I-8014(C)W/I-9014(C)

I/O Module User Manual

V2.0.3 May 2022

Written by Edward Ku/Cindy Huang

Edited by Anna Huang

Warranty

All products manufactured by ICP DAS are under warranty regarding defective materials for a period of one year, beginning from the date of delivery to the original purchaser.

Warning

ICP DAS assumes no liability for any damage resulting from the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copy right © 2018 by ICP DAS Co., Ltd. All rights are reserved.

Trademarks

Names are used for identification purposes only and may be registered trademarks of their respective companies.

Contact Us

If you have any problems, please feel free to contact us.

You can count on us for a quick response.

Email: service@icpdas.com

Table of Contents

Tab	le of	Contents		3
Pre	face .			6
1.	Intro	oduction.		7
	1.1.	Featur	res	9
	1.2.	Specifi	ications	.10
	1.3.	Pin As	signments	.12
		1.3.1.	I-8014W/I-8014CW	.12
		1.3.2.	I-9014W/I-9014C	.13
	1.4.	Jumpe	er Settings	.14
		1.4.1.	I-8014W/I-8014CW	.14
		1.4.2.	I-9014W/I-9014C	.15
	1.5.	Wire C	Connections	.17
		1.5.1.	I-8014W/I-9014	.17
		1.5.2.	I-8014CW/I-9014C	.17
	1.6.	Block I	Diagram	.18
		1.6.1.	I-8014W/I-9014	.18
		1.6.2.	I-8014CW/I-9014C	.18
2.	Qui	ck Start		. 19
	2.1.	MiniO	S7-based Controllers	.20
		2.1.1.	Basic Function	.20
		2.1.2.	Magic Scan Function	.23
	2.2.	Windo	ows-based Controllers	.27
		2.2.1.	Basic Function	.27
		2.2.2.	Magic Scan Function	.29

2.3. Linux-based Controllers		2	2.2.3.	Average Function	31
3. Magic Scan 36 3.1. Configuration 37 3.2. Startup 40 3.3. Read Raw Data 41 3.4. Stop 42 3.5. Calibrate Raw Data 42 3.5. Calibrate Raw Data 43 4. API introduction 44 4.1. i8014W_GetFirmwareVer_L1 / pac_i8014W_GetFirmwareVer_L1 51 4.3. i8014W_GetFirmwareVer_L2 / pac_i8014W_GetFirmwareVer_L2 53 4.4. i8014W_GetFirmwareVer_L2 / pac_i8014W_GetFirmwareVer_L2 53 4.4. i8014W_GetFindwareVer_L2 / pac_i8014W_GetFirmwareVer_L2 53 4.5. i8014W_GetFindwareVer_L2 / pac_i8014W_GetFindwareVer_L2 53 4.6. i8014W_GetFindwareVer_L2 / pac_i8014W_GetFindwareVer_L2 53 4.7. i8014W_GetFindumper / pac_i8014W_GetFindumper 59 4.7. i8014W_ReadAl / pac_i8014W_ReadAl 61 4.8. i8014W_ReadAl / pac_i8014W_ReadAlHex 65 4.9. i8014W_ConfigMagicScan / pac_i8014W_ConfigMagicScan 76 4.10. i8014W_StopMagicScan / pac_i8014W_StopMagicScan 76		2.3.	Linux-	based Controllers	35
3.1. Configuration	3.	Magio	Scan		36
3.2. Startup		3.1.	Config	guration	37
3.3. Read Raw Data 41 3.4. Stop 42 3.5. Calibrate Raw Data 43 4. API introduction 44 4.1. i8014W_Init / pac_i8014W_Init 49 4.2. i8014W_GetFirmwareVer_L1 / pac_i8014W_GetFirmwareVer_L1 51 4.3. i8014W_GetFirmwareVer_L2 / pac_i8014W_GetFirmwareVer_L2 53 4.4. i8014W_GetLibVersion / pac_i8014W_GetLibVersion 55 4.5. i8014W_GetLibDate / pac_i8014W_GetLibVersion 57 4.6. i8014W_GetSingleEndJumper / pac_i8014W_GetSingleEndJumper 59 4.7. i8014W_ReadAI / pac_i8014W_ReadAI 61 4.8. i8014W_ReadAI / pac_i8014W_ReadAIHex 65 4.9. i8014W_ConfigMagicScan / pac_i8014W_ConfigMagicScan 69 4.10. i8014W_StartMagicScan / pac_i8014W_StartMagicScan 74 4.11. i8014W_StartMagicScan / pac_i8014W_StartMagicScan 76 4.12. i8014W_ReadFIFO_Pac_i8014W_ReadFIFO_INISR 83 4.13. i8014W_ReadFIFO_BlockMode / pac_i8014W_ReadFIFO_INISR 86 4.13. i8014W_ReadFIFO_INISR / pac_i8014W_UnLockFIFO_INISR 86 <		3.2.	Startu	p	40
3.4. Stop		3.3.	Read F	Raw Data	41
3.5. Calibrate Raw Data		3.4.	Stop		42
4. API introduction		3.5.	Calibra	ate Raw Data	43
4.1. i8014W_Init / pac_i8014W_Init	4.	API in	troduct	ion	44
4.2. i8014W_GetFirmwareVer_L1 / pac_i8014W_GetFirmwareVer_L1. 51 4.3. i8014W_GetFirmwareVer_L2 / pac_i8014W_GetFirmwareVer_L2. 53 4.4. i8014W_GetLibVersion / pac_i8014W_GetLibVersion 55 4.5. i8014W_GetSingleEndJumper / pac_i8014W_GetLibDate 57 4.6. i8014W_GetSingleEndJumper / pac_i8014W_GetSingleEndJumper 59 4.7. i8014W_ReadAI / pac_i8014W_ReadAI 61 4.8. i8014W_ReadAI / pac_i8014W_ReadAIHex 65 4.9. i8014W_ConfigMagicScan / pac_i8014W_ConfigMagicScan 69 4.10. i8014W_StartMagicScan / pac_i8014W_StartMagicScan 74 4.11. i8014W_ReadFIFO / pac_i8014W_StartMagicScan 76 4.12. i8014W_ReadFIFO_BlockMode / pac_i8014W_ReadFIFO_BlockMode 83 4.14. i8014W_ReadFIFO_JINISR / pac_i8014W_ReadFIFO_INISR 86 4.15. i8014W_UnLockFIFO / pac_i8014W_UnLockFIFO 91 4.16. i8014W_UnLockFIFO / pac_i8014W_ClearFIFO 93 4.17. i8014W_InstallMagicScanISR / pac_i8014W_InstallMagicScanISR 95 4.18. i8014W_UnInstallMagicScanISR / pac_i8014W_UnInstallMagicScanISR 99		4.1.	i8014\	W_Init / pac_i8014W_Init	49
4.3. i8014W_GetFirmwareVer_L2 / pac_i8014W_GetFirmwareVer_L2		4.2.	i8014\	W_GetFirmwareVer_L1 / pac_i8014W_GetFirmwareVer_L1	51
4.4. i8014W_GetLibVersion / pac_i8014W_GetLibVersion .55 4.5. i8014W_GetLibDate / pac_i8014W_GetLibDate .57 4.6. i8014W_GetSingleEndJumper / pac_i8014W_GetSingleEndJumper .59 4.7. i8014W_ReadAI / pac_i8014W_ReadAI .61 4.8. i8014W_ReadAI / pac_i8014W_ReadAI. .61 4.8. i8014W_ConfigMagicScan / pac_i8014W_ConfigMagicScan .69 4.10. i8014W_ConfigMagicScan / pac_i8014W_ConfigMagicScan .74 4.11. i8014W_StopMagicScan / pac_i8014W_StopMagicScan .76 4.12. i8014W_ReadFIFO / pac_i8014W_ReadFIFO .78 4.13. i8014W_ReadFIFO_BlockMode / pac_i8014W_ReadFIFO_BlockMode .83 4.14. i8014W_ReadFIFO_InISR / pac_i8014W_ReadFIFO_InISR .86 4.15. i8014W_UnLockFIFO / pac_i8014W_UnLockFIFO .91 4.16. i8014W_ClearFIFO / pac_i8014W_ClearFIFO .93 4.17. i8014W_InstallMagicScanISR / pac_i8014W_InstallMagicScanISR .95 4.18. i8014W_UnInstallMagicScanISR / pac_i8014W_UnInstallMagicScanISR .99		4.3.	i8014\	W_GetFirmwareVer_L2 / pac_i8014W_GetFirmwareVer_L2	53
4.5. i8014W_GetLibDate / pac_i8014W_GetLibDate 57 4.6. i8014W_GetSingleEndJumper / pac_i8014W_GetSingleEndJumper 59 4.7. i8014W_ReadAI / pac_i8014W_ReadAI 61 4.8. i8014W_ReadAIHex / pac_i8014W_ReadAIHex 65 4.9. i8014W_ConfigMagicScan / pac_i8014W_ConfigMagicScan 69 4.10. i8014W_StartMagicScan / pac_i8014W_StartMagicScan 74 4.11. i8014W_StopMagicScan / pac_i8014W_StopMagicScan 76 4.12. i8014W_ReadFIFO / pac_i8014W_ReadFIFO. 78 4.13. i8014W_ReadFIFO_BlockMode / pac_i8014W_ReadFIFO_BlockMode 83 4.14. i8014W_ReadFIFO_InISR / pac_i8014W_ReadFIFO_InISR 86 4.15. i8014W_UnLockFIFO / pac_i8014W_UnLockFIFO 91 4.16. i8014W_ClearFIFO / pac_i8014W_ClearFIFO 93 4.17. i8014W_InstallMagicScanISR / pac_i8014W_InstallMagicScanISR 95 4.18. i8014W_UnInstallMagicScanISR / pac_i8014W_UnInstallMagicScanISR 99		4.4.	i8014\	W_GetLibVersion / pac_i8014W_GetLibVersion	55
4.6. i8014W_GetSingleEndJumper / pac_i8014W_GetSingleEndJumper		4.5.	i8014\	W_GetLibDate / pac_i8014W_GetLibDate	57
4.7. i8014W_ReadAI / pac_i8014W_ReadAI		4.6.	i8014\	W_GetSingleEndJumper / pac_i8014W_GetSingleEndJumper	59
 4.8. i8014W_ReadAIHex / pac_i8014W_ReadAIHex		4.7.	i8014\	W_ReadAI / pac_i8014W_ReadAI	61
 4.9. i8014W_ConfigMagicScan / pac_i8014W_ConfigMagicScan		4.8.	i8014\	W_ReadAIHex / pac_i8014W_ReadAIHex	65
 4.10. i8014W_StartMagicScan / pac_i8014W_StartMagicScan		4.9.	i8014\	W_ConfigMagicScan / pac_i8014W_ConfigMagicScan	69
 4.11. i8014W_StopMagicScan / pac_i8014W_StopMagicScan		4.10.	i8014\	W_StartMagicScan / pac_i8014W_StartMagicScan	74
 4.12. i8014W_ReadFIFO / pac_i8014W_ReadFIFO		4.11.	i8014\	W_StopMagicScan / pac_i8014W_StopMagicScan	76
 4.13. i8014W_ReadFIFO_BlockMode / pac_i8014W_ReadFIFO_BlockMode		4.12.	i8014\	W_ReadFIFO / pac_i8014W_ReadFIFO	78
 4.14. i8014W_ReadFIFO_InISR / pac_i8014W_ReadFIFO_InISR		4.13.	i8014\	W_ReadFIFO_BlockMode / pac_i8014W_ReadFIFO_BlockMode	83
 4.15. i8014W_UnLockFIFO / pac_i8014W_UnLockFIFO91 4.16. i8014W_ClearFIFO / pac_i8014W_ClearFIFO93 4.17. i8014W_InstallMagicScanISR / pac_i8014W_InstallMagicScanISR95 4.18. i8014W_UnInstallMagicScanISR / pac_i8014W_UnInstallMagicScanISR99 		4.14.	i8014\	W_ReadFIFO_InISR / pac_i8014W_ReadFIFO_InISR	86
 4.16. i8014W_ClearFIFO / pac_i8014W_ClearFIFO93 4.17. i8014W_InstallMagicScanISR / pac_i8014W_InstallMagicScanISR95 4.18. i8014W_UnInstallMagicScanISR / pac_i8014W_UnInstallMagicScanISR99 		4.15.	i8014\	W_UnLockFIFO / pac_i8014W_UnLockFIFO	91
 4.17. i8014W_InstallMagicScanISR / pac_i8014W_InstallMagicScanISR95 4.18. i8014W_UnInstallMagicScanISR / pac_i8014W_UnInstallMagicScanISR99 		4.16.	i8014\	W_ClearFIFO / pac_i8014W_ClearFIFO	93
4.18. i8014W_UnInstallMagicScanISR / pac_i8014W_UnInstallMagicScanISR99		4.17.	i8014\	W_InstallMagicScanISR / pac_i8014W_InstallMagicScanISR	95
		4.18.	i8014\	W_UnInstallMagicScanISR / pac_i8014W_UnInstallMagicScanISR	99

	4.19	4.19. i8014W_ClearInt / pac_i8014W_ClearInt101					
	4.20	. i8014	W_ReadGainOffset / pac_i8014W_ReadGainOffset	103			
	4.21	. i8014	W_CalibrateData / pac_i8014W_CalibrateData	106			
	4.22	. i8014	W_CalibrateDataHex / pac_i8014W_CalibrateDataHex	109			
	4.23	. i8014	W_Read_mA_GainOffset / pac_i8014W_Read_mA_GainOffset	112			
	4.24	. i8014	W_Calibrate_CH_mA / pac_pac_i8014W_Calibrate_CH_mA	114			
	4.25	. i8014	W_Calibrate_CH_mA_Hex / pac_i8014W_Calibrate_CH_mA_Hex	116			
	4.26	. pac_i	3014W_Start_Average_INT	118			
	4.27	. pac_i	3014W_Stop_Average_INT	121			
	4.28	. pac_i	3014W_ReadAIHex_Average_INT	123			
	4.29	. pac_i	3014W_ReadAI_Average_INT	125			
	4.30	. pac_i	3014W_ReadAllAlHex_Average_INT	127			
	4.31	. pac_i	3014W_ReadAllAI_Average_INT	129			
5.	Trou	bleshoot	ing	131			
	5.1.	What	to do when the data read from I-8014W seems unstable	132			
	5.2.	How t	o solve the error of FIFO LATCHED (Error Code : -6)	133			
	5.3.	How t	o Calibration / Restore defaults	134			
		5.3.1.	Calibrate I-8014(C)W on iPAC-8000	135			
		5.3.2.	Restore I-8014(C)W to defaults on iPAC-8000	139			
		5.3.3.	Calibrate the I-8014(C)W on WinCE and WES units	141			
		5.3.4.	Restore I-8014(C)W to defaults on WinCE and WES units	145			
Арр	endix	A. Error	Code	147			
Арр	Appendix B. Revision History148						
Арр	Appendix C. Revision History						

Preface

The information contained in this manual is divided into the following topics:

- Chapter 1, "Introduction" This chapter provides information related to the hardware, such as the specifications, jumper settings and wiring.
- Chapter 2, "Quick Start" This chapter provides information on how to get started, an overview of the location of the demo programs.
- Chapter 3, "Magic Scan" This chapter introduces the functions of I-8014W, such as read AI, Magic Scan, the programming procedures, and demo programs.
- Chapter 4, "API introduction" This chapter describes the functions provided in the I-8014W library together with an explanation of the differences in the naming rules used for the MiniOS7 and Windows platforms.
- Chapter 5, "Troubleshooting" This chapter provides some troubleshooting solutions should you encounter any problems while operating the I-8014W.

