DeviceNet

network. The I-7565-DNM provides these functions to set or get the properties

of the remote devices easily. The steps are shown in Figure 3.8.

Figure 3.8 “SetAttributeW” and “GetAttributeW” Diagram

3.6 Flow Diagram for “SeneExplicitMSG_W”

The users can send [Explicit Message] to the remote DeviceNet devices

to set or get some parameters. The I-7565-DNM provides these functions to

send the command and receive it replied message. The steps are shown in

Figure 3.9.

Figure 3.9 “SendExplicitMSG_W” Diagram

3.7 Flow Diagram for I/O Connection

The users can read or write device's I/O data via the DeviceNet I/O

connections like Poll, Strobe, COS and Cyclic connection. There are four

important steps to read and write the I/O data easily. Firstly, the users should

know the device's I/O input length (in Byte) and output length (in Byte).

Secondly, the users should set these two parameters by calling

I7565DNM_AddIOConnection. Thirdly, the users can set the initial output value

by calling I7565DNM_WriteOutputData before starting the specific slave device.

If the users do not initialize the output value, the firmware default output value

is 0. Fourthly, the users can start communicating with device to read or write

I/O data. If the specific slave device doesn’t have any output channel, the

firmware will start communicating with the device automatically. The Figure

3.10 shows the main steps to achieve this function. There are more functions

described in chapter 4.

Figure 3.10 I/O Connection Diagram

Note: The Strobe connection doesn’t support the output channel. The users can

not use the I7565DNM_WriteOutputData with Strobe connection.

3.8 Flow Diagram for Pause and Resume I/O Connection

When communicating with the remote slave devices and need to pause

the I/O connection a while, the users can use the “PauseIOConnection”

function to pause the I/O connection which has been established. When the I/O

connection has been suspended, the [Explicit Connection] will still exist and the

read/write I/O functions will not change the I/O data of the slave devices. The

user could use “Get/SetAttribute” and “SendExplicitMSG_W” functions to

configure some parameters when the I/O connection has been suspended.

The user could use “ResumeIOConnection” function to re-connect the I/O

connection which has been paused. The Figure 3.11 shows the main steps to

achieve this function.

Figure 3.11 Pause and Resume I/O Connection Diagram

Function description

All the functions of the I-7565-DNM can be separated into five groups. The

idea is shown Figure 4.1. There is more detail description in CH 4.1.

Figure 4.1 Five Function Groups

[Module Functions]

These functions in this group help users to find I-7565-DNM modules or

get module’s information. The users can use these functions to configure or

manage the modules in the PC.

[Firmware Functions]

These functions in this group help users to operate the firmware or get the

status of the firmware inside the I-7565-DNM module.

[Operating Functions]

These operating functions are the important operation of the DeviceNet

master. They help users to configure the whole network.

[Searching Functions]

These searching functions can help user to debug the network, including

the wire connection, the slave device’s setting, and etc. When building the

DeviceNet network, the user can use these functions to make sure that the

network or the slave devices are fine.

[I/O Functions]

These functions help user to read or write the I/O data from or to the

remote slave devices.

4.1 DLL Function Definition and Description

All the functions provided in the I7565DNM.DLL are listed in the following

table and detail information for every function is presented in the next sub-

section. However, in order to make the descriptions more simply and clear,

the attributes for the both the input and output parameter functions are given

as [input] and [output] respectively, as shown in the following table.

Keyword Set parameter by user before

calling this function?

Get the data from this parameter

after calling this function?

[input] Yes No

[output] No Yes

Table 4.1.1 Functions Table (Module Functions) 1/1

No. Function Name Description

1
I7565DNM_TotalI7565DNMMod

ule
Get total I-7565-DNM modules in the PC

2 I7565DNM_ActiveModule Make I-7565-DNM module active

3 I7565DNM_CloseModule Close the I-7565-DNM module

4 I7565DNM_GetDLLVersion Get the DLL version of the I7565DNM.DLL

Table 4.1.2 Functions Table (Firmware Functions) 1/1

No. Function Name Description

1 I7565DNM_GetFirmwareVersion
Get the version of the firmware inside the

I-7565-DNM module

2 I7565DNM_ResetFirmware
Reset the firmware in the I-7565-DNM

module

Table 4.1.3 Functions Table (Operating Functions) 1/2

No. Function Name Description

1 I7565DNM_SetMasterMACID
Set the MAC ID of the I-7565-DNM

module (DeviceNet Master’s MAC ID)

2 I7565DNM_GetMasterMACID
Get the MAC ID of the I-7565-DNM

module (DeviceNet Master’s MAC ID)

3 I7565DNM_GetBaudRate Get the baud rate of the CAN bus

4 I7565DNM_SetBaudRate Set the baud rate of the CAN bus

5 I7565DNM_GetMasterStatus
Get the status of the I-7565-DNM module

(DeviceNet Master’s status) at present

6 I7565DNM_GetSlaveStatus Get the slave device’s status.

7 I7565DNM_StartDevice
I-7565-DNM will start to communicate with

the specific slave device

8 I7565DNM_StopDevice
I-7565-DNM will stop to communicate with

the specific slave device

9 I7565DNM_StartAllDevice
I-7565-DNM will start to communicate with

all slave devices

10 I7565DNM_StopAllDevice
I-7565-DNM will stop to communicate with

all slave devices

11 I7565DNM_AddDevice

Add the specific slave device’s information

into the I-7565-DNM module (DeviceNet

Master)

12 I7565DNM_RemoveDevice

Remove the specific slave device’s

information from the I-7565-DNM module

(DeviceNet Master)

13 I7565DNM_AddIOConnection

Add I/O information of the specific slave

device into the I-7565-DNM module

(DeviceNet Master)

14 I7565DNM_RemoveIOConnection

Remove specific slave device’s I/O

information from the I-7565-DNM module

(DeviceNet Master)

Table 4.1.4 Functions Table (Operating Functions) 2/2

No. Function Name Description

16 I7565DNM_GetAttribute
Send the get attribute command to the

slave device.

17 I7565DNM_GetAttributeW
Send the get attribute command to the

slave device.

18 I7565DNM_IsGetAttributeOK
Check whether the slave has replied for

the getting command or not.

19 I7565DNM_GetAttributeValue
Get the attribute value of the

I7565DNM_GetAttributeW

20 I7565DNM_SetAttribute
Send the set attribute command to the

slave device.

21 I7565DNM_SetAttributeW
Send the set attribute command to the

slave device.

22 I7565DNM_IsSetAttributeOK
Check whether the slave has replied for

the setting command or not.

23
I7565DNM_GetDeviceInfoFromSc

anList

Get specific slave device’s I/O information

form the Scan List within the I-7565-DNM

module.

24 I7565DNM_GetScanList

Get the I/O information of all slave devices

form the Scan List within the I-7565-DNM

module.

25 I7565DNM_ImportEEPROM

Write the I/O information of all slave

devices into the EEPROM within the I-

7565-DNM module.

26 I7565DNM_ClearAllConfig
Clear all configurations in the EEPROM

within the I-7565-DNM module.

27 I7565DNM_SendExplicitMSG Send the explicit request command.

28 I7565DNM_SendExplicitMSG_W Send the explicit request command.

29
I7565DNM_IsExplicitMSGRespO

K

Check whether the I-7565-DNM has

received the response message or not.

30
I7565DNM_GetExplicitMSGResp

Value

Get the attribute value of the specific

device’s instance.

Table 4.1.5 Functions Table (Searching Functions) 1/1

No. Function Name Description

1 I7565DNM_SearchAllDevices

I-7565-DNM will search the DeviceNet

network to find out the I/O information of

all slave devices.

2 I7565DNM_SearchSpecificDevice

I-7565-DNM will search the DeviceNet

network to find out the I/O information of

specific slave devices.

3 I7565DNM_IsSearchOK
Check whether the I-7565-DNM has

searched completely or not.

4 I7565DNM_GetSearchedDevices
Get the result of the searching command

and retrieve the slave’s I/O information.

Table 4.1.6 Functions Table (I/O Functions) 1/1

No. Function Name Description

1 I7565DNM_ReadInputData
Read the input data via I/O connection

like Poll, Strobe, COS, Cyclic.

