
Win-GRAF Workbench

User Manual
(Version 1.0)

WARRANTY
All products manufactured by ICP DAS are warranted against defective materials for a
period of one year from the date of delivery to the original purchaser.

WARNING
ICP DAS assumes no liability for damages consequent to the use of this product. ICP DAS
reserves the right to change this manual at any time without notice. The information
furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility
is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of
third parties resulting from its use.

COPYRIGHT
Copyright © 2021 by ICP DAS. All rights are reserved.

TRADEMARK
Names are used for identification only and may be registered trademarks of their
respective companies.

CONTACT US
If you have any questions, please feel free to contact us via email at:
service@icpdas.com
service.icpdas@gmail.com

Revision

Revision Date Description Author
1.0 09.11.2021 Initial version M. K.

Contents

1 PRODUCT OVERVIEW..8

1.1 INTRODUCTION..8

2 WORKBENCH AND RUNTIME INSTALLATION..8

2.1 INSTALLING WIN-GRAF WORKBENCH...8
2.2 RUN WIN-GRAF WORKBENCH...9
2.3 WIN-GRAF RUNTIME PLATFORMS...9

3 WORKBENCH..10

3.1 CUSTOMIZE TOOLBAR AND MENUS...12
3.2 MAIN WINDOW..13
3.3 THE WORKSPACE WINDOW...14
3.4 PROGRAM EDITOR...17
3.5 VARIABLE EDITOR...20
3.6 OUTPUT WINDOW VIEW..22

3.6.1 Build Output...22
3.6.2 Cross References..23
3.6.3 Task Status Output...29
3.6.4 Runtime Messages..30
3.6.5 Call Stack View..30
3.6.6 Call Tree View...31
3.6.7 Digital Sampling Trace..32
3.6.8 Code Checker...37

3.7 STATUS BAR..40

4 SINGLE-TASKING..41

4.1 CREATE A PROJECT..42
4.2 EDIT A PROGRAM...46
4.3 CREATE A PROGRAM...50
4.4 TASK CONFIGURATION..52

4.4.1 Task Cycle Time...54
4.4.2 Program Execution Sequence..57

4.5 BUILD/COMPILE APPLICATION..62
4.6 DOWNLOAD APPLICATION...64
4.7 DEBUGGING...68

5 MULTI-TASKING...71

5.1 CREATE A PROJECT..72
5.2 CREATE AND EDIT A PROGRAM...74
5.3 TASK SETTING...78
5.4 DATA SHARING BETWEEN TASKS..82
5.5 GET SYSTEM INFORMATION..84
5.6 BUILD/COMPILE APPLICATION..85
5.7 DOWNLOAD APPLICATION...86
5.8 DEBUGGING...89

6 EDITING PROGRAMS...89

6.1 STRUCTURED TEXT (ST) AND INSTRUCTION LIST (IL) EDITOR..90
6.1.1 ST / IL Language Selection..93

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

4

6.1.2 ST / IL Syntax Coloring..93
6.1.3 Tooltips in the ST / IL Editor...99
6.1.4 Shortcuts for ST and IL Editor...99

6.2 FUNCTION BLOCK DIAGRAM (FDB) EDITOR..100
6.2.1 Using the FBD toolbar...100
6.2.2 Drawing FBD connection lines...109
6.2.3 Selecting FBD Variables and Instances..112
6.2.4 Viewing FBD Diagrams...114
6.2.5 Moving or Copying FBD Objects..115
6.2.6 Inserting FBD Objects on a Line...118
6.2.7 Resizing FBD objects...119

6.3 LADDER DIAGRAM (LD) EDITOR..121
6.3.1 Using the LD Toolbar..121
6.3.2 Managing Rungs..122
6.3.3 Contacts...124
6.3.4 Coils...125
6.3.5 Power Rails..126
6.3.6 Calling a Function or Function Block...126
6.3.7 Jumps - Labels...128
6.3.8 Use of ST Expressions..129
6.3.9 Comments in LD Diagrams...130
6.3.10 Viewing LD diagrams..131
6.3.11 Moving and Copying LD Objects..132