1. Introduction

I-8014W, I-8014CW, I-9014 and I-9014C are high performance analog input module.

I-8014W and I-9014 provided 16 single-ended or 8 differential channels.

I-8014CW and I-9014C provided 8 differential channels.

They feature 16-bit resolution, 250Ks/s sampling rates, and 4K-sample FIFO.

I-8014W/I-8014CW/I-9014/I-9014C (Hereinafter referred to as I-8014W series modules) contain an impressive scan function called Magic Scan, which are able to improve many of the functions and meets the demands of high-end users. The Magic Scan mechanism not only scans the different input channels at vastly different rates, but also at different gains.

Even in a multi-channel scan, the sampling rates can be maintained at 250KS/s.

I-8014W includes a 4K onboard FIFO buffer for A/D conversion. With the Magic Scan function and 4K FIFO, the I-8014W can easily implement high-speed and time-critical data acquisition applications.

	I-8014W/I-9014	I-8014CW/I-9014C
Input Range	+/- 10 V, +/- 5 V, +/- 2.5 V, +/- 1.25 V and +/- 20 mA	+/- 20 mA only
Input Type	Differential or Single-Ended Mode	Differential Mode only
Wire Connection for current measurement	Need external 125 ohm resistor for current measurement	Do not need external resistor for current measurement
Calibration Parameter	8 channels AI using 1 calibration parameter	8 channels AI using independent calibration parameter

The following table shows the differences between I-8014W/I-9014 and I-8014CW/I-9014C:

Applicable Platform table

Platform	OS	Module
ХРАС	XP-8000(WES)	I-8014W
	XP-8000-Atom (WES)	I-8014W
	XP-8000-WES7 (WES7)	I-8014W
	XP-8000-CE6 (WinCE 6.0)	I-8014W
	XP-8000-Atom-CE6 (WinCE 6.0)	I-8014W
	XP-9000-WES7(WES7)	I-9014
WPAC	WP-8000 (CE 5.0/7.0)	I-8014W
	WP-9000-CE7 (CE 7.0)	I-9014
LinPAC	LinPAC-8000 (Linux kernel 2.6~4.4)	I-8014W
	LP-9000/LX-9000 (Linux kernel 3.2/4.4)	I-9014
IPAC	iPAC-8000 (MiniOS7)	I-8014W

The following table shows which platform the module applies to.

1.1. Features

I-8014W/I-9014

- 16 single-ended/8 differential inputs (jumper selectable)
- Input Range : +/- 10V, +/- 5V, +/- 2.5V, +/- 1.25V, +/- 20mA(Software selectable)
- 16-bit 250KHz ADC converter
- 4K-samples FIFO buffer
- External trigger mode : post-trigger
- Internal/external trigger start

I-8014CW/I-9014C

- 8 differential inputs
- Input Range : +/- 20mA
- 16-bit 250KHz ADC converter
- 4K-samples FIFO buffer
- External trigger mode : post-trigger
- Internal/external trigger start

1.2. Specifications

Model	I-8014W/I-9014	I-8014CW/I-9014C		
Analog Output	·	·		
Channels	8-ch Differential/16-Single-ended	8-ch Differential		
Voltage Input Range	±1.25, ±2.5, ±5 V, ±10 V	-		
Current Input Range	-20 mA ~ +20 mA(Requires Optional External 125 Ω Resistor)	-20 mA ~ +20 mA		
Resolution	16-bit			
Sample Rate	Single Channel Pacer Mode: 250 kS/s Single Channel Polling Mode: 45 kS/s 8 Channels Polling Mode: 25 kS/s			
FIFO	4 k Words			
Accuracy	0.05% of FSR			
Input Mode	Polling, Pacer (Magic Scan)			
Magic Scan Mode	Mode 1: Standard Mode Mode 2: Virtual Sample and Hold			
Overvoltage Protection	-45 V ~ +60 V			
Input Impedance	20 K, 200 K, 20 M (Jumper Select)	125 Ω		
LED Indicators				
Power LED Indicator	Yes			
Isolation				
Intra-module Isolation, Field-to-Logic	2500 Vrms			
Power				
Power Consumption	2.5 W Max.			

Model	I-8014W/I-9014	I-8014CW/I-9014C		
Mechanical				
Dimension (L x W x H)	For I-8014IW: 102 mm x 30 mm x 115 mm			
	For I-9014I: 144 mm x 31 mm x 134 mm			
Environment				
Operating Temperature	-25 °C ~ +75°C			
Storage Temperature	For I-8014IW: -30 °C ~ +85°C			
	For I-9014I: -40°C ~ +85°C			
Humidity	10 % ~ 90% RH, non-condensing			

1.3. Pin Assignments

1.3.1. I-8014W/I-8014CW

	Terminal	Pin Ass	ignment		Terminal	Pin
<i>i</i> -8014W	No.	Differential	Single-ended	i-8014CW	No.	Assignment
16 CHAI	01	Trig+	Trig+	B CHAI	[n 01	Trig+
	02	Trig-	Trig-		02	Trig-
	03	V0+	V0		[= 03	I0+
	04	V0 -	V8		04	I0 -
Trig	05	V1+	V1	Trig-	[= 05	I1+
V0+ - 🚫	06	V1-	V9	10+ - 🚫	06	I1 -
	[= 07	V2+	V2		[= 07	I2+
V1 8	08	V2-	V10	n 🚫	08	I2 -
V2+ - 🛇	C= 09	V3+	V3	12+ -	[= 09	I3+
V2* - V3+ - 8	C = 10	V3-	V11	12	C = 10	I3 -
V3 🚫	C = 11	V4+	V4	в _ 🚫	[n 11	I4+
	L D 12	V4-	V12	9 14+ - 🕺 F	, D 12	I4 -
V5+ _ 💍	C = 13	V5+	V5	15+ _ 🚫	[= 13	I5+
V5 🛇	C 14	V5-	V13	15 🛇	L 0 14	I5 -
V6+	C n 15	V6+	V6		[n 15	I6+
V7+ _ 🚫 .	Lº 16	V6-	V14	17+ _ 🚫	L 16	I6 -
V7 Q	C = 17	V7+	V7	17	L 17	I7+
F.G	Lº 18	V7-	V15	F.G	Lº 18	I7-
	L 19	AGND	AGND		L 19	AGND
	20	F.G.	F.G.		20	F.G.
_						

+	I-9014						
9014 6 CHAI							
	Pin Assignment			forminal No		Pin Ass	ignment
	Differential	Single-ended		erminal No	•	Differential	Single-ended
	Trig+	Trig+	01		11	Trig-	Trig-
	V0+	V0	02		12	V0-	V8
	V1+	V1	03		13	V1-	V9
11	V2+	V2	04		14	V2-	V10
	V3+	V3	05		15	V3-	V11
	V4+	V4	06		16	V4-	V12
	V5+	V5	07		17	V5-	V13
	V6+	V6	08		18	V6-	V14
20	V7+	V7	09		19	V7-	V15
	AGND	AGND	10		20	F.G.	F.G.
Ð							

COLORON COLORON	
÷90146	
2-30140	
PWR	
1 11	
10 20	

Pin Assignment	Te	erminal No).	Pin Assignment
Trig+	01		11	Trig-
I0+	02		12	I0-
I1+	03		13	I1-
I2+	04		14	I2-
I3+	05		15	I3-
I4+	06		16	I4-
I5+	07		17	I5-
I6+	08		18	I6-
I7+	09		19	I7-
AGND	10		20	F.G.

I-9014C

1.4. Jumper Settings

1.4.1. I-8014W/I-8014CW

Tips & Warnings

I-8014CW do not have those Jumper, it is only with Differential Mode and Input impedance 20KΩ.

Differential / Single-ended Jumper Selection

Input impedance Jumper Selection

1.4.2. I-9014W/I-9014C

Tips & Warnings

I-9014C do not have those Jumper, it is only with Differential Mode and Input impedance 20 KΩ

Differential / Single-ended Jumper Selection

Input impedance Jumper Selection

Adjusting the Input impedance

I-8014W allows three input impedance options, including 20 K Ω , 200 K Ω (default setting) and 20 M Ω to meet system requirements. In most cases, 200Kk Ω is sufficient.

Note that each time the input impedance is adjusted on a calibrated module, the module must be recalibrated. Refer to the Calibration section on page 19 if you are using an I-8000 or iPAC-8000 (MiniOS7 platform controller), or refer to page 32 for details of the calibration process if you are using a module based on the WinCE or WES platform.

Select Input Impedance: $200 \text{ k}\Omega$ (Default)

Note: 1. The Jumpers should set on the same value 2. Input Impedance = 2 x setting value

1.5. Wire Connections

1.5.1. I-8014W/I-9014

1.5.2. I-8014CW/I-9014C

1.6. Block Diagram

1.6.1. I-8014W/I-9014

1.6.2. I-8014CW/I-9014C

2. Quick Start

This chapter will be accompanied by demos to explain how to implement functions such as read AI, Magic Scan, calculate AI average, calibration process.

Demos can be downloaded in the following link:

https://www.icpdas.com/en/download/show.php?num=2897

2.1. MiniOS7-based Controllers

2.1.1. Basic Function

Basic function can be used to retrieve configuration information related to I-8014W and verify the AI reading function.

Basic configuration information includes:

- Version number and published date of the library.
- FPGA version.
- Single-ended/Differential jumper settings.
- Gain and offset values for each input range.
- Data reading of each channel.

The following steps take Base_Info.exe as example and display the information of I-8014W.

Step 1. Please refer to the "Wire Connections", connect a stable signal source (such as a battery) to I-8014W

I-8014W							
Input Type	Differential	Input Type	Single-ended				
Voltage Input Wiring	$mV/V \stackrel{+}{\underline{}} V \qquad \square \stackrel{\square \stackrel{\square}{\ominus}}{\underline{}} \qquad Vin+ Vin-$	Voltage Input Wiring	mV/V + V □⊖ Vin □⊖ AGND				
Current Input Wiring	$ \begin{array}{c c} $	Current Input Wiring	$ \begin{array}{c c} \uparrow & \searrow & \Box & \forall in \\ \hline & & \Box & \Box & AGND \\ \hline & & 125\Omega & & \\ \end{array} $				

	I-8014CW					
Input Type	Differential					
Current Input Wiring	□⊖ I+ □⊖ I-					

- 1. Unused channels should be connected to GND to avoid floating.
- 2. A battery output can provide a stable enough signal for test.
- 3. A 125 Ohm resistor is required when measuring current input.
- 4. When measuring the voltage by differential input type, if the result is not as stable as the input signal, it is recommended that an additional is connected between the Vn- and the AGND (analog ground pin) to enhance the accuracy.

When measuring current input, this method has no benefit in enhancing accuracy.

Step 2: Plug I-8014W in the MiniOS7 controller, connect the power supply to the unit and connect the unit to the Host PC by RS-232 cable

Step 3: Run 7188xw.exe on the host PC and open the COM Port which is connecting to the

MiniOS7 Controller

Tips & Warnings

7188xw.exe is an interface for PC, it can help users to communicate with MiniOS7 PAC, please refer to the MiniOS7 PAC user manual for more detail.

Step 4: Run Base Info.exe on the controller and verify that basic information and AI data from each channel are correct or not, as indicated in the diagram below:

Tips & Warnings

I-8014CW/I-9014C only can select max 8 channels and +/- 20 mA Input Range

2.1.2. Magic Scan Function

The magic scan function is used for high-speed sampling of data.

This is the major function of I-8014W series module.

Configuration of Magic Scan function includes:

- Sample Channels
- Input Range
- Sample rate
- Sample count

The following steps take the MAGIC.EXE as example and display the process of data acquisition.

Step 1: Please refer to the "Wire Connections", connect a cyclically source (such as a Sine wave) to

<u>I-8014W</u>

	I-80	14W	
Input Type	Differential	Input Type	Single-ended
Voltage Input Wiring	$mV/V \stackrel{+}{\underline{}} V \qquad \square \stackrel{\square \bigoplus}{\underline{}} \qquad Vin+Vin-Vin-Vin-Vin-Vin-Vin-Vin-Vin-Vin-Vin-$	Voltage Input Wiring	$mV/V \xrightarrow{+} V \qquad \square \bigoplus \qquad Vin \\ \square \bigoplus \qquad AGND$
Current Input Wiring	$ \begin{array}{c c} $	Current Input Wiring	$ \begin{array}{c c} $

	I-8014CW						
Input Type	Differential						
Current Input Wiring							

Tips & Warnings

Unused channels should be connected to GND to avoid floating.

Step 2: Plug I-8014W in the MiniOS7 controller, connect the power supply to the unit and connect

the unit to the Host PC by RS-232 cable

Step 3: Run 7188xw.exe on the host PC and open the COM Port which is connecting to the

MiniOS7 Controller

Tips & Warnings

7188xw.exe is a interface for PC, it can help users to communicate with MiniOS7 PAC, please refer to the MiniOS7 PAC user manual for more detail.

Step 4: Run MAGIC.EXE on the controller and input parameters, as indicated in the diagram below:

Tips & Warnings

I-8014CW/I-9014C only can select max 8 channels and +/- 20 mA Input Range.

In this demonstration, there is a 50 Hz, 3 Vpp, Sine wave connect with channel 0 and channel 1.

For more detail about the attributes of Magic Scan, please refer to 3. Magic Scan.