2 I7565DNM_WriteOutputData

Write the output data via I/O connection

like Poll, COS, Cyclic. The Strobe

doesn’t support this operation.

3 I7565DNM_ReadbackOutputData

Read back the output data via I/O

connection like Poll, COS, Cyclic. The

Strobe doesn’t support this operation.

4 I7565DNM_PauseIOConnection

To disconnect the I/O connection and

keep the explicit connected. The user

could set or get explicit message to

configure the slave devices.

5 I7565DNM_ResumeIOConnection

To re-connect the paused I/O connection

and keep the explicit connected. The

user could read or write IO data of the

slave devices.

4.2 Function Return Code

Table 4.2.1 Interpretation of the return code (General Error) 1/1

Return

Code
Error ID Comment

0 I7565DNM_NoError No error

10008 I7565DNM_PortNotActive The USB port doesn’t be activated.

10015 I7565DNM_PortNoResp The USB port replied nothing.

10025 I7565DNM_PortInUse The USB port is used by another
program.

10027 I7565DNM_ReStartPort The module has been re-plugged.
Please restart your application.

5000 DNMXS_UnKnowError The DeviceNet has some unknown
errors.

1000 DNMXS_BoardNotActive The I-7565-DNM has not been activated.

1001 DNMXS_OnlineError
The master MAC ID collides with other

slave device in the DeviceNet network.

1002 DNMXS_CANBusError

The CAN port can't send message.

Please check the baud rate or the port of

the CAN bus.

1003 DNMXS_Booting The I-7565-DNM is still booting.

1050 DNMXS_MACIDError The MAC ID is exceed the range(0 ~ 63)

1051 DNMXS_BaudRateError The baud rate is exceed the range(0 ~ 2)

1052 DNMXS_ConnectionTypeError
The connection type is exceed the range

(0 ~ 4)

1053 DNMXS_DuplicMasterMACID The MAC ID is the same with the
master’s ID.

1054 DNMXS_EEPROMError The EEPROM is out of order.

1055 DNMXS_NowScanning The I-7565-DNM is searching the slave.

1056 DNMXS_ScanListError The Scan List has some errors.

1057 DNMXS_DeviceExist The information of the slave device
already exists.

1058 DNMXS_DeviceNotExist The information of the slave device
doesn’t exist.

1059 DNMXS_MapTableError The MapTable has some errors.

Table 4.2.2 Interpretation of the return code (I/O Error) 1/1

Return
Code

MapTable Error Comment

1100 DNMXS_ExplicitNotAllocate
The Explicit connection is not

established.

1101 DNMXS_PollNotAllocate
The Poll connection is not

established.

1102 DNMXS_BitStrobeNotAllocate
The Strobe connection is not

established.

1103 DNMXS_COSNotAllocate
The COS connection is not

established.

1104 DNMXS_CyclicNotAllocate
The Cyclic connection is not

established.

1105 DNMXS_PollAlreadyExist
The Poll connection has been

established.

1106 DNMXS_BitStrobeAlreadyExist
The Bit-Strobe connection has been

established.

1107 DNMXS_COSAlreadyExist
The COS connection has been

established.

1108 DNMXS_CyclicAlreadyExist
The Cyclic connection has been

established.

1109 DNMXS_CommunicationPause

The communication between I-7565-

DNM and all slave devices has been

suspended.

Table 4.2.3 Interpretation of the return code (Slave Error) 1/1

Return
Code

DeviceNet Error Comment

1150 DNMXS_SlaveNoResp The slave has no any response.

1151 DNMXS_WaitForSlaveResp
The I-7565-DNM is waiting for the

response form the slave device.

1152 DNMXS_SlaveRespError The slave replied some errors.

1153 DNMXS_OutputDataLenError

The output length of the I/O

connection doesn't match the

device's output length.

1154 DNMXS_InputDataLenError

The input length of the I/O

connection doesn't match the

device's input length.

4.3 Function Description

4.3.1 I7565DNM_TotalI7565DNMModule

 Description:

The function will open the whole COM ports in the user’s PC and try to

find out where the module is. It can get the count of total I-7565-DNM

modules in the user’s PC.

 Syntax:

DWORD I7565DNM_Total I7565DNMModule (BYTE *TotalModules ,

BYTE *PortList)

 Parameter:

TotalModules: [output] The amount of total modules.

PortList: [output] The list of all USB port in each modules.

 Return:

Please refer to the chapter 4.2 for the function return code.

 Advanced Option:

In some conditions, some COM ports in user’s PC should not be

opened. The user could provide a text file which should be named as

“ExclusiveCOMPort.txt” to avoid this API to open those COM ports. The

user could edit the content by common text editor.

Example: The exclusive COM ports are 3, 8, 19. Here is the text content.

 3,8,19;

4.3.2 I7565DNM_ActiveModule

 Description:

The function is used to activate the I-7565-DNM module. It must be

called once before using the other functions of I-7565-DNM APIs.

 Syntax:

DWORD I7565DNM_ActiveModule (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.3 I7565DNM_CloseModule

 Description:

The function is used to stop and close the USB driver. This method

must be called once before exiting the user’s application program.

 Syntax:

DWORD I7565DNM_CloseModule (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.4 I7565DNM_GetDLLVersion

 Description:

The function can obtain the version information of I7565DNM.DLL.

 Syntax:

DWORD I7565DNM_GetDLLVersion (void)

 Parameter:

None

 Return:

The DLL version information. For example: If 100(hex) is return, it

means DLL version is 1.00. If 123(hex) is return, it means DLL version is

1.23.

4.3.5 I7565DNM_GetFirmwareVersion

 Description:

The function can obtain the version information of the firmware inside

the I-7565-DNM module.

 Syntax:

DWORD I7565DNM _GetFirmwareVersion (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

The firmware version information. For example: If 100(hex) is return, it

means firmware version is 1.00. If 123(hex) is return, it means firmware

version is 1.23.

 Error Return:

Please refer to the chapter 4.2 for the function return code.

4.3.6 I7565DNM_ResetFirmware

 Description:

The function is used to reset the I-7565-DNM firmware. When the

users have changed the baud rate of CAN bus or changed the Master’s

MAC ID, the function must be called to make the change enable. After

calling this function, the users should wait for 1 or 2 seconds to make the

firmware boot up completely.

 Syntax:

DWORD I7565DNM_ResetFirmware (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.7 I7565DNM_GetMasterMACID

 Description:

The function can get the MAC ID of the DeviceNet master (I-7565-

DNM).

 Syntax:

DWORD I7565DNM_GetMasterMACID (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

If return value is upper than 63, please refer to the chapter 4.2 for the

function return code.

4.3.8 I7565DNM_SetMasterMACID

 Description:

The function can set the MAC ID of the DeviceNet master (I-7565-

DNM). After calling this function, the users must call

I7565DNM_ResetFirmware to make the change enabled. It will save the

information in the EEPROM in the I-7565-DNM.

 Syntax:

DWORD I7565DNM _SetMasterMACID (BYTE cPort,

BYTE MasterMACID)

 Parameter:

cPort: [input] The USB port number.

MasterMACID: [input] The new MAC ID of the master. (0 ~ 63)

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.9 I7565DNM_GetBaudRate

 Description:

This function can help you to get the DeviceNet baud rate information

of I-7565-DNM.

 Syntax:

DWORD I7565DNM_GetBaudRate (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

The CAN bus baud rate information in the I-7565-DNM.

If the value is 0, the baud rate is 125Kbps.

If the value is 1, the baud rate is 250Kbps.

If the value is 2, the baud rate is 500Kbps.

 Error Return:

Please refer to the chapter 4.2 for the function return code.

4.3.10 I7565DNM_SetBaudRate

 Description:

This function can set the DeviceNet baud rate of the I-7565-DNM. After

calling this function, you must call I7565DNM_ResetFirmware to reset the

firmware to make change enabled.

 Syntax:

DWORD I7565DNM_SetBaudRate (BYTE cPort,BYTE BaudRate)

 Parameter:

cPort: [input] The USB port number.

BaudRate: [input] The new baud rate value.