6.4 CONVERTING A PROGRAM TO ANOTHER LANGUAGE..135
6.5 SOME TIPS..137

6.5.1 Bookmarks..137
6.5.2 Handling Exceptions..139

7 VARIABLE MONITORING (DEBUGGING TOOLS)..145

7.1 MONITORING VARIABLE VALUES..145
7.1.1 Inline Monitoring...145
7.1.2 Monitoring in the Variable Editor...146

7.2 SPYLIST...147
7.2.1 Local SpyList..148
7.2.2 Task-SpyList...148
7.2.3 Multi-SpyList..150

7.3 SOFT OSCILLOSCOPE..152
7.4 CONTROL PANEL FOR DEBUGGING..158

7.4.1 Create Control Panel...165
7.4.2 Exporting Control Panel to X5Viewer...170

7.5 RECIPE CONTROL...173
7.6 TEST SEQUENCES...179
7.7 DEBUG MESSAGE (PRINTF)...184
7.8 BREAKPOINTS - STEP BY STEP DEBUGGING..187

7.8.1 Add a Breakpoint...189
7.8.2 Example..191

7.9 W5MONITORING UTILITY..194
7.9.1 Create Monitoring Application File..196
7.9.2 Running Monitoring Application...202

8 ONLINE PROGRAM CHANGE..204

8.1 ONLINE CHANGES LIMITATIONS..204
8.2 USING ONLINE CHANGE..206

9 MODBUS NETWORKING...212

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

5

10 MODBUS SLAVE...213

10.1 SLAVE DATA BLOCK CONFIGURATION...214
10.1.1 Selecting Slave...214
10.1.2 Define Slave Register...215

10.2 SLAVE TYPE CONFIGURATION...226
10.2.1 Single Data Block..228
10.2.2 Multiple Data Block...231

11 MODBUS MASTER...234

11.1 MODBUS RTU/ASCII MASTER...235
11.1.1 Configure Communication Interface...235

12 VARIABLES...246

12.1 CREATE VARIABLES..247
12.1.1 Declare Variable in the Variable Editor...248
12.1.2 Declare Variable as Text...253
12.1.3 Declare Variable from the Program Editor...255

12.2 RETAIN VARIABLES...262
12.2.1 Programmatically Save/Load Retain Variables..263

13 DERIVED DATA TYPE..264

13.1 STRUCTURES..265
13.1.1 Define a Structure..265
13.1.2 Declare Instance of a Structure...269

13.2 ENUMS...271
13.2.1 Define a Enumerate Type...271
13.2.2 Declare an Enumerate Variable..274

13.3 BIT FIELD...275
13.3.1 Define a Bit Field Type..276
13.3.2 Declare Bit Field Variable...278

13.4 FUNCTION AND FUNCTION BLOCK..279
13.4.1 Define Function Block...282
13.4.2 Define Function...291

14 BACKUP MANAGEMENT..294

14.1 SAVE PROJECT BACKUP TO LOCAL PC...294
14.2 SAVE PROJECT TO RUNTIME TARGET..295

15 TARGET RUNTIME CONFIGURATION...296

16 BASIC OPERATIONS...300

16.1 VARIABLE ASSIGNMENT...301
16.2 ACCESS TO BITS OF AN INTEGER..302
16.3 PARENTHESIS...303
16.4 CALLING A FUNCTION..303
16.5 CALLING A FUNCTION BLOCK..304
16.6 CALLING A SUB-PROGRAM...306
16.7 MOVEBLOCK - MOVE/COPY ITEMS OF AN ARRAY..307
16.8 COUNTOF - COUNT ITEMS IN AN ARRAY..308
16.9 INC - INCREMENT NUMERICAL VARIABLE...309
16.10 DEC - DECREMENT NUMERICAL VARIABLE...310
16.11 LABELS..311
16.12 JUMPS...312
16.13 RETURN - JUMP TO THE END OF THE POU...313
16.14 IF - STATEMENT...315