53. 718	8XW 1.3	1 [COM4:11520	0,N,8,1],FC	=0,CTS	=1, DIR=C:\User	s\RD2-Hans_Chen	—		×
Press an Wait for	/ Key to Magic So	Start magic sc can	an						^
Magic sc	an sample	e IUU data spe	nd time = 1	lUU ms					
Magic sc	an total	spend time = 1	00 ms						
Press 's	' or 'S'	to Show AI, ot	hers to nex	t step					
Press an	v key to	Start to Print	all data:	rt and	ι Πηρατ LI IOg.	.USV			
[Idx: 0 [Idx: 2	Ch:O Ch:O	Data: 2.9669] Data: 3.0139]	[Idx: 1 [Idx: 3	Ch:1 Ch:1	Data: 3.0267] Data: 2.9257]				
[Idx: 4 [Idx: 6	I Ch:O	Data: 2.7661] Data: 2.2482]	[Idx: 5 [Idx: 7]	Ch:1 Ch:1	Data: 2.5403] Data: 1.9009]				
[Idx: 8 [Idx: 10	Ch:O Ch:O	Data: 1.5079] Data: 0.6192]	[Idx: 9 [Idx: 11]	Ch:1 Ch:1	Data: 1.0779] Data: 0.1477]				
[Idx: 12 [Idx: 14	1 Ch:O 1 Ch:O	Data:-0.3287] Data:-1 2469]	[Idx: 13 [Idx: 15	Ch:1 Ch:1	Data:-0.7971] Data:-1 6666]				
[Idx: 16	I Ch:O	Data:-2.0419]	[Idx: 17	Ch:1	Data:-2.3694]				
[Idx: 18 [Idx: 20	I ChiO	Data:-2.0305] Data:-2.9779]	[Idx: 19	Ch:1	Data:-2.8433] Data:-3.0389]				
[Idx: 22 [Idx: 24	Ch:O Ch:O	Data:-3.0316] Data:-2.7792]	[Idx: 23 [Idx: 25	Ch:1 Ch:1	Data:-2.9379] Data:-2.5519]				
[Idx: 26	1 Ch:0	Data:-2.2601]	[Idx: 27	Ch:1	Data:-1.9138]				
[Idx: 20 [Idx: 30	I Ch:O	Data:-0.6326]	[Idx: 29	Ch:1	Data:-0.1593]				
[Idx: 32 [Idx: 34	Ch:O Ch:O	Data: 0.3168] Data: 1.2363]	[Idx: 33 [Idx: 35	Ch:1 Ch:1	Data: 0.7874] Data: 1.6541]				
[Idx: 36	1 Ch:0	Data: 2.0312] Data: 2.62011	[Idx: 37	Ch:1	Data: 2.3578]				
[Idx: 38] [Idx: 40	I ChiO	Data: 2.0291] Data: 2.9626]	[Idx: 39	Ch:1	Data: 2.8323]				
[Idx: 42 [Idx: 44	Ch:O Ch:O	Data: 3.0145] Data: 2.7673]	[Idx: 43 [Idx: 45	Ch:1 Ch:1	Data: 2.9263] Data: 2.5394]				
[Idx: 46	1 Ch:0	Data: 2.2473]	[Idx: 47	Ch:1	Data: 1.9019]				
[Idx: 40 [Idx: 50	I Ch:O	Data: 0.6201]	[Idx: 49	Ch:1	Data: 0.1477]				
[Idx: 52 [Idx: 54	Ch:O Ch:O	Data:-0.3284] Data:-1.2482]	[Idx: 53 [Idx: 55	Ch:1 Ch:1	Data:-0.7971] Data:-1.6656]				
[Idx: 56	Ch:0	Data:-2.0435]	[Idx: 57	Ch:1	Data:-2.3828]				
[Idx: 50	I ChiO	Data:-2.0410] Data:-2.9785]	[Idx: 59	Ch:1	Data:-2.0435]				
[Idx: 62 [Idx: 64	Ch:O Ch:O	Data:-3.0267] Data:-2.7786]	[Idx: 63 [Idx: 65	Ch:1 Ch:1	Data:-2.9376] Data:-2.5513]				
[Idx: 66	1 Ch:0	Data:-2.2595]	[Idx: 67	Ch:1	Data:-1.9138]				
[Idx: 08 [Idx: 70	I Chil	Data:-0.6326]	[Idx: 69	Ch:1	Data:-0.1611]				
[Idx: 72 [Idx: 74	Ch:O Ch:O	Data: 0.3174] Data: 1.2366]	[Idx: 73 [Idx: 75	Ch:1 Ch:1	Data: 0.7855] Data: 1.6553]				
[Idx: 76	Ch:0	Data: 2.0319]	[Idx: 77	Ch:1	Data: 2.3596]				
[Idx: 78 [Idx: 80	I ChiO	Data: 2.0294] Data: 2.9684]	[Idx: 79	Ch:1	Data: 2.0330]				
[Idx: 82 [Idx: 84	Ch:O Ch:O	Data: 3.0139] Data: 2.7658]	[Idx: 83 [Idx: 85	Ch:1 Ch:1	Data: 2.9257] Data: 2.5372]				
[Idx: 86	I Ch:O	Data: 2.2476]	[Idx: 87	Ch:1	Data: 1.9003]				
[Idx: 88	I Ch:0	Data: 0.6195]	[Idx: 89]	Ch:1	Data: 0.1520]				
[Idx: 92 [Idx: 94	1 Ch:O I Ch:O	Data:-0.3296] Data:-1.2476]	[Idx: 93 [Idx: 95	Ch:1 Ch:1	Data:-0.7977] Data:-1.6653]				
[Idx: 96 [Idx: 98	Ch:0 Ch:0	Data:-2.0425] Data:-2.63821	[Idx: 97 [Idx: 99	Ch:1 Ch:1	Data:-2.3676] Data:-2.8439]				
Press 'A magic sc	lt + C' a an again	and input LO to !	stop log o	operatio	onPress 'q' or '	'Q' to exit progr	am, others	to Sta	rt

2.2. Windows-based Controllers

2.2.1. Basic Function

Basic function can be used to retrieve configuration information related to I-8014W and verify the AI reading function. Basic configuration information includes:

- Version number and published date of the library.
- FPGA version
- Single-ended/Differential jumper settings
- Gain and offset values for each input range
- Data reading of each channel

The following steps take pac_i8014W_ReadAI_CSharp.exe as example and display the information of I-8014W.

Step 1. Please refer to the "Wire Connections", connect a stable signal source (such as a battery) to I-8014W

	I-80	14W	
Input Type	Differential	Input Type	Single-ended
Voltage Input Wiring	$mV/V \stackrel{+}{\underline{-}} V$	Voltage Input Wiring	$mV/V \xrightarrow{+} V \qquad \square \bigoplus \qquad Vin \\ AGND \qquad AGND$
Current Input Wiring	$ \begin{array}{c c} \uparrow & \searrow \\ 125\Omega \end{array} $	Current Input Wiring	$ \begin{array}{c c} $

I-8014CW					
Input Type	Differential				
Current Input Wiring					

Tips & Warnings

Unused channels should be connected to GND to avoid floating.

Step 2. Plug I-8014W in the Windows-based controller and connect the power supply to the unit

Step 3. Run pac i8014W ReadAl CSharp.exe on the controller and verify that basic information

and AI data read from each channel are correct, as shown in the figure below:

		I-8014W S	reies Model E	asic Demo CS		
		The API 'pa User need t Cause some Step 3 : Clie	c8014W.Init' to know the n e APIs corresp ck 'Show' but	Library and FPGA Single-ended/diff	version erential jumpe	r position.
		Slot Index	c: Slo	t7 🔽		k
I_8014W_	I_9014			_ 🗆 ×	: 1	Ĩ.
For I-8014' Read gain Each 'rang Step 4 : Se	Gain value is	around 33	000. adGaind	Dffset' function	Differen	ntial
Range :	+/- 10.0 V 💌	Gain : 328	B54 Off	set : -28		
CH:0	2.999	сн:8		Read AI		
CH:1	3.003	CH:9		HEX Format		
CH:2	3.010	CH:10				
CH:3	2.994)H:11			<u> </u>	
CH:4	3.006	3H:12	Verify	the AI data from ea	ach channel.	
CH:5	2.998)H:13				
CH:6	3.020	CH:14				
CH:7	3.018	CH:15				
Exit						

Tips & Warnings

I-8014CW/I-9014C only can select max 8 channels and +/- 20 mA Input Range

2.2.2. Magic Scan Function

The magic scan function is used for high-speed sampling of data.

This is the major function of I-8014W series module.

Configuration of Magic Scan function includes:

- Sample Channels (1 for channel 0, 2 for channel 0 and channel 2 and so on)
- Input Range
- Sample rate (Max 200 KHz, depend on scan mode and Sample channels)
- Sample count

The following steps take the pac_i8014W_MagicScan_Block_CSharp.exe as example and display the process of data acquisition.

Step 1: Please refer to the "Wire Connections", connect a cyclically source (such as a Sine wave) to <u>I-8014W</u>

	I-80	14W	
Input Type	Differential	Input Type	Single-ended
Voltage Input Wiring	$mV/V \stackrel{+}{\underline{}} V \qquad \square \stackrel{\square \bigoplus}{\underline{}} \qquad Vin+Vin-Vin-Vin-Vin-Vin-Vin-Vin-Vin-Vin-Vin-$	Voltage Input Wiring	$mV/V \xrightarrow{+} V \qquad \square \Leftrightarrow \qquad Vin \\ AGND \qquad \qquad AGND \qquad \qquad$
Current Input Wiring	$ \begin{array}{c c} $	Current Input Wiring	$ \begin{array}{c c} \uparrow & \searrow & \Box & \forall in \\ \hline & & \Box & \Box & AGND \\ \hline & & 125\Omega & & \end{array} $

I-8014CW					
Input Type	Differential				
Current Input Wiring					

Tips & Warnings

Unused channels should be connected to GND to avoid floating.

Step 2. Plug I-8014W in the Windows-based controller and connect the power supply to the unit

Step 3. Run pac i8014W MagicScan Block CSharp.exe on the controller and input parameters, as indicated in the diagram below:

In this demonstration, there is a 50 Hz, 3 Vpp, Sine wave connect with channel 0 to channel 7. For more detail about the attributes of Magic Scan, please refer to 3. Magic Scan.

I-8014W	Sreies Mo	delMagic	Scan Bloc	k CS				_					
The Magio Step 5: Pl	c Scan cont lease go to	figured suc page 'Star	cessfully. rt / Show' (:lick 'Start'	button.								
Configur	ate Start	Show]				
50		Slot 7		Ju									
Model Na	ame :	I-8014W	/ I-9014		Input	chann	els, 1 n	neans d	:h0, 2 i	means cl	n0 and c	ch1 and sc	o on.
Scan Ch	iannels :	8 channe	els	🖵 Scar	n Mode :	M1:9	Standard	-					
Trigger (Source :	Software	e Commano			angement							
Sample I	Rate :	1000		~~	Index () Ind	lex 1	Index 2	Index 3	Index 4	Index 5	Index 6	Index 7
Data Fra	ame :	Edit		Chann	el CH:0	▼ CH:1				-			
Index				Range	+/-10.0 \	▼ +/-10	D.O V	Range	can be	differen	t for ead	ch channe	I. 🔼
Channel	0	1	2		Index (lex 1	And fre	elv arr	ange an	d combi	ine data.	·
Range	+/-10V	+/-10V	+/-10V	+/- Chann Bappe		CH:9							
Index Channel	8	9		-	J+7-10.0 V	/ • +/-10		-10.0 V	1-1-10.0 V		1 +/-10.0 V	Set	Close
Range	I-8014W	Sreies Mo	odelMagic	Scan Bloc	k CS				_	. 🗆 ×			
Confi	The Magi	c Scan con	figured suc	cessfully.	aliale (Ctaut)	la uttera							
	seps: P	iease yo w) paye star	nt / Show	LIILK Start	button.							
	Configu	te Start	/ Show										
	Star	t	ILAT OF MA	t									
		СНО	СН 1	СН 2	СНЗ	CH 4	СН 5	СН 6	CH 7				
	0	2.532	1.913	1.089	0.139	-0.814	-1.671	-2.361	-2.847				
	8	-3.055 2.367	-2.949 2.821	-2.547 3.026	-1.896 2.947	-1.082 2.547	-0.165 1.885	0.803	1.673				
	24	-0.791	-1.676	-2.389	-2.845	-3.031	-2.946	-2.559	-1.895				
	32	-1.075	-0.167	0.785	1.675	2.377	2.828	3.024	2.935				
	40	2.550	1.896	1.061	0.149	-0.784	-1.664	-2.383	-2.860				
	48	-3,030	-2.927	-2.551	-1.923	-1.081	-U.128 1 899	1.078	1.647				
	64	-0.815	-1.664	-2.370	-2.853	-3.055	-2.949	-2.529	-1.906				
	72	-1.100	-0.157	0.811	1.668	2.354	2.844	3.041	2.920				
	80	2.527	1.905	1.093	0.145	-0.812	-1.682	-2.365	-2.833				
	88	-3.048	-2.946	-2.546	-1.898	-1.087	-0.163	0.809	1.673				
	96	2.357	2.827	3.039	2.945	2.532	1.892	1.076	0.154				
	112	-0.805	-1.664	-2,366	-2.833	-3.042	-2.954	-2,549	2,939				
	120	2.536	1.884	1.075	0.163	-0.803	-1.690	-2.384	-2,835				
	128	-3.029	-2.951	-2.558	-1.907	-1.065	-0.152	0.784	1.667				
	Total Sc	anned 1	.000	9	Scan Time((us) 100	17						
										Exit			

2.2.3. Average Function

The Average function is used for calculate data average with Magic Scan function.

After this function is activated, it will continue to calculate in the bottom background, and users can read back the data by Polling.

Tips & Warnings

This function can only use on WinCE6.0, WinCE7.0 PACs.

Configuration of Average function includes:

- Sample Channels (always 8 channels in Differential or 16 channels in Single-Ended)
- Input Range (every channels are the same range)
- Sample rate (Max 5 KHz)
- Average level (Calculate the average value of every 256 data at most)

The following steps take the pac_i8014W_ReadAI_Average_AllSlot_CSharp.exe as example and display the process of data acquisition.

Step 1: Please refer to the "Wire Connections", connect a cyclically source (such as a Sine wave) to

<u>I-8014W</u>

	I-80	14W	
Input Type	Differential	Input Type	Single-ended
Voltage Input Wiring	$mV/V \stackrel{+}{\underline{}} V \qquad \square \stackrel{\square}{\underline{}} \qquad Vin+ Vin-$	Voltage Input Wiring	mV/V + V □⊖ Vin G⊖ AGND
Current Input Wiring	$ \begin{array}{c c} $	Current Input Wiring	$ \begin{array}{c c} \uparrow & \searrow & \Box & \forall in \\ \hline & & \Box & \Box & AGND \\ \hline & & 125\Omega & & \\ \end{array} $

	I-8014CW					
Input Type	Differential					
Current Input Wiring						

Tips & Warnings

Unused channels should be connected to GND to avoid floating.

Step 2. Plug I-8014W in the Windows-based controller and connect the power supply to the unit

parameters, as indicated in the diagram below:

In this demo, there is a 50 Hz, 1.5 Vpp, noise connect with channel 0 to channel 7, shown as below picture:

The results are shown in the below picture:

I-8014W Sreies Model All Slot Average Demo CS												
The average function has been successfully started												
Change 'Slot Index' to read another model or check the 'HEX Format' to get the HEX format data												
	Range	Rate	Average Level	Slot II	ndex	Slot 7:I-	80: 🔽	□ HEX	Format			
🗹 All Slot	0:+/-1 🔽	1000	Level 7:every 256 (СНО	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7
🔲 Slot 0	~	0	V	Data	0.046	0.048	0.047	0.047	0.049	0.049	0.050	0.052
🔲 Slot 1	~	0	V	Max	0.070	0.070	0.069	0.068	0.069	0.068	0.069	0.069
🔲 Slot 2	~	0	v	Min	-0.02	-0.02	-0.03	-0.03	-0.03	-0.02	-0.03	-0.03
🔲 Slot 3	v	0		Delta	0.098	0.099	0.099	0.099	0.099	0.098	0.099	0.099
🔲 Slot 4	~	0	_		CH8	CH9	CH10	CH11	CH12	CH13	CH14	CH15
🔲 Slot 5	~	0	V	Data								
🔲 Slot 6	_	0		Max								
🔽 Slot 7	0:+/-1 🔽	1000	Level 7:every 256 (🔽	Min								
Data refresh frequency(ms) 200 Delta												
Start	Stop											EXIT

2.3. Linux-based Controllers

ICP DAS provides a range of demo programs for different platforms that can be used to verify the functions of the I-8014W/9014. The source code contained in these programs can also be reused in your own custom programs if needed.

We need to check the following steps before running the program.

- 1. First, user need to download LinPAC SDK, which is includes GNU toolchain, Libraries, header, examples files, etc.
- 2. Check the power cable, Ethernet cable, VGA monitor, the communication cable between controller and PC has been connected well, and then check the i-8014W/9014 has been plugged in the controller.
- 3. Next, check the communication between controller and PC is fine, and download the demo program files to the controller.
- 4. The following is a list of the locations where both the demo programs and associated libraries (libi8k.a) can be found on either the ICP DAS web site, and user can find the related files in the below website:

PRRODUCT	CPU	DOWNLOAD LINK				
LP-8x4x	PXA270	https://www.icpdas.com/en/download/show.php?num=982				
LP-8x2x/9000	AM335x	https://www.icpdas.com/en/download/show.php?num=9				
LX-8000/9000	x86/E38xx	http://www.icpdas.com/en/download/show.php?num=904				

3. Magic Scan

This chapter provides details related to Magic Scan, which is a key function included on the I-8014W series modules for multi-channel analog data acquisition at high sampling rates.