 0 : 125K bps

 1 : 250K bps

 2 : 500K bps

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.11 I7565DNM_GetMasterStatus

 Description:

The function is used to obtain the firmware status inside the I-7565-

DNM. The users can call this function to make sure that the DeviceNet

master is online successfully.

 Syntax:

DWORD I7565DNM_GetMasterStatus (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.12 I7565DNM_GetSlaveStatus

 Description:

This function is to get the remote slave device’s communication status.

 Syntax:

DWORD I7565DNM_GetSlaveStatus (BYTE cPort, BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DesMACID: [input] The remote slave’s MAC ID. (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.13 I7565DNM_StartDevice

 Description:

This function is used to start to communicate with the specific device

that the users applying to.

 Syntax:

DWORD I7565DNM_StartDevice (BYTE cPort, BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DesMACID: [input] The remote slave’s MAC ID. (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.14 I7565DNM_StopDevice

 Description:

This function is used to stop to communicate with the destination

device that the users appointed to.

 Syntax:

DWORD I7565DNM_StopDevice (BYTE cPort, BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.15 I7565DNM_StartAllDevice

 Description:

This function is used to start to communicate with all slave devices in

ScanList.

 Syntax:

DWORD I7565DNM_StartAllDevice (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.16 I7565DNM_StopAllDevice

 Description:

This function is used to stop to communicate with all destination

devices in ScanList.

 Syntax:

DWORD I7565DNM_StopAllDevice (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.17 I7565DNM_AddDevice

 Description:

This function can add the slave devices into the ScanList of the I-7565-

DNM and save the information into the EEPROM. Before communicating

with any slave devices, the users should call this function to add these

devices.

 Syntax:

DWORD I7565DNM_AddDevice (BYTE cPort, BYTE DesMACID,

WORD Explicit_EPR)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

Explicit_EPR: [input] The Expected Packet Rate. (Usually is 2500).

 Return:

Please refer to the chapter 4.2 for the function return code.

 C++ demo code:

WORD Ret, Slave_EPR;

BYTE ActivedModuleNo, Slave_MACID;

ActivedModuleNo = 2;

Slave_MACID = 12;

//AddDevice for the first time

Ret = I7565DNM_AddDevice(ActivedModuleNo,Slave_MACID,1000);

if(Ret != 0) return Ret;

4.3.18 I7565DNM_RemoveDevice

 Description:

This function is used for removing the specified slave device from the

ScanList in the I-7565-DNM. And the information of the device in

EEPROM is erased at the same time.

 Syntax:

DWORD I7565DNM_RemoveDevice (BYTE cPort, BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.19 I7565DNM_AddIOConnection

 Description:

This method is used to configure the I/O connection of the specific

MAC ID device. The I-7565-DNM can get/set the data via the connection,

which connects to the specific slave, according to the produced /

consumed connection path of this slave device. This configuration data

will be saved into EEPROM within the I-7565-DNM.

 Syntax:

DWORD I7565DNM_AddIOConnection (BYTE cPort, BYTE DesMACID,

BYTE ConType,

WORD DeviceInputLen,

WORD DeviceOutputLen,

WORD EPR)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ConType: [input] The remote slave device’s I/O connection type

 1 : Poll connection type

 2 : Bit-Strobe connection type

 3 : COS connection type

 4 : Cyclic connection type

DeviceInputLen: [input] The remote slave device’s input length. (Byte)

DeviceOutputLen: [input] The remote slave device’s output length. (Byte)

EPR: [input] The expected packet rate. (mSec)

 Return:

Please refer to the chapter 4.2 for the function return code.

 C++ demo code:

WORD Ret, Slave_EPR,InputLen,OutputLen;

BYTE ActivedModuleNo, Slave_MACID, ConType;

ActivedModuleNo = 2;

Slave_MACID = 12;

Slave_EPR = 200; //polling rate = 200ms

InputLen = 5; //the input byte of the slave device.

OutputLen = 7; //the output byte of the slave device.

ConType = ConType_Poll;

//AddDevice for the first time

Ret = I7565DNM_AddDevice(ActivedModuleNo,Slave_MACID,1000);

if(Ret != 0) return Ret;

//AddIOConnection for the first time

Ret = I7565DNM_AddIOConnection(ActivedModuleNo,Slave_MACID,

ConType,InputLen,OutputLen,Slave_EPR);

if(Ret != 0) return Ret;

…

4.3.20 I7565DNM_RemoveIOConnection

 Description:

The function is used to remove the I/O connection configuration.

 Syntax:

DWORD I7565DNM_RemoveIOConnection (BYTE cPort,

BYTE DesMACID,

BYTE ConType)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ConType: [input] The remote slave device’s I/O connection type

 1 : Poll connection type

 2 : Bit-Strobe connection type

 3 : COS connection type

 4 : Cyclic connection type

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.21 I7565DNM_GetAttribute

 Description:

This function is used to send the request command to retrieve the

attribute value of the specific device’s instance. Before calling this

function, you must start the device. After calling this function, you should

execute the “I7565DNM_GetAttributeValue” to get the response message

returned from remote slave device.

 This old function will be removed in the future. Please use the new

function which is “I7565DNM_GetAttributeW”.

 Syntax:

DWORD I7565DNM_GetAttribute (BYTE cPort, BYTE DesMACID,

BYTE ClassID, BYTE InstanceID,

BYTE AttributeID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ClassID: [input] The remote slave device’s ClassID(BYTE)

InstanceID: [input] The remote slave device’s InstanceID(BYTE)

AttributeID: [input] The remote slave device’s AttributeID

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.22 I7565DNM_GetAttributeW

 Description:

This function is used to send the request command to retrieve the

attribute value of the specific device’s instance. Before calling this

function, you must start the device. After calling this function, you should

first execute "I7565DNM_IsGetAttributeOK" and then proceed to run

"I7565DNM_GetAttributeValue" to obtain the response message returned

from the remote slave device.

 This function could totally complain with the old function which has the

same name without the “W”. The user could use this function instead of

the “I7565DNM_GetAttribute”.

 Syntax:

DWORD I7565DNM_GetAttributeW (BYTE cPort, BYTE DesMACID,

WORD ClassID, WORD InstanceID,

BYTE AttributeID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ClassID: [input] The remote slave device’s ClassID(WORD)

InstanceID: [input] The remote slave device’s InstanceID(WORD)

AttributeID: [input] The remote slave device’s AttributeID

 Return:

Please refer to the chapter 4.2 for the function return code.

 C++ demo code:

WORD Ret, ClassID, InstanceID, AttributeID, Len;

BYTE ActivedModuleNo, Slave_MACID, Data[512];

CString Str_Hex, Str_ASCII, temp;

ActivedModuleNo = 2;

Slave_MACID = 12;

//Get the name of the slave device, CID = 1, Inst. ID = 1, Attr. ID = 7

ClassID = 1;

InstanceID = 1;

AttributeID = 7;

Ret = I7565DNM_GetAttributeW(ActivedModuleNo,Slave_MACID,

ClassID, InstanceID, AttributeID);

if(Ret != 0) return Ret;

Sleep(1000); //busy waiting for the slave.

Ret = I7565DNM_IsGetAttributeOK (ActivedModuleNo, Slave_MACID);

if(Ret != 0) Sleep(1000); //busy waiting for the slave again.

Ret = I7565DNM_GetAttributeValue(ActivedModuleNo, Slave_MACID,

&Len, Data);

if(Ret != 0) return Ret;

Str_Hex = “”;

Str_ASCII = “”;

for(int i=0;i<Len;i++)

{

 temp.printf("%X ",Data[i]);

 Str_Hex += temp;

 temp.printf("%C ",Data[i]);

 Str_ASCII += temp;

}

AfxMessageBox(Str_Hex);

AfxMessageBox(Str_ASCII);

4.3.23 I7565DNM_IsGetAttributeOK

 Description:

This function is used to check whether the I-7565-DNM has received

the response message or not. After checking the response message, you

should execute the “I7565DNM_GetAttributeValue” to get the response

message returned from remote slave device.