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

6

16.15 WHILE - STATEMENT...316
16.16 REPEAT - STATEMENT...317
16.17 FOR - STATEMENT..318
16.18 CASE - STATEMENT..319
16.19 EXIT - STATEMENT...320
16.20 WAIT- STATEMENT...321
16.21 ON - STATEMENT..322

17 STANDARD FUNCTION/FUNCTION BLOCKS LIBRARY..324

17.1 BOOLEAN OPERATIONS..324
17.2 ARITHMETIC OPERATIONS..327

17.2.1 Set Number of Input Parameters..332
17.3 COMPARISON OPERATIONS..333

17.3.1 Less Than (< LT)...333
17.3.2 Greater Than (> GT)...334
17.3.3 Less Than or Equal (<= LE)...334
17.3.4 Greater Than or Equal (<= LE)..335
17.3.5 Equal (= EQ)...336
17.3.6 Not Equal (<> NE)..336
17.3.7 Detailed Comparison...337

17.4 DATA TYPE CONVERSION FUNCTIONS..338
17.5 BIT OPERATION..340

17.5.1 Examples..343

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

7

1 Product Overview

1.1 Introduction

Win-GRAF Workbench is the Soft PLC development environment provided by ICPDAS.
Win-GRAF supports the five programming languages as defined by the IEC 61 131-3
standard. The workbench allows multitasking programming with priority settings, PLC
application program download to the target runtime and online debugging by displaying
runtime parameter values directly in the source code of the programming editor. HMI
software provided by ICPDAS such as eLogger and Indusoft has been integrated into to
the workbench. All standard Modbus protocols (TCP, RTU, ASCII) are supported. In
addition real-time EtherCAT and PLCopen defined motion control is supported when
using the runtime together with the EtherCAT master cards ECAT-M801/e-M901 of
ICPDAS.

This manual describes the key features of the Win-GRAF workbench. Basic knowledge
of the Soft PLC concept and its programming language is a prerequisite.

2 Workbench and Runtime Installation

2.1 Installing Win-GRAF Workbench

The Workbench has to be installed on a Windows PC. Before installation make sure that
your PC meets the following requirements:
- Operation system: Windows 7, Windows 8, Windows 10 (32-bits or 64-bits)
- RAM: 1 GB minimum (Recommended: 2 GB or more)
- Available hard-disk space: 200 MB minimum

Installation Steps:
 Download the workbench installation file from the ICPDAS website.

- Website: https://www.icpdas.com/
- Enter the keyword 'Win-GRAF' into the search box and select 'Win-GRAF

workbench' from the drop list.
 Double-click the 'Win-GRAF_Workbench_xx.xx_Setup.exe' setup execution file

and follow the execution steps.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

8

2.2 Run Win-GRAF Workbench

After the installation process has successfully been completed the workbench is ready to
be started by clicking the 'Win-GRAF Workbench xx.xx' in the start menu. Before running
the Win-GRAF workbench make sure the USB license key is plugged into your PC
otherwise the workbench will run in demo mode. A PLC program which has been
compiled by the demo workbench version will only run for about fifteen minutes before
it will be terminate by the runtime. If the workbench has been started before the USB
dongle key has been inserted then it needs to be restarted in order to run the fully
licensed version.

2.3 Win-GRAF Runtime Platforms

ICPDAS provide a variety of Soft PLC hardware platforms:
- Dual PAC Redundant System: RPAC-2658M
- Win-GRAF Based ViewPAC: VP-x238-CE7, VP-x208-CE7
- Win-GRAF Based PAC: WP-9x28-CE7, WP-8x28-CE7, WP-5238-CE7
- EtherCAT Motion Controller: EMP-9xx8-xx
- EtherCAT motion control on a standard Windows PC:

 Runtime has to be installed on a the PC and a the EtherCAT master card has to
be plugged into the PCIe slot.