The attributes and operation steps of Magic Scan included:

I. Configuration

- Channels
- Data arrangement
- Sample Rate
- Scan Mode
 - Standard
 - Sample and Hold
- Trigger Source
 - Software Trigger
 - Interrupt Trigger
 - External Trigger
 - Rising edge
 - Falling edge

II. Startup

III. Read Raw Data

- Block Mode
- Non-Block Mode
- Interrupt Mode (Need install ISR function)
- IV. Stop
- V. Calibrate raw data
3.1. Configuration

Before start sampling data, user needs to configure Magic Scan settings, the settings include as follow:

<u>Channels:</u>

Set the number of channels to sample data.

• Data arrangement:

Data arrangement allows users to arrange the data that store into FIFO.

Sample Rate:

Set the data sampling frequency, I-8014W uses independent internal hardware clock to trigger AD.

The actual frequency might be different from the setting.

<u>4K FIFO with interrupt to reduce CPU loading:</u>

There is a FIFO for interrupt service notification.

This feature can increase the performance for sampling application.

The program does not need to sample data all the time.

Only need to wait for the interrupt notification when the data count reaches the limit level

<u>Scan Mode:</u>

There are two types of scan mode, one is a standard and another is virtual sample and hold.

1. <u>Standard:</u>

Every clock samples only one channel, such as below:

2. <u>Sample and Hold:</u>

Every clock samples all channels that have been set.

While set mode as Sample and Hold,

Sample rate can be 125 KHz with one channel or 62.5 KHz with 2 channels and so on.

Channels	Max Rate	Total Rate
1	125KHz	125KHz
2	62.5KHz	125KHz
4	31.25 KHz	125 KHz

<u>Trigger Source:</u>

There are three types of trigger source, software trigger, interrupt trigger and external trigger. This setting decides the way of starting sample data.

1. <u>Software Trigger:</u>

When set as softest trigger, Magic Scan will be start immediately when the application calls startup API.

If there are two or more modules, users need to startup Magic Scan for each module.

2. <u>Interrupt trigger:</u>

When set as interrupt trigger, users need to install an ISR function to read data before calls startup API.

3. External trigger:

When set as external trigger, users need to output a pulse to modules after call startup API.

This trigger can be set as either rising edge or falling edge.

Modules will wait until they receive the external signal from the Trig+ and Trig- pins and then startup Magic Scan.

This method is very helpful for activate two or more modules in the same time.

3.2. Startup

After configure settings, call the startup API will be fine.

In the sampling process, data will be saved in the FIFO automatically, users need to read back data to avoid FIFO overflow.

Depending on the application and trigger source, users need to read raw data during the sampling or read all raw data at the end of acquisition.

3.3. Read Raw Data

There are three ways to read raw data.

Block Mode:

After startup Magic Scan, call this API will be fine.

This mode is easier to develop application.

But, this mode will block the program until the sampling finished.

Non-Block Mode:

This mode requires continuous polling to get data from FIFO to avoid overflow.

It has better processing efficiency of CPU resources.

• Interrupt Mode:

This Mode requires users to install an ISR function before startup Magic Scan, and get data from FIFO in the ISR function.

Whenever the data in FIFO reaches a certain amount, an interrupt signal will be output to notify the CPU to read data from FIFO.

This mode requires less CPU loading.

3.4. Stop

After the acquisition is complete, users need to stop Magic Scan, in order to restore the status of module and driver, such as clear FIFO, velar buffer.

Tips & Warnings

Users should read all the data before stop Magic Scan; otherwise the data will be cleared.

3.5. Calibrate Raw Data

After acquire data, those data need to be calibrated to be the actual physical quantity.

Bring the data and few parameter into the calibrate APIs will be fine.

Tips & Warnings

I-8014W equipped with a 4 k-sample FIFO buffer which can store 4096 data samples from Magic Scan to ensure that no data is lost.

The acquisition data is sequentially saved to the FIFO buffer during the scan process. To prevent the FIFO buffer from being filled, the data needs to be read from the FIFO buffer within a specific timeframe.

If the FIFO buffer is filled, data can no longer be saved until a command is executed that clears the FIFO buffer. In contrast, if data is read from the FIFO buffer too frequently, CPU resources will be wasted and performance will be affected.

To achieve the optimum balance, two modes for transferring data from the FIFO are provided, polling mode and interrupt mode.

4. API introduction

ICPDAS supplies a range of C/C++ API functions for the I-8014(C)W/I-9014(C) module.

When developing a program, refer to either the 8014W.h header file, or the API functions described in the following sections for more detailed information.

ICPDAS also supplies a range of C# function that can be used to develop.NET programs, these functions are ported from the relevant C/C++ functions.

Download link: https://www.icpdas.com/en/download/show.php?num=2897

API Naming Table

The following table shows the API names on different platforms and the beginning of API.

Diatform	Droduct included	API prefix characters C / C++ C#	
Flation		C / C++	C#
Windows CE5	I-8014W /I-8014CW		
Windows CE6	I-8014W /I-8014CW		
Windows CE7	I-8014W /I-8014CW I-9014 / I-9014C	"pac_i8014W_"	"pac8014Wnet.pac8014W."
WES	I-8014W /I-8014CW	+ function name	+ function name
WES7	I-8014W /I-8014CW I-9014 / I-9014C		
MiniOS7	I-8014W /I-8014CW	"i8014W_" + function name	
	I-8014W /I-8014CW	"I8014W_" + function name	Null
LINUX	I-9014 / I-9014C	"I9014_" + function name	

The following is an overview of the functions provided for I-8014W series modules.

Detailed information related to individual functions can be found in the following sections.

API for I-8014(C)W and I-9014(C)

ΑΡΙ	Description
i8014W_Init pac_i8014W_Init	This function is used to initialize the driver and modules, it must be call once for each module at the beginning of program.
i8014W_GetFirmwareVer_L1 pac_i8014W_GetFirmwareVer_L1	This function is used to read the version number of the first FPGA.
i8014W_GetFirmwareVer_L2 pac_i8014W_GetFirmwareVer_L2	This function is used to read the version number of the secondary FPGA.
i8014W_GetLibVersion pac_i8014W_GetLibVersion	This function is used to read the version number of the 8014W.lib.
i8014W_GetLibDate pac_i8014W_GetLibDate	This function is used to read the release date of the 8014W.lib.
i8014W_GetSingleEndJumper pac_i8014W_GetSingleEndJumper	This function is used to read the single-ended/differential jumper position on the module.
i8014W_ReadAl pac_i8014W_ReadAl	This function is used to read the input from a specific channel in float format.
i8014W_ReadAlHex pac_i8014W_ReadAlHex	This function is used to read the input from a specific channel in hexadecimal format.
i8014W_ConfigMagicScan pac_i8014W_ConfigMagicScan	This function is used to configure all the parameters when using Magic Scan, and it should be called before any Magic Scan instructions.
i8014W_StartMagicScan pac_i8014W_StartMagicScan	This function is used to start Magic Scan.

ΑΡΙ	Description
i8014W_StopMagicScan	This function is used to stop Magic Scan.
pac_i8014W_StopMagicScan	
i8014W_ReadFIFO	This function is used to read data from the FIFO buffer
pac_i8014W_ReadFIFO	after the Magic Scan function has been triggered.
i8014W_ReadFIFO_BlockMode	This function is used to read data from the FIFO buffer in
pac_i8014W_ReadFIFO_BlockMode	block mode after the magic scan is started.
i8014W_ReadFIFO_InISR	This function is used to read data from the FIFO buffer
pac_i8014W_ReadFIFO_InISR	after the ISR function has been installed and the magic
	scan is started.
i8014W_UnLockFIFO	This function is used to unlock the FIFO buffer when it is
pac_i8014W_UnLockFIFO	locked after being filled.
i8014W_ClearFIFO	This function is used to clear the FIFO buffer after the
pac_i8014W_ClearFIFO	Unlock FIFO function has been executed.
i8014W_InstallMagicScanISR	This function is used to install the ISR to control interrupt
pac_i8014W_InstallMagicScanISR	events form the FIFO buffer.
i8014W_UnInstallMagicScanISR	This function is used to uninstall the Magic Scan ISR.
pac_i8014W_UnInstallMagicScanISR	
i8014W_ClearInt	This function is used to clear the status of the Magic Scan
pac_i8014W_ClearInt	interrupts.

API for I-8014W and I-9014

ΑΡΙ	Description
i8014W_ReadGainOffset pac_i8014W_ReadGainOffset	This function is used to obtain the gain and offset values on each input type for I-8014W/I-9014.
i8014W_CalibrateData pac_i8014W_CalibrateData	This function is used to calibrate the Magic Scan raw data and convert the data to a float format.
i8014W_CalibrateDataHex pac_i8014W_CalibrateDataHex	This function is used to calibrate the Magic Scan raw data and convert the data to a hexadecimal format.

API for I-8014CW and I-9014C

ΑΡΙ	Description
i8014W_Read_mA_GainOffset pac_i8014W_Read_mA_GainOffset	This function is used to obtain the gain and offset values on each input type for I-8014CW/I-9014C.
i8014W_Calibrate_CH_mA pac_i8014W_Calibrate_CH_mA	This function is used to calibrate the Magic Scan raw data and convert the data to a float format.
i8014W_Calibrate_CH_mA_Hex pac_i8014W_Calibrate_CH_mA_Hex	This function is used to calibrate the Magic Scan raw data and convert the data to a hexadecimal format.

API for I-8014(C)W and I-9014(C) on only CE6.0, CE7.0 and Linux platform

ΑΡΙ	Description
pac_i8014W_Start_Average_INT	This function is used to startup calculate data average with Magic Scan function, the "pac_i8014W_Init" will also be called.
pac_i8014W_Stop_Average_INT	This function is used to stop the Average Function.
pac_i8014W_ReadAIHex_Averag e_INT	This function is used to read one calibrated HEX format AI data
pac_i8014W_ReadAI_Average_I NT	This function is used to read one calibrated float format AI data
pac_i8014W_ReadAllAlHex_Ave rage_INT	This function is used to read multiple calibrated HEX format AI data
pac_i8014W_ReadAllAI_Average _INT	This function is used to read multiple calibrated float format AI data

4.1. i8014W_Init / pac_i8014W_Init

This function is used to initialize the driver and module.

Syntax

For MiniOS7

short i8014W_Init(int slot);

For Windows (CE and WES)

short pac_i8014W_Init(int slot);

For Linux

short i8014W_Init(int slot);
short i9014_Init(int slot);

// for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

- 0 = initialized I-8014W series module successfully.
- -1 = No I-8014W series module in this slot.

Note

This function must be called once for each I-8014W series module.

If there are two or more modules, user needs call i8014W_Init function for each module individually by passing the slot number where the I-8014W/I-9014 module is plugged into.

[C/C++]

```
int slot=0;
if(i8014W_Init(slot)==0){ // initialized successfully.
}
```

[C#]

int slot=0;	
if(pac8014Wnet.pac8014W.Init(slot)==0) {	// initialized successfully.
}	

[C] (for LinPAC)

```
int main(){
    int slotIndex, err, ret;
    ret=Open_Slot(slotIndex);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slotIndex, ret);
        return (-1);
    }
    err=i8014W_Init(slotIndex);
    if(err==0)
    printf("There is an I-8014W module in slot %d\n", slotIndex);
    else
    printf("There is no I-8014W module in slot %d\n", slotIndex);
    Close_Slot();
    return 0;
}
```

4.2. i8014W_GetFirmwareVer_L1 / pac_i8014W_GetFirmwareVer_L1

This function is used to retrieve the version number of the primary FPGA firmware and troubleshooting or recording purposes.

Syntax

For MiniOS7

short i8014W_GetFirmwareVer_L1(int slot);

For Windows (CE and WES)

short pac_i8014W_GetFirmwareVer_L1(int slot);

For Linux

short i8014W_GetFirmwareVer_L1(int slot); short i9014_GetFirmwareVer_L1(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

The version number of the first FPGA.

[C/C++]

short ver=0, slot=0;

ver= i8014W_GetFirmwareVer_L1(slot);

[C#]

Int slot=0, ver=0;

ver =pac8014Wnet.pac8014W.FirmwareVer_L1(slot);

[C] (for LinPAC)

```
int main(){
    int ver=0, slot=1;
    Open_Slot(slot);
    i8014W_Init(slot); // initialize
    ver= i8014W_GetFirmwareVer_L1(slot);
    Close_Slot();
    return 0;
}
```

4.3. i8014W_GetFirmwareVer_L2 / pac_i8014W_GetFirmwareVer_L2

This function is used to retrieve the version number of the secondary FPGA firmware and troubleshooting or recording purposes.

Syntax

For MiniOS7

short i8014W_GetFirmwareVer_L2(int slot);

For Windows (CE and WES)

short pac_i8014W_GetFirmwareVer_L2(int slot);

For Linux

short i8014W_GetFirmwareVer_L2(int slot); short i9014_GetFirmwareVer_L2(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

The version number of the secondary FPGA

[C/C++]

short ver=0, slot=0;

ver= i8014W_GetFirmwareVer_L2(slot);

[C#]

Int slot, ver;

ver =pac8014Wnet.pac8014W.FirmwareVer_L2(slot);

[C] (for LinPAC)

```
int main(){
    int ver=0, slot=1;
    Open_Slot(slot);
    i8014W_Init(slot); // initialize
    ver= i8014W_GetFirmwareVer_L2(slot);
    Close_Slot();
    return 0;
}
```

4.4. i8014W_GetLibVersion / pac_i8014W_GetLibVersion

This function is used to retrieve the version number of library and troubleshooting or recording purposes.

Syntax

For MiniOS7

short i8014W_GetLibVersion(void);

For Windows (CE and WES)

short pac_i8014W_GetLibVersion(void);

For Linux

short i8014W_GetLibVersion(void);
short i9014_GetLibVersion(void);

// for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

None

Return Values

The version number of library.

[C/C++]

short version;

version = i8014W_GetLibVersion();

[C#]

Int version;

version = pac8014Wnet.pac8014W.LibVersion();

[C] (for LinPAC)

in	t main(){ int slot=1, version;	
	Open_Slot(slot);	
	i8014W_Init(slot);	// initialize
	version = i8014W_GetLib	Version();
_	Close_Slot(); return 0;	
}		

4.5. i8014W_GetLibDate / pac_i8014W_GetLibDate

This function is used to retrieve the release date of library and troubleshooting or recording purposes.

Syntax

For MiniOS7

void i8014W_GetLibDate(char *LibDate);

For Windows (CE and WES)

void pac_i8014W_GetLibDate(char libDate[]);

Parameter

*libDate:

[Output] the release date of library.

Return Values

None

[C/C++]

char libDate [32];

i8014W_GetLibDate(libDate);

[C#]

string version;

version = pac8014Wnet.pac8014W.LibDate();

4.6. i8014W_GetSingleEndJumper / pac_i8014W_GetSingleEndJumper

This function is used to retrieve the single-ended/differential jumper position of the module.

Syntax

For MiniOS7

short i8014W_GetSingleEndJumper(int slot);

For Windows (CE and WES)

short pac_i8014W_GetSingleEndJumper(int slot);

For Linux

short i8014W_GetSingleEndJumper(int slot); short i9014_GetSingleEndJumper(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

- 0: The jumper is in the differential position.
- 1: The jumper is in the single-ended position.