 Syntax:

DWORD I7565DNM_IsGetAttributeOK (BYTE cPort, BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

 C++ demo code:

WORD Ret, ClassID, InstanceID, AttributeID, Len;

BYTE ActivedModuleNo, Slave_MACID, Data[512];

CString Str_Hex, Str_ASCII, temp;

ActivedModuleNo = 2;

Slave_MACID = 12;

//Get the name of the slave device, CID = 1, Inst. ID = 1, Attr. ID = 7

ClassID = 1;

InstanceID = 1;

AttributeID = 7;

Ret = I7565DNM_GetAttributeW(ActivedModuleNo,Slave_MACID,

ClassID, InstanceID, AttributeID);

if(Ret != 0) return Ret;

Sleep(1000); //busy waiting for the slave.

Ret = I7565DNM_IsGetAttributeOK (ActivedModuleNo, Slave_MACID);

if(Ret != 0) Sleep(1000); //busy waiting for the slave again.

Ret = I7565DNM_GetAttributeValue(ActivedModuleNo, Slave_MACID,

&Len, Data);

if(Ret != 0) return Ret;

Str_Hex = “”;

Str_ASCII = “”;

for(int i=0;i<Len;i++)

{

 temp.printf("%X ",Data[i]);

 Str_Hex += temp;

 temp.printf("%C ",Data[i]);

 Str_ASCII += temp;

}

AfxMessageBox(Str_Hex);

AfxMessageBox(Str_ASCII);

4.3.24 I7565DNM_GetAttributeValue

 Description:

This function is used to get the attribute value of the specific de

vice’s instance from the remote slave device. Before calling this func

tion, the users should call “I7565DNM_GetAttributeW” and “I7565DN

M_IsGetAttributeOK” to send request command first.

 Syntax:

DWORD I7565DNM_GetAttributeValue (BYTE cPort, BYTE DesMACID,

WORD *DataLen, BYTE *DATA)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

DataLen: [output] The length of the attribute value (in byte).

DATA: [output] The attribute value that returned from the slave device.

 Return:

Please refer to the chapter 4.2 for the function return code.

 C++ demo code:

WORD Ret, ClassID, InstanceID, AttributeID, Len;

BYTE ActivedModuleNo, Slave_MACID, Data[512];

CString Str_Hex, Str_ASCII, temp;

ActivedModuleNo = 2;

Slave_MACID = 12;

//Get the name of the slave device, CID = 1, Inst. ID = 1, Attr. ID = 7

ClassID = 1;

InstanceID = 1;

AttributeID = 7;

Ret = I7565DNM_GetAttributeW(ActivedModuleNo,Slave_MACID,

ClassID, InstanceID, AttributeID);

if(Ret != 0) return Ret;

Sleep(1000); //busy waiting for the slave.

Ret = I7565DNM_IsGetAttributeOK (ActivedModuleNo, Slave_MACID);

if(Ret != 0) Sleep(1000); //busy waiting for the slave again.

Ret = I7565DNM_GetAttributeValue(ActivedModuleNo, Slave_MACID,

&Len, Data);

if(Ret != 0) return Ret;

Str_Hex = “”;

Str_ASCII = “”;

for(int i=0;i<Len;i++)

{

 temp.printf("%X ",Data[i]);

 Str_Hex += temp;

 temp.printf("%C ",Data[i]);

 Str_ASCII += temp;

}

AfxMessageBox(Str_Hex);

AfxMessageBox(Str_ASCII);

4.3.25 I7565DNM_SetAttribute

 Description:

The method is used to set the attribute of the specific device’s

instance. Before calling this function, you must start the device. After

calling this function, you should execute the

“I7565DNM_IsSetAttributeOK” to check the response message returned

from the remote slave device.

 This old function will be removed in the future. Please use the new

function which is “I7565DNM_SetAttributeW”.

 Syntax:

DWORD I7565DNM_SetAttribute (BYTE cPort, BYTE DesMACID,

BYTE ClassID, BYTE InstanceID,

BYTE AttributeID, WORD DataLen,

BYTE *DATA)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ClassID: [input] The remote slave device’s ClassID(BYTE)

InstanceID: [input] The remote slave device’s InstanceID(BYTE)

AttributeID: [input] The remote slave device’s AttributeID

DataLen: [input] The length of the attribute value (in byte).

DATA: [input] The attribute value that the users want to send.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.26 I7565DNM_SetAttributeW

 Description:

The method is used to set the attribute of the specific device’s

instance. Before calling this function, you must start the device. After

calling this function, you should execute the

“I7565DNM_IsSetAttributeOK” to check the response message returned

from the remote slave device.

 This function could totally complain with the old function which has the

same name without the “W”. The user could use this function instead of

the “I7565DNM_SetAttribute”.

 Syntax:

DWORD I7565DNM_SetAttributeW (BYTE cPort, BYTE DesMACID,

WORD ClassID, WORD InstanceID,

BYTE AttributeID, WORD DataLen,

BYTE *DATA)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ClassID: [input] The remote slave device’s ClassID(WORD)

InstanceID: [input] The remote slave device’s InstanceID(WORD)

AttributeID: [input] The remote slave device’s AttributeID

DataLen: [input] The length of the attribute value (in byte).

DATA: [input] The attribute value that the users want to send.

 Return:

Please refer to the chapter 4.2 for the function return code.

 C++ demo code:

WORD Ret, ClassID, InstanceID, AttributeID, Len;

BYTE ActivedModuleNo, Slave_MACID, Data[512];

ActivedModuleNo = 2;

Slave_MACID = 12;

//Set the EPR of the slave device, CID = 5, Inst. ID = 1, Attr. ID = 9

ClassID = 5;

InstanceID = 1;

AttributeID = 9;

//Set the EPR = 2500(0x9C4)

Data[0] = 0xC4;

Data[1] = 0x09;

Len = 2;

Ret = I7565DNM_SetAttributeW(ActivedModuleNo, Slave_MACID,

ClassID, InstanceID, AttributeID, Len, Data);

if(Ret != 0) return Ret;

Sleep(1000); //busy waiting for the slave.

Ret = I7565DNM_IsSetAttributeOK(ActivedModuleNo, Slave_MACID);

if(Ret != 0) Sleep(1000); //busy waiting for the slave again.

4.3.27 I7565DNM_IsSetAttributeOK

 Description:

This function is used to get the response value after executing the

“I7565DNM_SetAttributeW” function.

 Syntax:

DWORD I7565DNM_IsSetAttributeOK (BYTE cPort, BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

 C++ demo code:

WORD Ret, ClassID, InstanceID, AttributeID, Len;

BYTE ActivedModuleNo, Slave_MACID, Data[512];

ActivedModuleNo = 2;

Slave_MACID = 12;

//Set the EPR of the slave device, CID = 5, Inst. ID = 1, Attr. ID = 9

ClassID = 5;

InstanceID = 1;

AttributeID = 9;

//Set the EPR = 2500(0x9C4)

Data[0] = 0xC4;

Data[1] = 0x09;

Len = 2;

Ret = I7565DNM_SetAttributeW(ActivedModuleNo, Slave_MACID,

ClassID, InstanceID, AttributeID, Len, Data);

if(Ret != 0) return Ret;

Sleep(1000); //busy waiting for the slave.

Ret = I7565DNM_IsSetAttributeOK(ActivedModuleNo, Slave_MACID);

if(Ret != 0) Sleep(1000); //busy waiting for the slave again.

4.3.28 I7565DNM_ClearAllConfig

 Description:

This function will clear all configurations in the EEPROM of the I-7565-

DNM.

 Syntax:

DWORD I7565DNM_ClearAllConfig (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.29 I7565DNM_SearchAllDevices

 Description:

This function is used to retrieve all devices in DeviceNet network.

This function makes the I-7565-DNM to start the searching process. The

users need to check whether the process is complete or not by calling the

“I7565DNM_IsSearchOK”. After completing the search process, the users

could call the “I7565DNM_GetSearchedDevices“ to get the searched

devices. Attention! This function will terminate all communications with

remote devices. This function is usually used for developing or debugging

applications.

 Syntax:

DWORD I7565DNM_SearchAllDevices (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.30 I7565DNM_SearchSpecificDevice

 Description:

This function is used to retrieve some devices which specified by the

users. This function makes the I-7565-DNM to start the searching

process. The users need to check whether the process is complete or not

by calling the “I7565DNM_IsSearchOK”. After completing the search

process, the users could call the “I7565DNM_GetSearchedDevices“ to

get the searched devices. Attention! This function will terminate all

communications with remote devices. This function is usually used for

developing or debugging applications.