 EtherCAT master card: ECAT-M801-xx

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

9

3 Workbench

The Win-GRAF Workbench is used for configuration, programming, and debugging. The
workbench supports all standard soft PLC programming languages such as Structure
Text, Function Blocks, Ladder, Instruction List and Sequential Function Charts. The
workbench supports cold restart, hot restart and on-line changes. Multitasking
programming with task priority and cycle time setting is possible. Tools are provided for
event based communication between different Win-GRAF runtimes. The event are time
based.
HMI communication interfaces for Indusoft and eLogger (ICPDAS developedHMI) are
part of the workbench tools. Programming interfaces for c++, c#, LabVIEW enables data
exchange between runtime and third party software.
The workbench include standard Modbus TCP/IP, RTU and ACSII protocols. Real-time
EtherCAT communication and PLCopen defined motion function blocks are supported by
the ECAT-801 PCIe card and EMP-9xx8-xx series. Separated manuals are provided for
PLCopen, EtherCAT and OPC UA server.

Programming, download and debugging of application programs is done remotely via
Ethernet TCP/IP.

The Win-GRAF workbench is a licensed software tool which requires a USB dongle on
your Windows PC.

The main user interface (UI) of the Win-GRAF workbench is shown below (Figure 1).

Figure 1: Win-GRAF workbench UI

The interface consists of the following parts:
Step 1: Workspace window:

This window list the following items:
 Tasks supported by the runtime in a tree. For each task several programs

can be added,
 Access to the Fieldbus selection and configuration interface. The user

interfaces for the HMI and shared memory are found in the fieldbus
section

 Access to the I/O configuration interfaces
 Access to the variable editor window
 Access to user defined PLC libraries and data types
 Event driven data exchange between two PLC runtime configured and a

communication interface with a HMI created.
Step 2: Program editor window:

Here PLC programs and modules are created and edited. The program has to
be edited in one of the five IEC61131 defined languages.

Step 3: Variable editor window:
PLC variables has to be declared in the editor. Global and local defined
variables and function block instances are displayed in the list. For each
variable the name, data type, dimension, scope, attribute, etc. has to be
entered.

Step 4: Block window:
 Library: List all the standard IEC function and function blocks. In addition

function for Ethernet and Modbus communication are available. Special
function blocks for ICPDAS device are part of the library, e.g. PLCopen
defined functions.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

11

 Spylist: Enables a quick dynamic view on variables during debugging.
Hint: In the Global Spylist, via the column headers, you can search for
defined contents or sort the list entries ascending or descending.

 ENUM: List of user defined enumerated data types.
 Graphics: Lists of all available kinds of graphic objects.

Step 5: Output window:
Shows the compiler messages and if connected to the runtime all the messages
generated by the runtime and the state of each task.

Step 6: Status bar:
At the bottom of the workspace is a bar, where you get additional information.
The content depends on the selected area.

3.1 Customize Toolbar and Menus

Via the configuration dialog (Figure 2) the visible toolbar and the menus commands are
selected.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

12

Figure 2: Toolbar and menu configuration window

The configuration dialog is opened by double clicking the 'Full' section of the status bar
(Figure 3)

Figure 3: Open the toolbar and menu configuration dialog

3.2 Main Window

In the 'Main window' several documents can be opened at the same time. Use the tab
control at the bottom of the area to display a document.

Figure 4: A separate tab is being created for each open document

Use the button in the title bar to close the active document.

The variable editor and document windows in the middle area can be maximized by
clicking the button or double-click in their title bar.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

13

When several documents are open in the middle area, you can lock one of them at the
top or on the left of the area. For that, right click on the corresponding tab and select
'Lock'. The same menu enables you at any time to unlock the document or lock another
one:

Figure 5: Lock the tab position of a document

3.3 The Workspace Window

The tasks name and it associated programs, fieldbus configuration, Spylist and global
variables are shown in the workspace window in the left-hand window of the
Workbench. The content of the items listed in the workspace are shown in the main
window by double clicking the item. Figure 6 shows the general task items for single
and multitask items.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

14

Figure 6: Workspace window with the task: multitask (left) and single task (right)

New items is added to the workspace window by right clicking the task name and
selecting 'Insert new items...' from the popup menu.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

15

Figure 7: Adding new items to the workspace window

For each task the following items are available:
 Programs
 Recipe
 Signals
 Soft Scope
 Spy
 String Tables
 Fieldbus Configurations
 Binding Configurations
 Profiles
 Global defines
 Variables
 Types

The project workspace is stored in a file with the format '.W5L'. It basically stores the list
of task folders and some configuration data. The workbench creates for each task a
separated folder for storing the program source code, Fieldbus configuration, IO
settings, etc.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

16

Figure 8: Project folder

Hint: It is possible, to copy items from task to another task within the workspace. This
can be done by either selecting the copy command from the menu bar entries, using the
shortcuts CTRL+C and CTRL+V or via drag & drop.