[C/C++]

short jumper,slot;

```
jumper = i8014W_GetSingleEndJumper(slot);
```

[C#]

short jumper, slot;

jumper = pac8014Wnet.pac8014W.SingleEndJumper(slot);

[C/C++]

```
int main(){
    int slot=1, jumper=0, maxCh=0;
    Open_Slot(slot);
    i8014W_Init(slot); // initialize
    jumper = i8014W_GetSingleEndJumper(slot);
    Close_Slot();
    return 0;
}
```

4.7. i8014W_ReadAI / pac_i8014W_ReadAI

This function is used to read a floating point input (calibrated) from one specified channel.

Syntax

For MiniOS7

short i8014W_ReadAl(int slot, int ch, int gain, float* fVal);

For Windows (CE and WES)

short pac_i8014W_ReadAl(int slot, short ch, short gain, float* fVal);

For Linux

short i8014W_ReadAl(int slot, int ch, int gain, float* fVal); short i9014_ReadAl(int slot, int ch, int gain, float* fVal); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Ch:

specifies the channel number, 0 - 7 for differential input, or 0 - 15 for single-ended input.

Gain:

```
specifies the input type (0 – 4), where:0: +/-10 V, 1: +/-5 V, 2: +/-2.5 V, 3: +/-1.25 V, 4: +/-20 mA
```

*fVal:

[Output] the floating-point data.

Return Values

0 = No Error

Note

I-8014CW/I-9014C only can select max 8 channels and +/- 20 mA Input Range.

The following pictures show the scale of voltage and data and how to calculate the hexadecimal data into floating data.

[C/C++]

int slot, ch, gain; float fVal=0.0; i8014W_ReadAl(slot, ch, gain, &fVal);

[C#]

int slot, ch, gain; float fVal=0.0; pac8014Wnet.pac8014W.ReadAl(slot, ch, gain, ref fVal);

[C] (for LinPAC)

```
int main(){
int slot=1, ch, gain, ret;
float fVal=0.0;
gain = 0; // "+/-10V"
ret=Open_Slot(slot);
if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
       return (-1);
}
i8014W_Init(slot);
                    // initialize
for(ch=0;ch<8;ch++) {</pre>
  i8014W ReadAl( slot, ch, gain, &fVal);
  printf("\n[%02d]= [ %05.4f ]", ch, fVal);
}
Close_Slot(slot);
return 0;
}
```

4.8. i8014W_ReadAlHex / pac_i8014W_ReadAlHex

This function is used to read a hexadecimal input (calibrated) from one specified channel.

Syntax

For MiniOS7

short i8014W_ReadAlHex(int slot, int ch, int gain, short* hVal);

For Windows (CE and WES)

short pac_i8014W_ReadAlHex(int slot, short ch, short gain, short* hVal);

For Linux

short i8014W_ReadAIHex(int slot, int ch, int gain, short* hVal);// for LinPAC-8000 short i9014_ReadAIHex(int slot, int ch, int gain, short* hVal); // for LinPAC-9000, *LX-9000*

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Ch:

specifies the channel number, 0 - 7 for differential input, or 0 - 15 for single-ended input.

Gain:

specifies the input type (0 – 4), where:0: +/-10 V, 1: +/-5 V, 2: +/-2.5 V, 3: +/-1.25 V, 4: +/-20 mA

*hVal:

[Output] the hexadecimal data.

Return Values

0 = No Error

Note

I-8014CW/I-9014C only can select max 8 channels and +/- 20 mA Input Range.

The following pictures show the scale of voltage and data.

[C/C++]

int slot, ch, gain;

short hVal=0.0;

i8014W_ReadAIHex(slot, ch, gain, &hVal);

[C#]

int slot, ch, gain;

int hVal=0.0;

pac8014Wnet.pac8014W.ReadAIHex(slot, ch, gain, ref hVal);

[C] (for LinPAC)

int slot, ch, gain;		
short hVal=0.0;		
Open_Slot(slot);		
i8014W_Init(slot);	// initialize	
i8014W_ReadAlHex(slot, ch, gain, &hVal);		

4.9. i8014W_ConfigMagicScan / pac_i8014W_ConfigMagicScan

This function is used to configure all the parameters when using Magic Scan, and should be called before executing any Magic Scan instructions.

Syntax

For MiniOS7	
<pre>void i8014W_ConfigMagicScan(int slot, int chArr[], int gainArr[], int scanChCount, float sampleRate, int scanMode, int triggerSource, int triggerState , float* realSampleRate);</pre>	

For Windows (CE and WES)

```
void pac_i8014W_ConfigMagicScan(
    int slot, short chArr[], short gainArr[], short scanChCount, float sampleRate, short
scanMode,
    short triggerSource, short triggerState, float* realSampleRate
);
```

For Linux

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

chArr[]:

Create an array that used to set the channels to be scanned. The channel indices define the scanning order; the maximum number of channels is 16.

gainArr[]:

Create an array that used to set the input type for the corresponding channel with the same index as stored in chArr[], where: 0: +/-10 V, 1: +/-5 V, 2: +/-2.5 V, 3: +/-1.25 V, 4: +/-20 mA

scanChCount:

Number of the channels, that have been added to chArr[].

sampleRate:

The total sampling rate, 2 – 250 kHz.

scanMode:

- 1: Standard mode
- 2: Virtual Sample and Hold mode

triggerSource:

- 0: Software trigger
- 1: Internal hardware trigger
- 2: External hardware trigger

triggerState:

0: Rising edge trigger. This is only valid when using an external hardware trigger.

1: Falling edge trigger. This is only valid when using an external hardware trigger.

*realSampleRate:

[Output] the real sampling rate that was used by the I-8014W.

Return Values

None

Note

I-8014CW/I-9014C only can select max 8 channels and +/- 20 mA Input Range

[C/C++]

```
int slot, chArr[16], gainArr[16], scanChCount;
float sampleRate, realsampleRate;
int scanMode, triggerSource, triggerState;
                    // element 0 assigned to channel 0
chArr[0]=0;
...
chArr[15]=15;
                    // element 15 assigned to channel 15
gainArr[0]=0;
                    // element 0 assigned to input type 0
...
                    // element 15 assigned to input range 4
gainArr[15]=4;
                    //only sample chArr[0] (channel 0 )
scanChCount=1;
sampleRate=25000.0; //set the sample rate to 25 KHz
scanMode=1;
                    // use M1 standard mode
triggerSource=1; // use internal interrupt signal Mode
triggerState=0;
i8014W ConfigMagicScan(slot, chArr, gainArr, scanChCount, sampleRate,
scanMode,triggerSource,triggerState,& realsampleRate);
```

[C#]

```
int slot, chArr[16], gainArr[16], scanChCount;
float sampleRate, realsampleRate;
int scanMode, triggerSource, triggerState;
chArr[0]=0; // element 0 assigned to channel 0
...
chArr[15]=15;
               // element 15 assigned to channel 15
                   // element 0 assigned to input type 0
gainArr[0]=0;
...
gainArr[15]=4; // element 15 assigned to input range 4
scanChCount=1; //only sample chArr[0] (channel 0 )
sampleRate=25000.0; //set the sample rate to 25 KHz
scanMode=1; // use M1 standard mode
triggerSource=1; // use internal interrupt signal Mode
triggerState=0;
pac8014Wnet.pac8014W.ConfigMagicScan(slot, chArr, gainArr, scanChCount, sampleRate,
scanMode, triggerSource, triggerState, ref realsampleRate);
```
[C] (for LinPAC)

int slot, chArr[16], gainArr[16], scanChCount, scanMode, triggerSource, triggerState;
float sampleRate, realsampleRate;

chArr[0]=0;	// element 0 assigned to channel 0	
chArr[15]=15;	// element 15 assigned to channel 15	
gainArr[0]=0;	// element 0 assigned to input type 0	
gainArr[15]=4;	// element 15 assigned to input range 4	
scanChCount=1;	//only sample chArr[0] (channel 0)	
sampleRate=25000.0; //set the sample rate to 25 KHz		
scanMode=1;	// use M1 standard mode	
triggerSource=1;	// use internal interrupt signal Mode	
triggerState=0;		
Open_Slot(slot);		
i8014W_Init(slot);		
i8014W_ConfigMagicScan(slot, chArr, gainArr, scanChCount, sampleRate, scanMode,		

I-8014(C)W/I-9014(C) I/O Module User Manual

triggerSource, triggerState, & realsampleRate);

4.10. i8014W_StartMagicScan / pac_i8014W_StartMagicScan

This function is used to start Magic Scan. Once Magic scan starts, the converted data is immediately save to FIFO. When an external hardware trigger is selected, after this function is executed, module will wait until receive a trigger signal.

Syntax

For MiniOS7 short i8014W_StartMagicScan(int slot); For Windows (CE and WES)

short pac_i8014W_StartMagicScan(int slot);

For Linux

short i8014W_StartMagicScan(int slot); short i9014_StartMagicScan(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

0 = No Error

[C/C++]

int slot;

i8014W_StartMagicScan(slot);

[C#]

int slot;

pac8014Wnet.pac8014W.StartMagicScan(slot);

[C] (for LinPAC)

int main(){	
int slot;	
Open_Slot(slot);	
i8014W_Init(slot); i8014W_StartMagicScan(slot); Close_Slot(slot);	
return 0;	
}	

4.11. i8014W_StopMagicScan / pac_i8014W_StopMagicScan

This function is used to stop Magic Scan.

All operations for saving data to the FIFO buffer are also stopped because no data will be converted.

Syntax

For MiniOS7

short i8014W_StopMagicScan(int slot);

For Windows (CE and WES)

short pac_i8014W_StopMagicScan(int slot);

For Linux

short i8014W_StopMagicScan(int slot); short i9014_StopMagicScan(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

0 = No Error

[C/C++]

int slot;

i8014W_StopMagicScan(slot);

[C#]

int slot;

pac8014Wnet.pac8014W.StopMagicScan(slot);

[C/C++]

```
int main(){
    int slot;
    Open_Slot(slot);
    i8014W_Init(slot);
    i8014W_StopMagicScan(slot);
    Close_Slot(slot);
    return 0;
}
```

4.12. i8014W_ReadFIFO / pac_i8014W_ReadFIFO

After starting Magic Scan function, user needs call any one of reading FIFO functions to obtained data from FIFO.

This one is used to read data from FIFO in Non-Block mode, users need to keep calling this function to avoid FIFO overflow until all data are obtained, and then stop Magic Scan.

Syntax

For MiniOS7	For N
short i8014W_ReadFIFO(int slot, shor thexData[], shor treadCount, short* dataCountFromFIFO);	short int sl shor shor short);
For Windows (CE and WES)	For V

short pac_i8014W_ReadFIFO(
int slot,
shor thexData[],
shor treadCount,
short* dataCountFromFIFO
);

For Linux

short i8014W_ReadFIFO(int slot, shor thexData[], shor treadCount, short* dataCountFromFIFO); // for LinPAC-8000 short i9014_ReadFIFO(int slot, shor thexData[], shor treadCount, short* dataCountFromFIFO); // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

hexData []:

Specifies the starting address of the data array used to store the data read in hexadecimal format.

readCount:

Specifies the amount of data required.

* dataCountFromFIFO:

[Output] the amount of data read in this process.

Total sample rate	default read count
<1000	8
>1000, <4000	16
>4000, <10000	32
>10000, <12000	64
>12000, <20000	128
>20000, <32000	256
>32000, <40000	512
>40000	2048

Return Values

0 = No Error

[C/C++]

```
int slot, ret;
short buffer[5000] ,hexData[204800], readCnt=0, readCntfromfifo=0;
long totalRead =0, totalSaved, TargetCnt=10000;
pac i8014W StartMagicScan(slot);
while(true){
  ret= pac_i8014W_ReadFIFO(slot, buffer, readCnt, &readCntfromfifo);
  if(ret==FIFO_LATCHED){
       pac_i8014W_StopMagicScan(slot);
       break;
  }
  else{
       if(ReadCntFromFIFO>0){
            memcpy(hexData + totalRead, buffer, sizeof(short)*(ReadCntFromFIFO));
            totalRead+=ReadCntFromFIFO;
            if(totalRead >= TargetCnt){
                pac_i8014W_StopMagicScan(slot);
                break;
           }
       }
}
}
```

[C#]

```
int slot;
short hexData[8192], totalScaned=0,TargetCnt=1000, readCnt=0;
pac8014Wnet.pac8014W.StartMagicScan(slot);
while(true){
  pac8014Wnet.pac8014W.ReadFIFO (slot,hexData+totalScaned,
TargetCnt-totalScaned,&readCnt);
  if(readCnt>0){
      totalScaned+=readCnt;
       if(totalScaned>= TargetCnt){
           pac8014Wnet.pac8014W.StopMagicScan(slot);
           break;
      }
  }
  if(readCnt==MAX_FIFO || totalScaned>=TargetCnt){
       pac8014Wnet.pac8014W.StopMagicScan(slot);
  }
}
```

[C] (for LinPAC)

```
int slot, ret;
short hexData[8192] , totalScaned=0,TargetCnt=1000, readCnt=0;
Open_Slot(slot);
                                           // initialize
i8014W_Init(slot);
i8014W_StartMagicScan(slot);
while(true){
  ret= i8014W ReadFIFO (slot,hexData+totalScaned, TargetCnt-totalScaned,&readCnt);
  if(readCnt>0){
       totalScaned+=readCnt;
       if(totalScaned>= TargetCnt){
            i8014W_StopMagicScan(slot);
            break;
       }
  }
  if(readCnt==MAX_FIFO || totalScaned>=TargetCnt){
       i8014W_StopMagicScan(slot);
  i8014W_UnLockFIFO(slot);
       i8014W_ClearFIFO(slot);
  }
}
```

4.13. i8014W_ReadFIFO_BlockMode / pac_i8014W_ReadFIFO_BlockMode

After starting Magic Scan function, user needs call any one of reading FIFO functions to obtained data from FIFO.

This one is used to read data from FIFO in Block mode, users need to call this function after starting the Magic Scan function.

The application will remain blocked until the sampling is completed.

Syntax

For MiniOS7

short i8014W_ReadFIFO_BlockMode(
int slot, short dataBuf[], long readCount,long * dataCountFromFIFO
);

For Windows (CE and WES)

short pac_i8014W_ReadFIFO_BlockMode(
int slot, short dataBuf[], long readCount,long *dataCountFromFIFO
);

For Linux

short i8014W_ReadFIFO_BlockMode(
int slot, short dataBuf[], long readCount,long * dataCountFromFIFO); // for LinPAC-8000
short i9014_ReadFIFO_BlockMode(
int slot, short dataBuf[], long readCount,long * dataCountFromFIFO); // for LP-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

dataBuf []:

Specifies the starting address of the data array used to store the data read in hexadecimal format.

readCount:

specifies the amount of data required.

* dataCountFromFIFO:

[Output] the amount of data read in this process.