 Syntax:

DWORD I7565DNM_SearchSpecificDevice (BYTE cPort,

WORD ListCount,

BYTE *DesMACIDList)

 Parameter:

cPort: [input] The USB port number.

ListCount: [input] The amount of the slave’s ID.

DestMACIDList: [input] The list of all slave’s MAC ID.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.31 I7565DNM_IsSearchOK

 Description:

This function will check whether the searching process has finished or

not.

 Syntax:

DWORD I7565DNM_IsSearchOK (BYTE cPort)

 Parameter:

cPort: [input] The USB port number.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.32 I7565DNM_GetSearchedDevices

 Description:

This function will get the device which have been searched in the network.

 Syntax:

DWORD I7565DNM_GetSearchedDevices (BYTE cPort,

WORD *TotalDevices,

BYTE *DesMACID,

BYTE *Type,

WORD *DeviceInputLen,

WORD *DeviceOutputLen)

 Parameter:

cPort: [input] The USB port number.

 TotalDevices: [output] The amount of all slave device which are found.

DesMACID: [output] The list of slave’s MAC ID which are found.

Type: [output] The list of slave’s connection type which are found.

 0 : Explicit connection type

 1 : Poll connection type

 2 : Bit-Strobe connection type

 3 : COS connection type

 4 : Cyclic connection type

DeviceInputLen: [output] The list of slave’s input length which are found.

DeviceOutputLen: [output] The list of slave’s output length which are

found.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.33 I7565DNM_GetDeviceInfoFromScanList

 Description:

This function will get the ScanList data of certain device in the I-7565-

DNM.

 Syntax:

DWORD I7565DNM_GetDeviceInfoFromScanList

(BYTE cPort, BYTE DesMACID, WORD *ListCount,

BYTE *ConnectionTypeList, WORD *InputDataLenList,

WORD *OutputDataLenList,WORD *EPRList)

 Parameter:

cPort: [input] The USB port number.

DesMACID: [input] The MAC ID number.

 ListCount: [output] The amount of all information items.

ConnectionTypeList: [output] The list of slave’s connection type.

 0 : Explicit connection type

 1 : Poll connection type

 2 : Bit-Strobe connection type

 3 : COS connection type

 4 : Cyclic connection type

InputDataLenList: [output] The list of slave’s input length.

OutputDataLenList: [output] The list of slave’s output length.

EPRList: [output] The list of slave’s expected packet rate.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.34 I7565DNM_GetScanList

 Description:

This function will get all the ScanList data in the I-7565-DNM.

 Syntax:

DWORD I7565DNM_GetScanList (BYTE cPort, WORD *TotalDevices,

BYTE *DesMACIDList,

 BYTE *ConnectionTypeList,

 WORD *InputDataLenList,

 WORD *OutputDataLenList,

 WORD *EPR_List)

 Parameter:

cPort: [input] The USB port number.

TotalDevices: [output] The data count of all the information.

DestMACIDList: [output] The MAC ID of all the slave devices in the

ScanList.

ConnectionTypeList: [output] The connection type of all the slave

devices in the ScanList.

 0 : Explicit connection type

 1 : Poll connection type

 2 : Bit-Strobe connection type

 3 : COS connection type

 4 : Cyclic connection type

InputDataLenList: [output] The input data length of all the slave devices

in the ScanList.

OutputDataLenList: [output] The output data length of all the slave

devices in the ScanList.

EPR_List: [output] The EPR value of all the slave devices in the ScanList.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.35 I7565DNM_ImportEEPROM

 Description:

This function will write all specific devices’ information in the ScanList to

the EEPROM.

 Syntax:

DWORD I7565DNM_ImportEEPROM (BYTE cPort,

WORD ListCount,

BYTE *DesMACIDList,

 BYTE *ConnectionTypeList,

 WORD *InputDataLenList,

 WORD *OutputDataLenList,

 WORD *EPR_List)

 Parameter:

cPort: [input] The USB port number.

ListCount: [input] The data count of all the information.

DestMACIDList: [input] The MAC ID of all the slave devices.

ConnectionTypeList: [input] The connection type of all slave devices.

 0 : Explicit connection type

 1 : Poll connection type

 2 : Bit-Strobe connection type

 3 : COS connection type

 4 : Cyclic connection type

InputDataLenList: [input] The input data length of all slave devices.

OutputDataLenList: [input] The output data length of all slave devices.

EPR_List: [input] The EPR value of all slave devices.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.36 I7565DNM_ReadInputData

 Description:

This function is to get the data according with the produced

connection path of the specific MAC ID device via the I/O connection.

 Syntax:

DWORD I7565DNM_ReadInputData (BYTE cPort, BYTE DesMACID,

BYTE ConType, WORD *IOLen,

BYTE *IODATA)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ConType: [input] The connection type of the remote slave.

 1 : Poll connection type

 2 : Bit-Strobe connection type

 3 : COS connection type

 4 : Cyclic connection type

IOLen: [output] The length of the I/O data (In byte).

IODATA: [output] The remote I/O data.

 Return:

Please refer to the chapter 4.2 for the function return code.

 C++ demo code:

WORD Ret, IOLen, i;

BYTE ActivedModuleNo, Slave_MACID, ConType, IOData[512];

CString temp;

ActivedModuleNo = 2;

Slave_MACID = 12;

ConType = ConType_Poll;

Ret = I7565DNM_ReadInputData(ActiveBoardNo, Slave_MACID,

ConType_Poll, &IOLen, IOData);

if(Ret == I7565DNM_NoError)

{

 Str.Format("");

 for(i = 0;i < IOLen;i++)

 {

 temp.Format("0x%X, ",IOData[i]);

 Str += temp;

 }

}

else

 Str.Format("Return : Error! %d",Ret);

AfxMessageBox(Str);

4.3.37 I7565DNM_WriteOutputData

 Description:

The function will set the data according with the consumed

connection path of the specific MAC ID device via the I/O connection.

 Syntax:

DWORD I7565DNM_WriteOutputData (BYTE cPort, BYTE DesMACID,

BYTE ConType, WORD IOLen,

BYTE *IODATA)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ConType: [input] The connection type of the remote slave.

 1 : Poll connection type

 2 : Bit-Strobe connection type

 3 : COS connection type

 4 : Cyclic connection type

IOLen: [Input] The length of the I/O data (In byte).

IODATA: [Input] The remote I/O data.

 Return:

Please refer to the chapter 4.2 for the function return code.

 C++ demo code:

WORD Ret, IOLen, i;

BYTE ActivedModuleNo, Slave_MACID, ConType, IOData[512];

CString temp;

ActivedModuleNo = 2;

Slave_MACID = 12;

ConType = ConType_Poll;

IOData[0] = 0xFF;

IOData[1] = 0xAB;

IOData[2] = 0xCC;

IOLen = 3;

Ret = I7565DNM_WriteOutputData(ActivedModuleNo, Slave_MACID,

ConType_Poll, IOLen, IOData);

if(Ret != I7565DNM_NoError) return Ret;

4.3.38 I7565DNM_SendExplicitMSG

 Description:

This function is used to send the explicit request command to

retrieve or configure the attribute value of the specific device’s instance.

Before calling this function, you must start the device. After calling this

function, you should execute the “I7565DNM_GetExplicitMSGRespValue”

to get the response message returned from remote slave device.

 This old function will be removed in the future. Please use the new

function which is “I7565DNM_SendExplicitMSG_W”.

 Syntax:

DWORD I7565DNM_SendExplicitMSG (BYTE cPort, BYTE DesMACID,

BYTE ServiceID, BYTE ClassID,

BYTE InstanceID,

WORD DataLen, BYTE *DATA)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ServiceID: [input] The remote slave device’s ServiceID.

ClassID: [input] The remote slave device’s ClassID(BYTE).

InstanceID: [input] The remote slave device’s InstanceID(BYTE).

DataLen: [input] The length of the attribute value (in byte).

DATA: [input] The attribute value that the users want to send.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.39 I7565DNM_SendExplicitMSG_W

 Description:

This function is used to send the explicit request command to

retrieve or configure the attribute value of the specific device’s instance.