3.4 Program Editor

The programming environment provide editors for the following Soft PLC languages:
 Sequential Function Chart (SFC)
 Function Block Diagram (FBD)
 Ladder Diagram (LD)
 Structure Text (ST) and Instruction List (IL)

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

17

Figure 9: Program editor for Structure Text

Variables, function blocks and definitions can be added to the editor via drag and drop
as shown in the following examples:
 Drag a variable from the variable list to the program to insert it.

Figure 10: Drag variable from the variable editor to the program editor

 Drag a definition to the program to insert its name.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

18

Figure 11: Drag the definition name from the 'Define' list to the program editor

 Drag a block in the program to insert it.

Figure 12: Drag function from the 'Blocks' list to the program editor

 Drag a function block to the variable list to declare an instance.

Figure 13: Drag function block from the 'Blocks' list to the variable editor

 Drag a variable from the program or from the variable list to the spy list.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

19

Figure 14:Drag variable from the program editor to the 'SpyList'

3.5 Variable Editor

Variables are declared in the top/right area of the Workbench main window. The
variable editor is a grid tool that enables you to declare all variables of the application.

Variables in the editor are sorted by groups:
 Global variables.
 'Retain' non volatile global variables.
 I/O variables (each I/O device is a group).
 variables local to a program (including in and out parameters in case of a UDFB).

Each group is marked with a gray header in the variable list. The arrow icons on the
left side of each group header can be used to expand or collapse the group:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

20

Figure 15: Variable editor

Double-click the header line enables you to sort, show or hide columns, and to apply a
filter for each column. Filter is described as a text string that may contain '?' and '*' wild
chars.

Each variable is described with:
 a name
 a data type and a dimension
 an attribute
 an initial value
 a tag and a description text
 OEM defined properties
 a user group

The user group enables logical sorting of variables in the grid.

Columns of the variable editor can be rearranged or be set visible/invisible by double
clicking the symbol in the editor or selecting the 'View\Columns...' command from the
dropdown menu (Figure 16).

Figure 16: Variable editor column setting

3.6 Output Window View

The Output window contains the following tabs:
 Build
 Cross references

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

21

 Call tree
 Runtime
 Call stack
 Breakpoints
 Digital sampling trace
 Prompt (not supported)
 HMI (not supported)
 Code Checker

Figure 17: Output window

3.6.1 Build Output

The compiler reports messages in the build output window. If compiling errors occur,
just double-click on a error line in the output window to open the position in the
program code where the error occurred.

Figure 18: Compiling error messages in the output window

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

22

3.6.2 Cross References

The Cross reference view allows the user to select and display one of the following
information:
 Find or replace names, variables, etc.
 List unused items: It list declared variables and function blocks instance which has

been declared but are not being used by the program
 List multiple variable assignments

Figure 19: Cross reference (Example: list all unused variables)

The Cross Reference tools enables the search for a specific variables in the application. It
can also be used as a powerful navigation tool for editing changes in the application
programs.

The Cross Reference tools can be used via:
 the menu bar entries 'Edit/Find...'
 the Cross references context menu in the Output window (Figure 20).

Figure 20: Cross reference commands in a popup menu

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

23

3.6.2.1 Search Text

The find commands allows you to search for a text (name, variable, function, block, etc.)
in all the programs of the project and list the search result in the Cross reference output
window (Figure 21). By double clicking one of the items in the search list the program
will be open at the position where the text occurred.