Return Values

0 = No Error

Example

[C/C++]

```
int slot,ret;
short buffer [10000] , readCntfromfifo=0;
long TargetCnt=10000;
ret=pac_i8014W_ReadFIFO_BlockMode(slot,buffer[],TargetCnt,&readCntfromfifo);
pac_i8014W_StopMagicScan(slot);
if(ret== FIFO_LATCHED){
    //Error
}
```

[C#]

```
int slot,ret;
short hexData[10000];
long readCnt=0;
short totalScaned=0,TargetCnt=10000;
pac8014Wnet.pac8014W.StartMagicScan(slot);
ret=pac8014Wnet.pac8014W.ReadFIFO_BlockMode(slot, hexData, TargetCnt, ref readCnt);
pac8014Wnet.pac8014W.StopMagicScan(slot);
if(ret== FIFO_LATCHED){
    //Error
}
```

[C] (for LinPAC)

```
int slot, chArr[16], gainArr[16], scanMode=0, triggerSource=-1, triggerState, scanChCount=0;
```

short ret, rawData[8192];

long readCnt=0, TargetCnt=10000;

float realsampleRate, sampleRate=0; Open_Slot(slot); i8014W_Init(slot);

// initialize

i8014W_ConfigMagicScan(slot, chArr, gainArr, scanChCount, sampleRate, scanMode, triggerSource, triggerState, &realsampleRate);

i8014W_StartMagicScan(slot);

ret=i8014W_ReadFIFO_BlockMode(slot, rawData, TargetCnt , &readCnt);

```
i8014W_StopMagicScan(slot);
```

```
if(ret== FIFO_LATCHED){
```

```
//Error
```

}

4.14. i8014W_ReadFIFO_InISR / pac_i8014W_ReadFIFO_InISR

After starting Magic Scan function, user needs call any one of reading FIFO functions to obtained data from FIFO.

This one is used to read data from FIFO in interrupt mode, users need to install an ISR function and call this function in it.

Syntax

For MiniOS7

short i8014W_ReadFIFO_InISR (
int slot, short hexData [], short triggerLevel, short * dataCountFromFIFO);

For Windows (CE and WES)

short pac_i8014W_ReadFIFO_InISR (
int slot, short hexData [], short triggerLevel, short * dataCountFromFIFO);

For Linux

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

hexData []:

Specifies the starting address of the data array used to store the data read in hexadecimal format.

triggerLevel:

Specifies the amount of data to read.

triggerLevel	Read Count	triggerLevel	Read Count
0	8	4	128
1	16	5	256
2	32	6	512
3	64	7	2048

* dataCountFromFIFO:

[Output] the amount of data read in this process.

Return Values

0 = No Error

[C/C++]

```
int slot, ret, TrgLevel;
short buffer [10000] , readCntfromfifo=0;
long TargetCnt=10000 ,totalRead =0;
void main()
{
...
pac i8014W InstallMagicScanISR(slot,ISRFUN, TrgLevel);
pac_i8014W_StopMagicScan(slot);
While(1){
       If(totalRead>= TargetCnt){
       •••
       }
}
}
void ISRFUN(int slot);
{
  ret=i8014W_ReadFIFO_InISR(slot, buffer, TrgLevel, readCntfromfifo);
totalRead +=readCntfromfifo;
i8014W_ClearInt(slot);
  if(ret== FIFO_LATCHED){
       i8014W_StopMagicScan(slot);
       i8014W_UnLockFIFO(slot);
       i8014W_ClearFIFO(slot);
  }
}
```

[C#]

```
int slot, ret, TrgLevel;
short buffer [10000] , readCntfromfifo=0;
long TargetCnt=10000;
void main()
{
...
pac8014Wnet.pac8014W.InstallMagicScanISR(slot, ISRFUN, TrgLevel);
pac8014Wnet.pac8014W.StartMagicScan(slot);
While(1) { ... }
}
void ISRFUN(int slot);
{
  ret=pac8014Wnet.pac8014W.ReadFIFOInISR(slot, buffer [],TrgLevel, ref readCntfromfifo);
  pac8014Wnet.pac8014W.ClearInt(slot);
  if(ret== FIFO LATCHED)
  {
       pac8014Wnet.pac8014W.StopMagicScan(slot);
       pac8014Wnet.pac8014W.UnLockFIFO(slot);
       pac8014Wnet.pac8014W.ClearFIFO(slot);
  }
}
```

[C] (for LinPAC)

```
int slot, ret, TrgLevel;
short buffer [10000], readCntfromfifo=0;
long TargetCnt=10000, totalRead =0;
void main()
{
...
i8014W InstallMagicScanISR(slot, ISRFUN, TrgLevel);
i8014W_StopMagicScan(slot);
While(1){
       If(totalRead>= TargetCnt){
            •••
       }
}
}
void ISRFUN(int slot);
{
  ret=i8014W_ReadFIFO_InISR(slot, buffer, TrgLevel, readCntfromfifo);
totalRead +=readCntfromfifo;
i8014W_ClearInt(slot);
  if(ret== FIFO_LATCHED){
       i8014W_StopMagicScan(slot);
       i8014W_UnLockFIFO(slot);
       i8014W_ClearFIFO(slot);
  }
}
```

4.15. i8014W_UnLockFIFO / pac_i8014W_UnLockFIFO

This function is used to unlock the FIFO buffer when it is locked after being filled. Ensure that the FIFO buffer is unlocked and cleared before starting the next Magic Scan process.

Syntax

For MiniOS7
void i804W_UnLockFIFO (int slot);
For Windows (CE and WES)
void pac_i8014W_UnLockFIFO(int slot);

For Linux

void i8014W_UnLockFIFO(int slot); void i9014_UnLockFIFO(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

None

[C/C++]

int slot;

i8014W_UnLockFIFO (slot);

[C#]

int slot;

pac8014Wnet.pac8014W.UnLockFIFO(slot);

[C] (for LinPAC)

void main()

```
{
    int slot;
    Open_Slot(slot);
    i8014W_Init(slot); // initialize
    i8014W_UnLockFIFO(slot);
    Close_Slot(slot);
    return 0;
}
```

4.16. i8014W_ClearFIFO / pac_i8014W_ClearFIFO

This function is used to clear the FIFO buffer after the FIFO has been unlocked. Ensure that the FIFO buffer is unlocked and cleared before starting the next Magic Scan process.

Syntax

For MiniOS7
void i8014W_ClearFIFO (int slot);
For Windows (CE and WES)
void pac_i8014W_ClearFIFO(int slot);
For Linux

void i8014W_ClearFIFO(int slot); void i9014_ClearFIFO(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

None

[C/C++]

int slot;

i8014W_ClearFIFO (slot);

[C#]

int slot;

pac8014Wnet.pac8014W.ClearFIFO(slot);

[C] (for LinPAC)

int slot; Open_Slot(slot); i804W_ClearFIFO (slot);

4.17. i8014W_InstallMagicScanISR / pac_i8014W_InstallMagicScanISR

This function is used to install the ISR to control interrupt events form the FIFO. When the amount of data in the FIFO buffer is greater than the value defined by the triggerLevel parameter, an interrupt event will occurs and the ISR will be executed to handle the event. In the ISR, use the ReadFIFO to transfer data from the FIFO buffer and then ClearInt to reset the status of the interrupt.

Syntax

For MiniOS7

short i8014W_ InstallMagicScanISR(
int slot,
void (*isr)(int slot),
inttriggerLevel
);

For Windows (CE and WES)

short pac_i8014W_InstallMagicScanISR(
int slot,
void(*isr)(int slot),
shorttriggerLevel
);

For Linux

```
short i8014W_ InstallMagicScanISR(
int slot,
void (*isr)(int slot),
    inttriggerLevel
);
short i9014_ InstallMagicScanISR(
int slot,
void (*isr)(int slot),
inttriggerLevel
);
```

// for LinPAC-8000

// for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

*isr (int slot):

the function pointer passed for the ISR.

triggerLevel:

specifies the interrupt trigger condition (0 - 7) based on the amount of data in the FIFO buffer. If the value is set to greater than 7, it will be automatically forced to 7.

If the amount of data in the FIFO buffer is greater than the value defined by the triggerLevel parameter, the interrupt will be triggered and the ISR will be executed to handle the interrupt event.

The following is a definition of the triggerLevelvalues table lists the definition of triggerLevel and associated Data Count values:

triggerLevel	Read Count	triggerLevel	Read Count
0	8	4	128
1	16	5	256
2	32	6	512
3	64	7	2048

Return Values

0 = No Error

[C/C++]

```
void main()
{
    int slot, TrgLevel;
    i8014W_InstallMagicScanISR(slot, ISRFUN, TrgLevel);
    ...
    i8014W_UnInstallMagicScanISR(slot);
    }
    void ISRFUN(int slot);
    {
        ...
    }
```

[C#]

void main()
{
int slot, TrgLevel;
pac8014Wnet.pac8014W.InstallMagicScanISR(slot, ISRFUN, TrgLevel);
i8014W_UnInstallMagicScanISR(slot);
}
void ISRFUN(int slot);
{
}

[C] (for LinPAC)

```
void main()
{
  int slot, TrgLevel;
  Open_Slot(9);
  Open_Slot(slot);
  i8014W_Init(slot); // initialize
  ....
  i8014W_InstallMagicScanISR(slot, ISRFUN, TrgLevel);
  ••••
  i8014W_UnInstallMagicScanISR(slot);
  Close_Slot(slot);
       Close_Slot(9);
  return 0;
}
void ISRFUN(int slot);
{
  ....
}
```

4.18. i8014W_UnInstallMagicScanISR / pac_i8014W_UnInstallMagicScanISR

This function is used to uninstall the Magic Scan ISR.

Syntax

For MiniOS7

short i8014W_UnInstallMagicScanISR(int slot);

For Windows (CE and WES)

short pac_i8014W_UnInstallMagicScanISR(int slot);

For Linux

short i8014W_UnInstallMagicScanISR(int slot); short i9014_UnInstallMagicScanISR(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

0 = No Error

[C/C++]

int slot;

i8014W_UnInstallMagicScanISR (slot);

[C#]

int slot;

pac8014Wnet.pac8014W.UnInstallMagicScanISR(slot);

[C/C++]

int slot; Open_Slot(slot);

i8014W_UnInstallMagicScanISR (slot);

4.19. i8014W_ClearInt / pac_i8014W_ClearInt

This function is used to clear the status of the Magic Scan interrupts. When using ISR, this function should be called to clear the status of any interrupts that have been triggered in order to continue processing future interrupt events.

Syntax

For MiniOS7

void i8014W_ClearInt (int slot);

For Windows (CE and WES)

void pac_i8014W_ClearInt(int slot);

For Linux

void i8014W_ClearInt(int slot); void i9014_ClearInt(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

None

[C/C++]

int slot;

i8014W_ClearInt (slot);

[C#]

int slot;

pac8014Wnet.pac8014W.ClearInt(slot);

[C] (for LinPAC)

int slot; i8014W_ClearInt (slot);

4.20. i8014W_ReadGainOffset / pac_i8014W_ReadGainOffset

This function is used to obtain the gain and offset values on each input type for I-8014W and I-9014.

Syntax

For MiniOS7

void i8014W_ ReadGainOffset(
int slot, int gain, unsigned short* gainValue, short* offsetValue
);

For Windows (CE and WES)

void pac_i8014W_ReadGainOffset(
int slot, short gain, unsigned short* gainValue, short* offsetValue
);

For Linux

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Gain:

specifies the input type (0 – 4), where:**0**: +/-10 V, **1**: +/-5 V, **2**: +/-2.5 V, **3**: +/-1.25 V, **4**: +/-20 mA

*gainValue:

[Output] the gain value for the input range.

*offsetValue:

[Output] the offset value for the input range.

Return Values

None

[C/C++]

unsigned short gVal=0;

short oVal=0, slot, gain;

i8014W_ReadGainOffset(slot, gain, &gVal, &oVal);

[C#]

int slot,gain,gval;

uint16 oval;

pac8014Wnet.pac8014W.ReadGainOffset(slot, gain, ref gval, ref oval);

[C] (for LinPAC)

```
int main(){
    int slot, gain;
    unsigned short gVal=0;
    short oVal=0;
    Open_Slot(slot);
    i8014W_Init(int slot);
    i8014W_ReadGainOffset(slot, gain, &gVal, &oVal);
    printf("\nThe Gain and Offset values for Calibration are: Gain=%u; Offset=%d", ch, gVal,
    oVal);
    Close_Slot(slot);
    return 0;
}
```

4.21. i8014W_CalibrateData / pac_i8014W_CalibrateData

This function is used to calibrate the raw data read during the Magic Scan process and to convert the data to a floating point value.

Syntax

For MiniOS7	
void i8014W_CalibrateData(int slot, short iGain, short dataFromFIFO, float* calibratedAI);	
For Windows (CE and WES)	
void pac_i8014W_CalibrateData(int slot, short iGain, short dataFromFIFO, float* calibratedAI);	
For Linux	
void i8014W_CalibrateData(int slot, short iGain, short dataFromFIFO, float* calibrated.	
); void i9014_CalibrateData(// for LinPAC-8000
int slot, short iGain, short dataFromFIFO, float* calibratedAI	
);	// for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

iGain:

specifies the input type (0 – 4), where:**0**: +/-10 V, **1**: +/-5 V, **2**: +/-2.5 V, **3**: +/-1.25 V, **4**: +/-20 mA

dataFromFIFO:

the raw data read from the FIFO buffer.

* calibratedAI:

[Output] the floating point value.

Return Values

None

Example

[C/C++]

```
int slot, I, scanChCount;
short hexData[8192], TargetCnt=1000, gainArr[16];
float calibratedAl=0;
printf("Start printing all the data:\n\n\r");
for(i=0;i<totalScaned;i++);
{
    slot = 0;
    i8014W_CalibrateData(slot, gainArr[I %scanChCount], hexData[i], &calibratedAl);
    printf("Arr[%d]=[%5.4f]\t",i%scanChCount, calibratedAl);
}
```

[C#]

[C] (for LinPAC)

```
int slot=1, I, scanChCount;
short hexData[8192], totalScaned =1000, gainArr[16];
float calibratedAl=0;
Open_Slot(slot);
i8014W_Init(slot);
.......
printf("Start printing all the data:\n\n");
for(i=0; i<totalScaned; i++);
{
i8014W_CalibrateData(slot, gainArr[I %scanChCount], hexData[i], &calibratedAl);
printf("Arr[%d]=[%5.4f]\t", i%scanChCount, calibratedAl);
}
```
4.22. i8014W_CalibrateDataHex / pac_i8014W_CalibrateDataHex

This function is used to calibrate the raw data read in Magic Scan process.

Syntax

For MiniOS7

void i8014W_CalibrateDataHex(
int slot, short iGain, short dataFromFIFO, short* calibratedAI
);

For Windows (CE and WES)

void pac_i8014W_ CalibrateDataHex(
int slot, short iGain, short dataFromFIFO, short* calibratedAI
);

For Linux

void pac_i8014W_CalibrateDataHex(
int slot, short iGain, short dataFromFIFO, short* calibratedAI
); // for LinPAC-8000
void pac_i9014_CalibrateDataHex(
int slot, short iGain, short dataFromFIFO, short* calibratedAI
); // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

iGain:

specifies the input type (0 – 4), where:**0**: +/-10 V, **1**: +/-5 V, **2**: +/-2.5 V, **3**: +/-1.25 V, **4**: +/-20 mA

dataFromFIFO:

the raw data read from the FIFO buffer.

* calibratedAI :

[Output] the calibrated hexadecimal value.

Return Values

None

Example

[C/C++]

```
int slot, I, scanChCount;
short hexData[8192], totalScaned =1000, calibratedAI=0, gainArr[16];
long readCnt=0;
printf("Start printing all the data:\n\n\r");
for(i=0;i<totalScaned;i++);
{
    slot = 0;
    i8014W_CalibrateDataHex (slot, gainArr[I %scanChCount], hexData[i], &calibratedAI);
    printf("Arr[%d]=[%5.4f]\t",i%scanChCount, calibratedAI);
}
```

[C#]

```
int slot, I, scanChCount;
short hexData[8192], totalScaned =1000, calibratedAI=0, gainArr[16];
long readCnt=0;
Open_Slot(slot);
i8014W_Init(slot);
printf("Start printing all the data:\n\n");
for(i=0;i<totalScaned;i++);
{
slot = 0;
i8014W_CalibrateDataHex (slot, gainArr[1 %scanChCount], hexData[i], &calibratedAI);
printf("Arr[%d]=[%5.4f]\t", i%scanChCount, calibratedAI);
}
```

4.23. i8014W_Read_mA_GainOffset / pac_i8014W_Read_mA_GainOffset

This function is used to obtain the gain and offset values on each input type for I-8014CW/I-9014C.