Before calling this function, you must start the device. Before executing

"I7565DNM_GetExplicitMSGRespValue," you should first execute

"I7565DNM_IsExplicitMSGRespOK" to ensure the correctness of the

response message from the remote slave device.

 This function could totally complain with the old function which has

the same name without the “_W”. The user could use this function

instead of the “I7565DNM_SendExplicitMSG”.

 Syntax:

DWORD I7565DNM_SendExplicitMSG_W (BYTE cPort, BYTE DesMACID,

BYTE ServiceID, WORD ClassID,

WORD InstanceID,

WORD DataLen, BYTE *DATA)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ServiceID: [input] The remote slave device’s ServiceID.

ClassID: [input] The remote slave device’s ClassID(WORD).

InstanceID: [input] The remote slave device’s InstanceID(WORD).

DataLen: [input] The length of the attribute value (in byte).

DATA: [input] The attribute value that the users want to send.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.40 I7565DNM_IsExplicitMSGRespOK

 Description:

This function is used to check whether the I-7565-DNM has received

the response message or not. After checking the response message, you

should execute the “I7565DNM_GetExplicitMSGRespValue” to get the

response message returned from remote slave device.

 Syntax:

DWORD I7565DNM_IsExplicitMSGRespOK (BYTE cPort,

BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.41 I7565DNM_GetExplicitMSGRespValue

 Description:

This function is used to get the attribute value of the specific device’s

instance from the remote slave device. Before calling this function, the

users should call “I7565DNM_SendExplicitMSG_W” and

“I7565DNM_IsExplicitMSGRespOK” to send request command first.

 Syntax:

DWORD I7565DNM_GetExplicitMSGRespValue (BYTE cPort,

BYTE DesMACID,

WORD *DataLen ,

BYTE *DATA)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

DataLen: [output] The length of the attribute value (in byte).

DATA: [output] The attribute value that returned from the slave device.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.42 I7565DNM_ReadbackOutputData

 Description:

The function will read the data according with the consumed

connection path of the specific MAC ID device via the I/O connection.

 Syntax:

DWORD I7565DNM_ReadbackOutputData (BYTE cPort,

BYTE DesMACID,

BYTE ConType,

WORD *IOLen,

BYTE *IODATA)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

ConType: [input] The connection type of the remote slave.

 0 : Explicit connection type

 1 : Poll connection type

 2 : Bit-Strobe connection type

 3 : COS connection type

 4 : Cyclic connection type

IOLen: [output] The length of the I/O data (In byte).

IODATA: [output] The remote I/O data.

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.43 I7565DNM_PauseIOConnection

 Description:

The function will disconnect the I/O connection with the remote slave.

When communicating with the remote slave devices and need to pause

the I/O connection a while, the users can use this function to disconnect

the I/O connection which has been established. When the I/O connection

has been suspended, the [Explicit Connection] will still exist and the

read/write I/O functions will not change the I/O data of the slave devices.

The user could use “Get/SetAttribute” and “SendExplicitMSG_W”

functions to configure some parameters when the I/O connection has

been suspended.

 Syntax:

DWORD I7565DNM_PauseIOConnection (BYTE cPort,

BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.44 I7565DNM_ResumeIOConnection

 Description:

The function will re-connect the I/O connection which has been

paused. After connecting the I/O connection, the users could use the

“read/write I/O” functions and “Get/SetAttribute” functions.

 Syntax:

DWORD I7565DNM_ResumeIOConnection (BYTE cPort,

BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

4.3.45 I7565DNM_DisableKeepAliveMsg (Advanced Option)

 Description:

 The I-7565-DNM will read periodically certain explicit attribute to keep

the explicit connection alive. This function can disable the reading

process. For some slave devices, the keep explicit connection is not

necessary. The users can call this function after the

I7565DNM_ActiveModule(). This disable status will NOT keep in I-7565-

DNM. The users need to call this for every boot-up.

 Syntax:

DWORD I7565DNM_DisableKeepAliveMsg (BYTE cPort,

BYTE DesMACID)

 Parameter:

cPort: [input] The USB port number.

DestMACID: [input] The remote slave device’s MAC ID (0~63)

 Return:

Please refer to the chapter 4.2 for the function return code.

Demo Programs for Windows

All of demo programs will not work normally if I-7565-DNM driver would

not be installed correctly. During the installation process of the driver, the

install-shields will register the correct kernel driver to the operation system and

copy the DLL driver and demo programs to the correct position based on the

driver software package you have selected (Win98,Me,NT,win2000,XP). After

completing the driver installation, the related demo programs, development

library and declaration header files for different development environments are

installed in the system as follows.

The I-7565-DNM’s root directory is C:\ICPDAS\I-7565-DNM

 |--\

 |--\ I-7565-DNM

 |--\ The user manual of the I-7565-DNM

|--\Demo emo program

|--\Demo\BCB 6 Demos for Borland C++ Builder 6

|--\Demo\VC++ 6 Demos for Visual C++ 6

5.1 A brief introduction to the demo programs

VC_Demo1 : Demonstrate the basic functions to communicate with the remote

slave device. The demo program will lead you step by step to

complete the setting and communication.

VC_Demo2 : Demonstrate the scan function to scan all the remote slave

devices in the same DeviceNet network. The demo program will

show you all the slave devices and their I/O connection type.

BCB_Demo1 : Demonstrate the scan function and add/remove function to

configure the information of the remote slave device.

BCB_Demo2 : Demonstrate the I/O functions to access the I/O data of the

remote slave device. The demo program will show you the input

value of the remote device and let you send out the data to the

output pins of the remote slave devices.

5.2 Wire Connection of the CAN bus

Before starting the demos, the users should have at least one slave device.

Here show the users how to connect the master and slave devices by CAN bus.

The slave devices should be connected to form the serial type which is shown

as Figure 5.1

Figure 5.1 Correct wire connection

The following wire connection is wrong which is shown as Figure 5.2

Figure 5.2 Wrong wire connection

5.3 VC_Demo1 Introduction

VC_Demo1 is the example used for starting the DeviceNet communication.

The screen shoot is shown as Figure 5.3. This demo program is designed to

communicate with slave devices step by step. This program will read the input

value of the slave device when the POLL connection has been established.

Before exercising this demo, the users should have at least one DeviceNet

slave device which has input channels (AI or DI) and finish the wire connection

between the Master and slave device. (See Figure 5.1)

Figure 5.3 the screen shoot of VC_Demo1

After running the program, the users will see the “TotalModules”

information on the left and up corner of the screen. This function determinates

how many I-7565-DNM in your PC automatically. If the program doesn’t find

any module, the users should check that the windows driver has been installed

successfully or the USB wire connection between the PC and the I-7565-DNM

module. Otherwise, if it has found at least one module, the users can continue

exercising the demo program.

Step 1 : ActiveModule

Before performing other buttons, the “ActiveMoudle” button should be

clicked firstly. The module number means the COM port number in the PC.

The drop-down list would show the module’s number which has been plugged

in the PC. After clicking the button, the return code will be 0. Otherwise, please

check the windows driver has been installed successfully.

Step 2 : Clear All Config

To avoid unknown configuration in the I-7565-DNM, the users can click

this button to clear all configuration in the module.

Step 3 : Set Baud Rate

The default baud rate of DeviceNet is 125Kbps. If the users want to

change the value, they can select the correct value then click the button. After

changing the baud rate, the users should reset the firmware in the I-7565-DNM

by clicking the “ResetFirmware” button. It needs to wait for 1 or 2 seconds to

the next step.

Step 4 : Set Master ID

The default Master’s MAC ID is 0. If the users want to change the value,

you can select the correct value then click the button. After changing the

Master’s ID, the uses should reset the firmware in the I-7565-DNM by clicking

the “ResetFirmware” button. It needs to wait for 1 or 2 seconds to the next step.

Step 5 : Debug Device

Before performing this function, the users should set the MAC ID of the

slave device and turn on it. In the demo, the users can select the MAC ID of

the slave device then click “Debug Device” button. This function will try to find

the appointed remote slave device waiting for 5 seconds, if the slave device

exists in the network, the return value will be 0. Otherwise, the device doesn’t

exist without response. The users can go to next step until the problem of the

slave device has been solved.