Figure 21: List of found names

Use the 'Edit / Find / Find in Files...' menu command or right click the Cross reference
output and select the 'Find in Files...'command from the popup menu to search for a
text in all programs. Enter the search text in the popup window (Figure 22).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

24

Figure 22: Find in all files

3.6.2.2 Find / Replace Text

The 'Edit / Replace in files...' command enables you to replace a text in all the programs
of the application.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

25

Figure 23: Replace text window

Procedure for replacing text:
Step 1: Enter the text which needs to be replaced in the 'Find what' editor
Step 2: Enter the new text in the 'Replace with' editor
Step 3: Select the task where to replace the text
Step 4: Optional: Click 'Find in Files' button to display all the location at which the text

occurs. It scans all the programs in the task and list where the specified text
occurs.

Step 5: Click 'Replace in Files' button. A window pops up which allows you to select in
which programs of the task to replace the text (Figure 24). Click 'OK' to replace
the text.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

26

Figure 24: Select the programs where to find or replace a text

3.6.2.3 List Unused Variables

Use the 'Edit / Find / List Unused Variables' command or right click the output window
and select 'List Unused items...' to display the list of declared variables and function
block instances that are not used in the programs of the task. This command is
particularly useful for removing unused variables from a project.

Figure 25: List of unused variables and instances

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

27

3.6.2.4 List OEM Library Elements

Use the 'Edit / Find / OEM Library Elements' command to list the I/O devices, functions
and function blocks written in 'C' that are used in your application.

Figure 26: OEM function blocks and enumerates used by the application

3.6.2.5 List Multiple Variable Assignments

This output list all the variables which are assigned a value multiple times in the
program. This function allows the user to check whether variable assignments are
correct. Use the 'Edit / Find / List Multiple Variable Assignments' command to scan all
programs in a task for more than one variable assignment

Figure 27: List of multiple variable assignment

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

28

Example:
The variable 'uiVar1' in the program (Figure 28) is assigned a value in line 29 and 34.
Therefore Cross reference view will list both line number.

Figure 28: Multiple variable assignment

3.6.3 Task Status Output

The task output shows the status and the mode of all the tasks when the workbench is
online. The status of a task can be changed by selecting the task in the output window
and clicking on one of the command buttons in the output toolbar.

Figure 29: Task status

List of breakpoints are shown in the task output window and whether the program is in
step by step execution mode (Figure 30). Breakpoints can be directly removed via the
task output window by first selecting the break point in the output and clicking .
Clicking the command removes all the breakpoints.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

29

Figure 30: Task with breakpoints

3.6.4 Runtime Messages

The Log window displays all runtime messages sent by the connected Soft PLC platform
or by the simulator when testing the application. Messages are stored even if the Log
window is not open.

Example:
The PRINTF function can be used to print messages from the runtime to the workbench
runtime output:

Figure 31: PRINTF messages shown in the workbench runtime output

3.6.5 Call Stack View

During step by step debugging, the Call stack window shows the current call stacks.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

30

When the workbench is in debugging mode, the Call stack view shows at which
breakpoint the program has stopped. This function is only available if the application
program is build in debug mode.

Figure 32: Call stack view

3.6.6 Call Tree View

The Call Tree shows graphically the interdependency of the different programs in the
project. It for example shows which program is being called by other programs. Table 1
list the different commands provided for the Call Tree.

Figure 33: Call tree view

Icon Command Description
Call Tree Shows the Call Tree entries.

Refresh Refreshes the Call Tree view.
Backward Jumps to the last Call Tree entry.
Forward Jumps to the next Call Tree entry.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

31

Table 1: Call tree view commands

3.6.7 Digital Sampling Trace

The runtime system includes a digital sampling trace recorder. The recorder is used to
register periodically the state of up to 8 Boolean variables. Samples can be registered
either on each cycle or according to a configurable period. The digital sampling trace is a
useful tool for tracking Boolean events in the runtime application.

The sampling trace can be configured and watched from the Output window. The
sampling trace is available only during simulation or on line debugging.