Syntax

For MiniOS7

```
void i8014W_Read_mA_GainOffset(
int slot, int channel, unsigned short* gainValue, short* offsetValue
);
```

For Windows (CE and WES)

void pac_ i8014W_Read_mA_GainOffset(
int slot, int channel,unsigned short* gainValue, short* offsetValue
);

For Linux

Parameter

slot:

```
Specific slot number (0 - 7), except range of slot is number 1 \sim 8 for LinPAC.
```

Channel:

specifies the channel (0 - 7), for +/-20 mA

*gainValue:

[Output] the gain value for the input range.

*offsetValue:

[Output] the offset value for the input range.

Return Values

None

Example

[C/C++]

unsigned short gVal=0;

short oVal=0,slot,gain;

i8014W_Read_mA_GainOffset (slot,ch,&gVal,&oVal);

[C#]

int slot,gain,gval;

uint16 oval;

pac8014Wnet.pac8014W.Read_mA_GainOffset(slot, gain, ref gval, ref oval);

```
int main(){
    unsigned short gVal=0;
    short oVal=0;
    int slot, gain;
    Open_Slot(slot);
    i8014W_Init(slot);
    i8014W_Read_mA_GainOffset (slot, ch, &gVal, &oVal);
    Close_Slot(slot);
    return 0;
}
```

4.24. i8014W_Calibrate_CH_mA / pac_pac_i8014W_Calibrate_CH_mA

This function is used to calibrate the Magic Scan raw data and convert the data to a float format.

Syntax

For MiniOS7 void i8014W_Calibrate_CH_mA(int slot, int ch, short dataFromFIFO, float* calibratedAI);

For Windows (CE and WES)

```
void pac_i8014W_Calibrate_CH_mA(
    int slot, int ch, short dataFromFIFO, float* calibratedAI
);
```

For Linux

void i8014W_Calibrate_CH_mA(
int slot, int ch, short dataFromFIFO, float* calibratedAI	
);	// for LinPAC-8000
void i9014_Calibrate_CH_mA(
int slot, int ch, short dataFromFIFO, float* calibratedAI	
);	// for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Channel:

specifies the channel (0 - 7), for +/-20 mA

dataFromFIFO:

the raw data read from the FIFO buffer.

* calibratedAI :

[Output] the floating point value.

Return Values

None

Example

[C/C++]

int slot, ch;

short hexData;

float calibratedAI=0;

i8014W_Calibrate_CH_mA (slot, ch ,hexData, &calibratedAI);

[C#]

int slot, ch;

short hexData;

float calibratedAI=0;

pac8014Wnet.pac8014W.Calibrate_CH_mA(slot, ch, hexData, ref calibratedAI);

ir	nt main(){ int slot, ch;
	short hexData;
	float calibratedAI=0;
	Open_Slot(slot);
	i8014W_Init(slot);
	i8014W_Calibrate_CH_mA (slot, ch ,hexData, &calibratedAI); Close_Slot(slot); return 0;
}	

4.25. i8014W_Calibrate_CH_mA_Hex / pac_i8014W_Calibrate_CH_mA_Hex

This function is used to calibrate the Magic Scan raw data and convert the data to a hexadecimal format.

Syntax

For MiniOS7

```
void i8014W_Calibrate_CH_mA_Hex(
    int slot, int ch, short dataFromFIFO, short* calibratedAI
);
```

For Windows (CE and WES)

```
void pac_i8014W_Calibrate_CH_mA_Hex(
    int slot, int ch, short dataFromFIFO, short* calibratedAI
);
```

For Linux

```
void i8014W_Calibrate_CH_mA_Hex(
    int slot, int ch, short dataFromFIFO, short* calibratedAI
); // for LinPAC-8000
void i9014_Calibrate_CH_mA_Hex(
    int slot, int ch, short dataFromFIFO, short* calibratedAI
); // for LinPAC-9000, LX-9000
```

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Channel:

specifies the channel (0 - 7), for +/-20 mA

dataFromFIFO:

the raw data read from the FIFO buffer.

* calibratedAI :

[Output] the calibrated hexadecimal value.

Return Values

None

Example

[C/C++]

int slot, ch; short hexData;

float calibratedAI=0;

i8014W_Calibrate_CH_mA_Hex(slot, ch ,hexData, &calibratedAI);

[C#]

int slot, ch;

short hexData;

float calibratedAI=0;

pac8014Wnet.pac8014W.Calibrate_CH_mA_Hex (slot, ch, hexData, ref calibratedAI);

int main(){
int slot, ch;
short hexData;
float calibratedAI=0;
Open_Slot(slot);
i8014W_Init(slot);
i8014W_Calibrate_CH_mA_Hex(slot, ch ,hexData, &calibratedAI); Close_Slot(slot); return 0;
}

4.26. pac_i8014W_Start_Average_INT

This function is used to startup calculate data average with Magic Scan.

Syntax

For Windows (CE6.0 and CE7.0)

short pac_i8014W_Start_Average_INT(
int slot, short gain, float sample_rate, short average_level
);

For Linux

short i8014W_Start_Average_INT(
int slot, short gain, float sample_rate, short average_level	
);	// for LinPAC-8000
short i9014_Start_Average_INT(
int slot, short gain, float sample_rate, short average_level	
);	// for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

gain:

specifies the input type.

```
For I-8014W & I-9014 => 0 : +/-10 V, 1 : +/-5 V, 2 : +/-2.5 V, 3 : +/-1.25 V, 4 : +/-20 mA
For I-8014CW & I-9014C => 4 : +/-20 mA
```

sample_rate:

Sampling rate.

For differential : 1 ~ 5000 Hz.

For single-ended : 1 ~ 2500 Hz.

average_level:

Set the amount of data to be averaged (0 \sim 7).

- 0 : Calculate average for every 1 data
- 1 : Calculate average for every 2 data
- 2 : Calculate average for every 4 data
- 3 : Calculate average for every 8 data
- 4 : Calculate average for every 16 data
- 5 : Calculate average for every 32 data
- 6 : Calculate average for every 64 data
- 7 : Calculate average for every 256 data

Return Values

- 0 : No error, find I-8014W / I-9014.
- 1 : No error, find I-8014CW / I-9014C.

Example

[C/C++]

```
int slot=0, gain=0, average_level=7;
```

float sample_rate=2000;

pac_i8014W_Start_Average_INT(slot,gain, sample_rate, average_level);

[C#]

```
int slot=0, gain=0,average_level=7;
```

```
float sample_rate=2000;
```

pac8014WNet.pac8014W.Start_Average_INT(slot, gain, sample_rate, average_level);

```
int main(){
    int slot=1, gain=0, average_level=7;
    float sample_rate=2000;
    Open_Slot(slot);
    i8014W_Init(slot);
    i8014W_Start_Average_INT(slot, gain, sample_rate, average_level);
    Close_Slot(slot);
    return 0;
}
```

4.27. pac_i8014W_Stop_Average_INT

This function is used to stop the Average Function

Syntax

For Windows (CE6.0 and CE7.0)

short pac_i8014W_Stop_Average_INT(int slot);

For Linux

short i8014W_Stop_Average_INT(int slot); short i9014_Stop_Average_INT(int slot); // for LinPAC-8000 // for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \sim 8$ for LinPAC.

Return Values

0 = No Error

Example

[C/C++]

int slot=0;

pac_i8014W_Stop_Average_INT(slot);

[C#]

int slot=0;

pac8014WNet.pac8014W.Stop_Average_INT(slot);

[C] (for LinPAC)

int slot=1, ret;

ret=Open_Slot(slot);

if (ret > 0) {

printf("Open Slot%d failed, return value=%d \n", slot, ret);

return (-1);

}

i8014W_Init(slot);

i8014W_Stop_Average_INT(slot);

4.28. pac_i8014W_ReadAlHex_Average_INT

This function is used to read one calibrated HEX format AI data.

Syntax

```
For Windows (CE6.0 and CE7.0)
```

```
short pac_i8014W_ReadAIHex_Average_INT(
    int slot, short ch, short *hVal
);
```

For Linux

```
short i8014W_ReadAIHex_Average_INT(
    int slot, short ch, short *hVal
);
short i9014_ReadAIHex_Average_INT(
    int slot, short ch, short *hVal
);
```

// for LinPAC-8000

// for LinPAC-9000, LX-9000

Parameter

slot:

```
Specific slot number (0 - 7), except range of slot is number 1 \sim 8 for LinPAC.
```

ch:

specifies the channel (0 \sim 7),

For differential $: 0 \sim 7$.

For single-ended : $0 \approx 15$.

* hVal:

[Output] the calibrated hexadecimal format value.

Return Values

0 = No Error

Example

[C/C++]

int slot=0, ch=0;

short hexData=0;

pac_i8014W_ReadAlHex_Average_INT(slot, ch, & hexData);

[C#]

int slot=0, ch=0;

short hexData=0;

pac8014WNet.pac8014W.ReadAIHex_Average_INT(slot, ch, ref hexData);

```
int main(){
    int slot=1, ch=0, ret;
    short hexData=0;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    i8014W_Init(slot);
    i8014W_ReadAIHex_Average_INT(slot, ch, &hexData);
    Close_Slot(slot);
    return 0;
}
```

4.29. pac_i8014W_ReadAI_Average_INT

This function is used to read one calibrated float format AI data.

Syntax

```
For Windows (CE6.0 and CE7.0)
```

```
short pac_i8014W_ReadAI_Average_INT(
    int slot, short ch, float *fVal
);
```

For Linux

```
short i8014W_ReadAI_Average_INT(
    int slot, short ch, float *fVal
);
short i9014_ReadAI_Average_INT(
    int slot, short ch, float *fVal
);
```

// for LinPAC-8000

// for LinPAC-9000, LX-9000

Parameter

slot:

```
Specific slot number (0 - 7), except range of slot is number 1 \sim 8 for LinPAC.
```

ch:

specifies the channel (0 \sim 7),

For differential $: 0 \sim 7$.

For single-ended : $0 \approx 15$.

* fVal:

[Output] the calibrated float format value.

Return Values

0 = No Error

Example

[C/C++]

int slot=0, ch=0;

float fData=0;

pac_i8014W_ReadAI_Average_INT(slot, ch ,&fData);

[C#]

int slot=0, ch=0;

float fData =0;

pac8014WNet.pac8014W.ReadAl_Average_INT (slot, ch, ref fData);

```
int main(){
    int slot=1, ch=0, ret;
    float fData=0;
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    i8014W_Init(slot); // initialize
    i8014W_ReadAl_Average_INT(slot, ch ,&fData);
    Close_Slot(slot);
    return 0;
}
```

4.30. pac_i8014W_ReadAllAIHex_Average_INT

This function is used to read multiple calibrated HEX format AI data

Syntax

```
For Windows (CE6.0 and CE7.0)
```

```
short pac_i8014W_ReadAllAlHex_Average_INT(
    int slot, short hVal[]
);
```

For Linux

```
short i8014W_ReadAllAIHex_Average_INT(
    int slot, short hVal[]
);
short i9014_ReadAllAIHex_Average_INT(
    int slot, short hVal[]
);
```

// for LinPAC-8000

// for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \approx 8$ for LinPAC.

* hVal[]:

[Output] the calibrated hexadecimal data array.

Return Values

0 = No Error

Example

[C/C++]

int slot=0;

short hVal[16];

pac_i8014W_ReadAllAlHex_Average_INT(slot,hVal);

[C#]

int slot=0;

pac8014WNet.pac8014W.ReadAllAlHex_Average_INT(slot, hval);

```
int main(){
    int slot=1, ret;
    short hVal[16];
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    i8014W_Init(slot); // initialize
    i8014W_ReadAllAIHex_Average_INT(slot, hVal);
    Close_Slot(slot);
    return 0;
}
```

4.31. pac_i8014W_ReadAllAI_Average_INT

This function is used to read multiple calibrated float format AI data

Syntax

```
For Windows (CE6.0 and CE7.0)
```

```
short pac_i8014W_ReadAllAI_Average_INT(
    int slot, float fVal[]
);
```

For Linux

```
short i8014W_ReadAllAl_Average_INT(
    int slot, float fVal[]
);
short i9014_ReadAllAl_Average_INT(
    int slot, float fVal[]
);
```

// for LinPAC-8000

// for LinPAC-9000, LX-9000

Parameter

slot:

Specific slot number (0 - 7), except range of slot is number $1 \approx 8$ for LinPAC.

* fVal[]:

[Output] the calibrated hexadecimal data array.

Return Values

0 = No Error

Example

[C/C++]

int slot=0;

float fVal[16];

pac_i8014W_ReadAllAI_Average_INT(slot, fVal);

[C#]

int slot=0;

 $\mathsf{float}[] \; \mathsf{fval} = \{ \, \mathsf{0}, \, \mathsf$

pac8014WNet.pac8014W.ReadAllAl_Average_INT(slot, fval);

```
int main(){
    int slot=1, ret;
    float fVal[16];
    ret=Open_Slot(slot);
    if (ret > 0) {
        printf("Open Slot%d failed, return value=%d \n", slot, ret);
        return (-1);
    }
    i8014W_Init(slot); // initialize
    i8014W_ReadAllAI_Average_INT(slot, fVal);
    Close_Slot(slot);
    return 0;
}
```

5. Troubleshooting

This chapter discusses how to solve problems you may encounter.

- What to do when the data read from I-8014W seems unstable
- How to solve the error of FIFO LATCHED (Error Code : -6).
- How to Calibration / Restore defaults.

If there is a problem that cannot be solved, please send an email to <u>service@icpdas.com</u> and tell us the relevant information, such as connection, host, platform, application, operation method.

The more detailed the better.

5.1. What to do when the data read from I-8014W seems unstable

If the voltage can be measured correctly when testing using a battery, but not when using the real signal source, the error may be caused by any or all of the following factors:

- The source is disturbed by noise
- Unstable signal source
- Floating signal source not referenced to system ground(earth or building ground)

Because of the high-speed data acquisition function, any noise coupled to a signal or any change in voltage on an unstable source is also captured. In this situation, signal filtering or isolation should be considered in order to enhance the quality of the signal.

In another hand, It is recommended that connect the Vn- pin with the AGND pin when measuring differential signals, as shown in the figure.

5.2. How to solve the error of FIFO LATCHED (Error Code : -6)

After the *StartMagicScan* instruction is executed, it will continue scanning the channels and converting data unless the *StopMagicScan* command is executed. Consequently, the converted data is continuously saved to the FIFO buffer. If the Magic Scan is not stopped after obtaining the required data, or the data is not read from the FIFO buffer within the required time frame, the FIFO buffer will be filled and then locked. When the FIFO buffer is locked, the FIFO LATCHED error (-6) will occur and any new data will not be able to be saved to the FIFO buffer.

To solve this error, execute the following instructions:

- 1. Call *StopMagicScan* function to Stop Magic.
- 2. Call *ReadFIFO* function to get the remaining data in the FIFO buffer, or *ClearFIFO* function to clear it.
- 3. Call *UnLockFIFO* function to unlock the FIFO buffer.
- 4. Call *StartMagicScan* function to reset Magic Scan.