Step 6 : Add Device

Before performing this function, the users should use step 5 to find an

exist device. This function can add the device’s information found at step 5 into

EEPROM of the I-7565-DNM. If it is successful, the return value will be 0.

Step 7 : Get POLL Info

This function is to obtain the device’s POLL information. After the slave

device responses the data, it would show in the “In” and “Out”. “In” means the

input length of the slave device. “Out” means the output length of the slave

device. If the slave device responses successfully, the return value will be 0.

Step 8 : Config POLL

If the step 7 is successful, the users can perform “Config POLL” button.

This function is to add the device’s POLL information into EEPROM in the I-

7565-DNM. If it is successful, the return value will be 0.

Step 9 : Start Device

If the step 8 is successful, the users can perform “Start Device” button.

This function would communicate with the slave device which the users have

configured in the previous steps. If it is successful, the return value will be 0.

Step 10 : Read POLL Input I/O Data

If the master is communicating with the slave device successfully, the

users can read the input I/O data from the slave device in this step. This

function would obtain the input I/O data and show them in byte (8-bits).

5.4 VC_Demo2 Introduction

VC_Demo2 is the example used for scanning the DeviceNet slave devices

in the network. The screen shoot is shown as Figure 5.4. This demo program is

designed to operate the master step by step. This program will show the

information of all the slave devices in the network. Before exercising this demo,

the users should have at least one DeviceNet slave device and finish the wire

connection between the Master and slave device. (See Figure 5.1)

Figure 5.4 The screen shoot of VC_Demo2

After running the program, the users will see the “TotalModules”

information on the left and up corner of the screen. This function determinates

how many I-7565-DNM in your PC automatically. If it doesn’t find any board,

the users should check that the windows driver has been installed successfully

or the USB wire connection between the PC and the I-7565-DNM module.

Otherwise, if it has found at least one module, the users can continue

exercising the demo program.

Step 1 : ActiveModule

Before performing other buttons, the “ActiveMoudle” button should be

clicked firstly. The module number means the COM port number in the PC.

The drop-down list would show the module’s number which has been plugged

in the PC. After clicking the button, the return code will be 0. Otherwise, please

check the windows driver has been installed successfully.

Step 2 : Set Baud Rate

The default baud rate of DeviceNet is 125Kbps. If the users want to

change the value, they can select the correct value then click the button. After

changing the baud rate, the users should reset the firmware in I-7565-DNM by

clicking the “ResetFirmware” button. It needs to wait for 1 or 2 seconds to the

next step.

Step 3 : Auto Scan Network

Before performing this function, the users should set the MAC ID and the

baud rate of the slave device and turn on it. In the demo, the user can click

“Auto Scan Network” button to obtain all the I/O information of all slave devices

in the network. The scan procedure needs about 30 seconds. The users will

see the entire slave device in the network and their I/O information in the list

table.

5.5 BCB_Demo1 Introduction

BCB_Demo1 is the example used for scanning the DeviceNet slave

devices in the network. The screen shoot is shown as Figure 5.5. This program

will show the information of all the slave devices. This demo is similar to

VC_Demo2. Before exercising this demo, the users should have at least one

DeviceNet slave device and finish the wire connection between the Master and

slave device. (See Figure 5.1) The users can configure the slave device by the

scanning information. This demo can be a tool to add or remove the

configuration of the slave device.

Figure 5.5 The screen shoot of BCB_Demo1

After running the program, the users would see the “Total I-7565-DNM : x”

information on the left and up corner of the screen. This function determinates

how many I-7565-DNM in your PC automatically. If the program doesn’t find

any module, the users should check that the windows driver has been installed

successfully or the USB wire connection between the PC and the I-7565-DNM

module. Otherwise, if it has found at least one module, the users can continue

exercising the demo program.

Step 1 : Active Module

Before performing other buttons, the “ActiveMoudle” button should be

clicked firstly. The module number means the COM port number in the PC.

The drop-down list would show the module’s number which has been plugged

in the PC. After clicking the button, the return code will be 0. Otherwise, please

check the windows driver has been installed successfully.

Step 2 : Auto Scan

Before performing this function, the users should set the MAC ID and the

baud rate of the slave device and turn on it. In the demo, the user can click

“Auto Scan Network” button to obtain all the I/O information of all slave devices

in the network. The scan procedure needs about 30 seconds. The users will

see the entire slave device in the network and their I/O information in the “Scan

Table”.

Step 3 : Add Device

This function is to add the device’s information into EEPROM in the I-

7565-DNM. The users can check the item which you want to add. After

checking what you want, push “Add Device” button to add the information into

the EEPROM. If it is successful, the items which you selected will be shown in

the “Configure Table”.

Step 4 : LoadScanList

This function is to obtain the device’s information from EEPROM in the I-

7565-DNM. The users can check the information in the EEPROM. After

performing the function, the information will be shown in the “Configure Table”.

5.6 BCB_Demo2 Introduction

BCB_Demo2 is the extension of the BCB_Demo1. The screen shoot is

shown as Figure 5.6. This program can read the input data and write the output

data in every second. This demo is similar to BCB_Demo1. We just introduce

the extension part. Before exercising this demo, the users should have at least

one DeviceNet slave device and finish the wire connection between the Master

and slave device. (See Figure 5.1) The users can configure the slave device by

the scanning information. This demo can be a tool to add or remove the

configuration of the slave device. Additionally, the users can operate the I/O

data form the remote slave devices.

Figure 5.6 The screen shoot of BCB_Demo2

If the users want to know how to configure the slave device information

into EEPROM in the I-7565-DNM, please refer to section 5.5.

If “Active Module” is OK, the users can click “LoadScanList” button. The

configuration information will be shown in “Configure Table”. At the same time,

the MAC IDs also are shown on the right side of the screen. The users can

check the “Enable/Disable” box to enable or disable the read and write the I/O

data. The “Output” scroll bar presents the output value which will be written to

the output channel of the slave device. If the scroll value is 0x23, every byte of

the slave device’s output is 0x23. The users can find out the change of the

output channel easily. The “Input” field presents the input value from the input

channel of the slave device.

LabVIEW Driver Introduction

1.1 Software Installation

The I-7565-DNM LabVIEW 8.x driver is the I-7565-DNM function reference

for the DeviceNet master device used on LabVIEW 8.x environment on

Windows 2000/XP. Before users use this driver to develop the machine control

system, the I-7565-DNM driver must be installed first, because the I-7565-DNM

LabVIEW 8.x driver needs to call the function of it. The driver architecture is

shown as Figure 6.1.

Figure 6.1 Driver concept of I-7565-DNM LabVIEW driver

After completing the LabVIEW driver installation, the directory of I-7565-

DNM LabVIEW Driver is C:\ICPDAS\I-7565-DNM\LabVIEW.

 |--\Driver LabVIEW driver

 |--\Demo LabVIEW demo program

 I-7565-DNM LabVIEW Function palette is showed as below.

Figure 6.2 I-7565-DNM LabVIEW Function palette

1.2 Function description

Every function provides each VI for user to use in the LabVIEW environment. All

the functions provided by the I7565DNM.dll are listed in the following table.

Table 6.2.1 Module Functions

No.
VI

ICON
Function Name Description

1

I7565DNM_TotalI7565DNMMod

ule

Get total I-7565-DNM modules in

the PC

2

I7565DNM_ActiveModule
Make I-7565-DNM module active

3

I7565DNM_CloseModule
Close the I-7565-DNM module

4

I7565DNM_GetDLLVersion
Get the DLL version of the

I7565DNM.DLL

Table 6.2.2 Firmware Functions

No.
VI

ICON
Function Name Description

1

I7565DNM_GetFirmwareVersion
Get the version of the firmware

inside the I-7565-DNM module

2

I7565DNM_ResetFirmware
Reset the firmware in the I-7565-

DNM module

Table 6.2.3 Operating Functions 1/3

No.
VI

ICON
Function Name Description

1

I7565DNM_SetMasterMACID

Set the MAC ID of the I-7565-

DNM module (DeviceNet Master’s

MAC ID)

2

I7565DNM_GetMasterMACID

Get the MAC ID of the I-7565-

DNM module (DeviceNet Master’s

MAC ID)

3

I7565DNM_GetBaudRate
Get the baud rate of the CAN bus

Table 6.2.4 Operating Functions 2/3

No.
VI

ICON
Function Name Description

4

I7565DNM_SetBaudRate
Set the baud rate of the CAN bus

5

I7565DNM_GetMasterStatus

Get the status of the I-7565-DNM

module (DeviceNet Master’s

status) at present

6

I7565DNM_GetSlaveStatus
Get the slave device’s status.