5.3. How to Calibration / Restore defaults

Each module calibrated and finished test before shipment, so usually it is unnecessary to calibrate the module again, unless the input impedance is changed or the accuracy is lost.

In order to calibrate the module, the following preparations are required:

- A stable source for calibration, such as a 3 1/2 digit power supply (or better) or a battery output.
- A 4 1/2 digital voltage meter (15-bit resolution or better)
- A Calibration Program. Please visit ICP DAS website and download demo programs, the calibration program will be inside.

Tips & Warnings

1. An unstable source will cause calibration errors and will affect the accuracy of the data acquisition.

- 2. I-8014W / I-9014 only uses channel 0 to calibrate every type of range.
- The gain and offset value of the range of +/- 20 mA for I-8014W / I-9014 are the same as the range of +/- 2.5V.
- 4. If users wish to calibrate +/- 20 mA, calibrate +/- 2.5V will be fine.
- I-8014CW / I-9014C needs to calibrate every channel within the range of +/- 20mA.

5.3.1. Calibrate I-8014(C)W on iPAC-8000

Wiring Method

Please refer to the "**2.1.2. Wiring the iPAC-8000**" chapter of the IP-8000 user manual to establish RS-232 connection between the controller and the PC, and connect the power supply to the controller.

Set the Differential/Single-ended jumper to the differential position, connect source and modules in differential mode and connect the voltage or current meter to the wiring, like the following figure:

Then, plug I-8014(C)W into the controller.

Step 1. Download, upload and execute calibration program

The calibration program can be downloaded in ICP DAS website.

Please refer to the following link:

https://www.icpdas.com/en/download/show.php?num=2897

In order to upload programs, please refer to the "2.2.2. Installing the MiniOS7" and "2.5.2.

Uploading and Executing iPAC-8000 programs" of the IP-8000 user manual to download

MiniOS7 Utility which can help users to upload programs and learn how to operate.

After uploading the calibration program, right click on it and click "Run" to execute it.

Step 2. Calibrate

After execute the program, press '0' to calibrate modules and follow the steps appeared at the screen.

Select the range of I-8014W.

If you want to calibrate I-8014W / I-9014 with \pm 20 mA, please select \pm 2.5 V, because both types of range use the same gain and offset values.

Please follow the steps below to operate calibration program.
Step 1 : Select the input range to be calibrated.($0 \sim 3$)
IUsing IDefault Gain Offset Gain Offset
(0) : +/- 10V => 29181 0 29181 0
(1) : $+/-5Y$ => $ 29183 $ $ 29183 $ 1 (2) : $ -2 5Y \rightarrow 29524 $ 1 $ 29524 $ 1
(2) + 7 - 2.57 => 1205341 = 11205341 = 11 (3) + 7 - 1.257 => 131128 = -3.1311128 = -3.131128 = -3
(4) : +/- 20mA => 128534 1 128534 1
TIP : Range +/- 2.5V and range +/-2D mA are the same gain and offset values
If you need to calibrate +/- 20mA, please choose to calibrate +/- 2.5V
Input U ~ 3 : U

Output stable positive source to channel 0, and type the value displayed on the voltage meter.

<pre>Step 2 : Connect a stable POSITIVE source to the channel 0 and voltage meter. TIP : The closer the input voltage is to WPPER limit of the range, the better. EX : Range = +/-10V, Input Voltage = 9.5V</pre>
Step 3 : Input the value displayed on voltage meter. Voltage meter(float foramt,unit : V) : <u>9.5091</u> Channel O(Not calibrated, Unit : V) : 9.500412

Output stable negative source to channel 0, and type the value displayed on the voltage meter.

After finish Step 5, the new gain and offset values will be showed at the screen.

Step 6 : Test / Save new gain, offset value.
The following are the new and original gain and offset values.
NEW IOriginal I
Gain Offset Gain Offset
+/- 10V : 132828 1 0 129181 1 01
press 'r' or 'R' to read AI data with new and original gain and offset value,
press 's' or 'S' to save new gain and offset value.
press 'q' or 'Q' to tyr again.

Press 'r' to read calibrated AI data with new and original gain and offset values , and check whether the new gain and offset values are correct or not.

<New> C[0] : -9.4998016 <Original> C[0] : -8.4442139

Press 's' to save new gain and offset values.

```
New Gain=32827 ,Offset= O ,Save to EEPROM ? (y/n):y
Successfully saved gain and offset values.
Please reboot the consroller for the new gain and offset values take effect.
```

This program can also be used to calibrate I-8014CW / I-9014C, the differences are that users need to output current as source and select channel to be calibrated.

5.3.2. Restore I-8014(C)W to defaults on iPAC-8000

Step 1. Download, upload and execute calibration program

The calibration program can be downloaded in ICP DAS website.

Please refer to the following link:

https://www.icpdas.com/en/download/show.php?num=2897

In order to upload programs, please refer to the "2.2.2. Installing the MiniOS7" and "2.5.2. Uploading and Executing iPAC-8000 programs" of the IP-8000 user manual to download MiniOS7 Utility which can help users to upload programs and learn how to operate.

After uploading the calibration program, right click on it and click "Run" to execute it.

Step 2. Restore defaults

After execute the program, press '1' to restore defaults.

Press 'y' to restore.

The following	are	the using	and def	fault gai	n and offset	values.		
		Using		IDefault				
		lGain l	Offset	lGain l	Offsetl			
(0) : +/- 10V	/ =>	132827 1	0	129181	01			
(1) : +/- 5V	=>	129183 1	1	129183 1	11			
(2) : +/- 2.5	₩ =>	128534 1	1	128534 1	11			
(3) : +/- 1.2	!5V =>	31128	3	31128	31			
(4) : +/- 20m	ıÅ =>	128534 1	1	128534 1	11			
Are you sure	to re	store def:	aults ?	(y/n):y				
Successfully	saved	gain and	offset	values.				
Please reboot	the :	consrolle	r for tl	ne new ga	in and offse	t values	take effect.	

5.3.3. Calibrate the I-8014(C)W on WinCE and WES units

Step 1. Wiring method

Set the Differential/Single-ended jumper to the differential position, connect source and modules in differential mode and connect the voltage or current meter to the wiring, like the following figure:

Then, plug I-8014(C)W into the controller.

Step 2. Download and execute calibration program

The calibration program can be downloaded in ICP DAS website.

Please refer to the following link:

https://www.icpdas.com/en/download/show.php?num=2897

Step 3. Calibrate

After execute the program, please follow the steps one by one.

Select the index where the module is.

I-8014W Series Mod	el Calibrate Pro	gram		_ 🗆 ×
Step 1 : Sele	ct the inde	ex w	here module	is
Slot Index	Slot 7	-		
Library Version :	Slot 0 Slot 1		Library Date :	Mar 9 2021
Firmware 1 :	Slot 2 Slot 3		Firmware 2 :	
Jumper Position :	Slot 4 Slot 5			
Step 2 : Sele	Slot 6 Slot 7		n click "Next"	butten
Module Name		•	Next	
Exit				

Select the name of module and click "Next" button.

Change to "page Step 4,5",

Output stable positive source to channel 0 and type the value displayed on the voltage meter, then Click "Read" button.

I_8014W_I_9014	
Step 3 Step 4,5 Ste	p 6,7 Step 8
Step 4 : <u>Conr</u>	nect a stable <u>POSITIVE</u> source to
	mer o of module and voltage meter
Step 5 : Inpu	t the value displayed on voltage meter click "Read" button
Voltag TIP: TI Range	e meter(float foramt,unit : V) : 9.5033 he closer the input voltage is to the UPPER limit of the range, the better. EX : : +/-10V, Input Voltage : 9.5V
Chann	el O(Not calibrated, Unit : V) : 9.4943
Exit	

Change to "page Step 6,7",

Output stable negative source to channel 0 and type the value displayed on the voltage meter, then Click "Read" button.

I_8014W_I_9014
Step 3 Step 4,5 Step 6,7 Step 8 Step 6 : Connect a stable NEGATIVE source to channel 0 of module and voltage meter
Step 7 : Input the value displayed on voltage meter then click "Read" button Voltage meter(float foramt,unit : V) : -9.5034 TIP: The closer the input voltage is to the LOWER limit of the range, the better. EX : Range : +/-10V, Input Voltage : -9.5V
Read Channel 0(Not calibrated, Unit : V) :
Exit

Change to "page Step 8",

Click "Test" to read calibrated AI data with new and original gain and offset values , and check whether the new gain and offset values are correct or not.

I_8014W_I_90	14										
Step 3 Step 4,5 Step 6,7 Step 8											
Step 8 : Test / Save new gain, offset value											
	The following are the new and original gain and offset values. Click "Test" button to read AI and check calibrate successfully or not.										
	· · · · · · · · · · · · · · · · · · ·										
	Gain:	32829	Offset :	0	Gain :	29181	Offset :	O			
	Calibrated AI Data with new gain, offset values			gain,	Calibrated AI Data with original gain, offset values						
	CH:0	-9.4936	CH:4	-9.4943	CH:0	-8.4387	Сн:4	-8.4390			
	CH:1	-9.4946	CH:5	-9.4946	CH:1	-8.4393	CH:5	-8.4387			
	CH:2	-9.4946	CH:6	-9.4943	CH:2	-8.4405	CH:6	-8.4399			
	CH:3	-9.4946	CH:7	-9.4946	CH:3	-8.4393	CH:7	-8.4393			
	Tes	t									
	SAV										
Exit											

Click "SAVE" to save new gain and offset values.

1_8014W_1_9014								
Step 3 Step 4,5 Step 6,7 Step 8								
Step 8 : Test / Save new gain, offset value The following are the new and original gain and offset values.								
	Click "Test" button to read AI and check calibrate successfully or not.							
	Sace Checking X						h, offectivelyour	
	Gain :	32829	Offse	Are you sure to sa	ve new s	ettings?	Offset :	
				Yes	No	1		
	Calibrated AI Data with r			offset values			with original gain,	
	CH:0	-9.4936	CH:4	-9.4943	CH:0	-8.4387	CH:4	-8.4390
	CH:1	-9.4946	CH:5	-9.4946	CH:1	-8.4393	_ 3 сн:5	-8.4387
	CH:2	-9.4946	CH:6	-9.4943	CH:2	-8.4405	сн:6	-8.4399
	CH:3	-9.4946	CH:7	-9.4946	CH:3	-8.4393	- 3 СН:7	-8.4393
	Test							
	SAVE							
Exit								
5.3.4. Restore I-8014(C)W to defaults on WinCE and WES units

Step 1. Download and execute calibration program

The calibration program can be downloaded in ICP DAS website.

Please refer to the following link:

https://www.icpdas.com/en/download/show.php?num=2897

Step 2. Restore defaults

After execute the program, please follow the steps one by one.

Select the index where the module is.

I-8014W Series Model Calibrate Program							
Step 1 : Select the index where module is							
Slot Index	Slot 7	•					
Library Version :	Slot 0 Slot 1		Library Date :	Mar 9 2021			
Firmware 1 :	Slot 2 Slot 3		Firmware 2 :				
Jumper Position :	Slot 4 Slot 5						
Step 2 : Sele	Slot 6 Slot 7		n click "Next"	butten			
Module Name		•	Next				
Exit							

Select the name of module and click "Next" button.

I-8014W Series Model Calibrate Program					
Step 1 : Select the index where module is					
Slot Index Slot 7					
Library Version : 3110 Library Date : Mar 9 2021					
Firmware 1 : 1 Firmware 2 : 2					
Jumper Position : Differential					
Step 2 : Select module then click "Next" butten					
Module Name I-8014W / I-9014 💌 Next					
I-8014W / I-9014 I-8014CW / I-9014C	8014W_I_9				
Exit	Step 3 Step 4,5	Step 6,7 Step	8		
	Step 3 : S	elect the in	Dut range	to be ca	alibrated
	-	ange :			
	נד		and range +/-20	mA are the	same gain and offset vaue.
	Tł	he <u>U</u> SING gain, of	fset value :	The <u>D</u> EFAU	LT gain, offset value :
	G	ain: Offset:		Gain: O	iffset :
	+/- 10V 29	9181 0		29181 0	
	+/- 5V 29	9183 1		29183 1	
	+/- 2.5V 28	8534 1		28534 1	
	+/- 1.25V 33	1128 3		31128 3	
	+/- 20mA 28	8534 1		28534 1	
				Restore De	faults
	Exit				
-					

Click "Restore Defaults" button.

I_8014W_I_90	14					
Step 3 Step 4,5 Step 6,7 Step 8						
Step 3 : Select the input range to be calibrated						
	Range :		•			
	TIP:Ran	ge +/- 2.	.5V and range +/-20 mA are the same gain and offset vaue.			
	The <u>U</u> SI	NG qain,	offset value : The DEFAULT gain, offset value :			
	Gain :	Offset	Restore Checking			
+/- 10V	32829	0	Are you sure to restore defaults?			
+/- 5V	29183	1	Yes No			
+/- 2.5V	28534	1	28534 1			
+/- 1.25V	31128	3	31128 3			
+/- 20mA	28534	1	28534 1			
			Restore Defaults			
Exit						

Appendix A. Error Code

Code	Definition	Description		
0	NoError	This indicates that there have been no errors		
-1	ID_ERROR	There was a problem with the module ID		
-2	SLOT_ERROR	Parameter of slot is out of range.		
-3	CHANNEL_ERROR	Parameter of channel index is out of range.		
-4	GAIN_ERROR	Parameter of gain is out of range.		
-5	FIFO_EMPTY	There is no data in the FIFO buffer		
-6	FIFO_LATCHED	The FIFO buffer is full and has been latched		
-7	FIFO_OVERFLOW	The FIFO buffer is full		
-8	TX_NOTREADY	There was an error between primary FPGA and secondary FPGA		
-9	FIFO_ISR_ERROR	There was an error when FIFO sent an interrupt signal.		
-10	Average_Sample_Rate_DIFF_Error	Parameter of sample rate is out of range in different mode.		
-11	Average_Sample_Rate_SING_Error	Parameter of sample rate is out of range in single-end mode.		
-12	Average_Level_Error	Parameter of average level is out of range.		
-100	REG_SLOT_ISR_ERROR	There was an error when install ISR function.		

Appendix B. Read AI Function Polling Performance

Test Items	Platform	MiniOS7	CE 5.0	CE 6.0	CE 7.0	WES	ΙΟΤ
I-8014W, I-8014CW	HEX format One channel	24	52	45	59	44	45
	HEX format Eight channels	15	32	29	35	28	28
	Float format One channel	10	51	45	58	44	46
	Float format Eight channels	8	32	29	35	28	28
	HEX format One channel				93 ~ 96	29	30
I-9014 <i>,</i> I-9014C	HEX format Eight channels				93 ~ 96	29	30
	Float format One channel				92 ~ 95	29	30
	Float format Eight channels				92 ~ 95	29	30

Unit : k Hz

Appendix C. Revision History

This chapter provides revision history information to this document.

The table below shows the revision history.

Revision	Date	Description		
1.0.0	Jan 2018	Initial issue		
2.0.0	MAY 2018	 Added content for the I-9014/I-9014C modules Modify Quick start Modify Magic Scan Added API naming table Added Applicable Platform table Modify library , demo path Added API "i8014W_ReadFIFO_BlockMode","i8014W_ReadFIFO_InISR" 		
2.0.2	MAR 2021	 Modify Quick start Modify Magic Scan Modify library , demo path Added APIs of Average function. Added optioning modules on Linux platform. 		
2.0.3	MAY 2022	Added Appendix B. Read AI Function Polling Performance		