7

I7565DNM_StartDevice

I-7565-DNM will start to

communicate with the specific

slave device

8

I7565DNM_StopDevice

I-7565-DNM will stop to

communicate with the specific

slave device

9

I7565DNM_StartAllDevice
I-7565-DNM will start to

communicate with all slave devices

10

I7565DNM_StopAllDevice
I-7565-DNM will stop to

communicate with all slave devices

11

I7565DNM_AddDevice

Add the specific slave device’s

information into the I-7565-DNM

module (DeviceNet Master)

12

I7565DNM_RemoveDevice

Remove the specific slave device’s

information from the I-7565-DNM

module (DeviceNet Master)

13

I7565DNM_AddIOConnection

Add I/O information of the specific

slave device into the I-7565-DNM

module (DeviceNet Master)

14

I7565DNM_RemoveIOConnectio

n

Remove specific slave device’s I/O

information from the I-7565-DNM

module (DeviceNet Master)

15

I7565DNM_GetAttribute
Send the get attribute command to

the slave device.

16

I7565DNM_IsGetAttributeOK

Check whether the slave has

replied for the getting command or

not.

Table 6.2.5 Operating Functions 3/3

No.
VI

ICON
Function Name Description

17

I7565DNM_GetAttributeValue
Get the attribute value of the

I7565DNM_GetAttribute

18

I7565DNM_SetAttribute
Send the set attribute command to

the slave device.

19

I7565DNM_IsSetAttributeOK

Check whether the slave has

replied for the setting command or

not.

20

I7565DNM_GetDeviceInfoFrom

ScanList

Get specific slave device’s I/O

information form the Scan List

within the I-7565-DNM module.

21

I7565DNM_GetScanList

Get the I/O information of all slave

devices form the Scan List within

the I-7565-DNM module.

22

I7565DNM_ImportEEPROM

Write the I/O information of all

slave devices into the EEPROM

within the I-7565-DNM module.

23

I7565DNM_ClearAllConfig

Clear all configurations in the

EEPROM within the I-7565-DNM

module.

Table 6.2.6 Searching Functions

No.
VI

ICON
Function Name Description

1

I7565DNM_SearchAllDevices

I-7565-DNM will search the

DeviceNet network to find out the

I/O information of all slave devices.

2

I7565DNM_SearchSpecificDevic

e

I-7565-DNM will search the

DeviceNet network to find out the

I/O information of specific slave

devices.

3

I7565DNM_IsSearchOK
Check whether the I-7565-DNM

has searched completely or not.

4

I7565DNM_GetSearchedDevice

s

Get the result of the searching

command and retrieve the slave’s

I/O information.

Table 6.2.7 I/O Functions

No.
VI

ICON
Function Name Description

1

I7565DNM_ReadInputData

Read the input data via I/O

connection like Poll, Strobe, COS,

Cyclic.

2

I7565DNM_WriteOutputData

Write the output data via I/O

connection like Poll, COS, Cyclic.

The Strobe doesn’t support this

operation.

1.3 LabVIEW Demo Introduction

The LabVIEW Demo is similar to the VC_Demo1. The screen shoot is

shown as Figure 6.3.1. This demo program is designed to communicate with

slave device step by step. All operating steps and detail descriptions can see in

the section 5.3.

Figure 6.3.1 The screen shoot of LabVIEW Demo

--- [End] --

	Revision
	1.1 DeviceNet Introduction
	1.2 DeviceNet Applications
	1.3 I-7565-DNM with Vendor’s DeviceNet Slaves
	1.4 I-7565-DNM Architecture
	1.5 DeviceNet Master Characteristics
	1.6 I-7565-DNM Firmware Characteristics
	1.7 Hardware & Firmware Features
	1.8 Block Diagram
	1.9 Product Check List
	2.1 Board Layout
	2.2 Jumper Selection
	2.3 Connector Pin Assignment
	2.4 Wire connection
	2.5 Indicator LED
	2.5.1 NS LED (Red)
	2.5.2 RUN LED (Green)
	2.5.3 MS LED (Yellow)

	2.6 Update firmware and Init/Normal Switch

	Driver Installation and Software Application
	3.1 Driver Installation of the I-7565-DNM
	3.2 Flow Diagram for Searching Devices
	3.3 Flow Diagram for Slave Configuration
	3.4 Flow Diagram for On-line Adding/Removing Device
	3.5 Flow Diagram for “SetAttributeW” and “GetAttributeW”
	3.6 Flow Diagram for “SeneExplicitMSG_W”
	3.7 Flow Diagram for I/O Connection
	3.8 Flow Diagram for Pause and Resume I/O Connection

	Function description
	4.1 DLL Function Definition and Description
	4.2 Function Return Code
	4.3 Function Description
	4.3.1 I7565DNM_TotalI7565DNMModule
	4.3.2 I7565DNM_ActiveModule
	4.3.3 I7565DNM_CloseModule
	4.3.4 I7565DNM_GetDLLVersion
	4.3.5 I7565DNM_GetFirmwareVersion
	4.3.6 I7565DNM_ResetFirmware
	4.3.7 I7565DNM_GetMasterMACID
	4.3.8 I7565DNM_SetMasterMACID
	4.3.9 I7565DNM_GetBaudRate
	4.3.10 I7565DNM_SetBaudRate
	4.3.11 I7565DNM_GetMasterStatus
	4.3.12 I7565DNM_GetSlaveStatus
	4.3.13 I7565DNM_StartDevice
	4.3.14 I7565DNM_StopDevice
	4.3.15 I7565DNM_StartAllDevice
	4.3.16 I7565DNM_StopAllDevice
	4.3.17 I7565DNM_AddDevice
	4.3.18 I7565DNM_RemoveDevice
	4.3.19 I7565DNM_AddIOConnection
	4.3.20 I7565DNM_RemoveIOConnection
	4.3.21 I7565DNM_GetAttribute
	4.3.22 I7565DNM_GetAttributeW
	4.3.23 I7565DNM_IsGetAttributeOK
	4.3.24 I7565DNM_GetAttributeValue
	4.3.25 I7565DNM_SetAttribute
	4.3.26 I7565DNM_SetAttributeW
	4.3.27 I7565DNM_IsSetAttributeOK
	4.3.28 I7565DNM_ClearAllConfig
	4.3.29 I7565DNM_SearchAllDevices
	4.3.30 I7565DNM_SearchSpecificDevice
	4.3.31 I7565DNM_IsSearchOK
	4.3.32 I7565DNM_GetSearchedDevices
	4.3.33 I7565DNM_GetDeviceInfoFromScanList
	4.3.34 I7565DNM_GetScanList
	4.3.35 I7565DNM_ImportEEPROM
	4.3.36 I7565DNM_ReadInputData
	4.3.37 I7565DNM_WriteOutputData
	4.3.38 I7565DNM_SendExplicitMSG
	4.3.39 I7565DNM_SendExplicitMSG_W
	4.3.40 I7565DNM_IsExplicitMSGRespOK
	4.3.41 I7565DNM_GetExplicitMSGRespValue
	4.3.42 I7565DNM_ReadbackOutputData
	4.3.43 I7565DNM_PauseIOConnection
	4.3.44 I7565DNM_ResumeIOConnection
	4.3.45 I7565DNM_DisableKeepAliveMsg (Advanced Option)

	Demo Programs for Windows
	5.1 A brief introduction to the demo programs
	5.2 Wire Connection of the CAN bus
	5.3 VC_Demo1 Introduction
	5.4 VC_Demo2 Introduction
	5.5 BCB_Demo1 Introduction
	5.6 BCB_Demo2 Introduction

	LabVIEW Driver Introduction
	1.1 Software Installation
	1.2 Function description
	1.3 LabVIEW Demo Introduction