Figure 34: Output of eight Boolean variables per cycle

Attention
 The digital sampling trace is a unique resource of the runtime system. The settings of

the recorder are the same for all recorded variables.
 The recording is limited to 900 samples of up to 8 BOOL variables.
 The recording of the sampling trace is time consuming and may slow down the

performances of the runtime system.

Operations
Use the following commands for the Digital Sampling Trace operation:

Icon Command Description
Start sampling Start recording.

Stop sampling Stops recording.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

32

Setup sampling Define the variables and the settings of the sampling trace.
Autoscroll Set or reset the auto-scroll mode.

Table 2: Digital sampling trace commands

3.6.7.1 Samples and Sampling Period Settings

Before starting a recording, you need to setup the parameters for the recorder in the
Setup Sampling dialog (Figure 65). This includes the list of spied variables, a period
(either a time or on each cycle), plus start and stop conditions. All variables must have
the BOOL data type.

Note: The sampling period value indicate that the runtime wait at least the defined time
interval before recording the next state. The status recording is not synchronized to the
time interval which means the status is not recorded at the set time interval.

Figure 35: Digital trace Boolean variable and sampling period

Parameters Command Description
Sampling
Variables

Insert variable Opens the dialog for variable selection. Select the desired
variable an click on OK.
The variable name will be shown in the Insert variable text
field and in the Delete variable text field. Otherwise an error
message occurs.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

33

Parameters Command Description
Delete variable Removes the selected variable from the Delete variable text

field.
Sampling
Period

Each cycle Sampling is done each cycle.

Time in ms Sampling is done in the selected time interval.
Default: 0

Table 3: Sample variable and period configuration interface

3.6.7.2 Start condition

The Start Condition tab of the settings box (Figure 36) enables you to define which
condition will start the recording. The following choices are available:
 Later: you will have to manually start the recorder using the Start command.
 Now: tracing starts immediately after the 'Set' has been clicked.
 On: A Boolean variable triggers the start of digital trace recording. Click on the '...'

button to select the triggering variable. You can select the trigger condition: the rising
or falling edge of the Boolean variable and the trigger delay.
The delay is expressed as a number of samples omitted after the start condition.

Figure 36: Digital trace start condition

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

34

3.6.7.3 Stop condition

The Stop Condition tab of the settings box (Figure 37) enables you to define which
condition will stop the recording. The following choices are available:
 Never: you will have to manually stop the recorder using the Stop command.
 When the buffer is full.
 On the rising or falling edge of a BOOL variable, possibly with a delay.

The delay is expressed as a number of samples passed after the stop condition, before
the recording actually stops.

Figure 37: Digital trace stop conditions

Remarks
 The recorder cannot be restarted after points have been registered, even if stopped.

To restart the recording, you first have to re-validate the settings.
 The sampling trace must be configured or started when the Workbench is used either

for simulation or on line debugging.
 Use the File / Save As and Edit / Copy commands for exchanging recorded data with

other applications such as spreadsheets.

Setting procedure:
Step 1: Download the program to the runtime and set the workbench in online mode.

Step 2: Select the task and open the configuration window.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

35

1. Right click the output window select the task to monitor
2. Click the command to open trace configuration window.

3. Optional: Select the 'Reset Contents' command from the popup menu to
clear the output window content.

Step 3: Set the digital sampling trace conditions.
1. Select the Booleans variable to trace.
2. Set the sampling period.
3. Set the start conditions.
4. Set the stop conditions.
5. Press the 'Set' button to validate the settings.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

36

Step 4: Start sampling by pressing the button in the output window.

3.6.8 Code Checker

The Code Checker tool performs a scan of the project declarations and programs, in
order to check conformity to a set of rules, motivated by integrity, safety and portability
of the code. It is run from the 'Code Checker' tab of the Output window.

Figure 38: Code Checker output window

Use the 'Settings' button to open the configuration window (Figure 39) and
select/configure the rules to be checked for violations.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

37

Figure 39: Checker rule configuration window

The configuration rules have to be set for each task separately. First select the task from
the drop box in the toolbar before setting the checker rules (Figure 40).

Figure 40: Task selection

Use the 'Scan' button to start analysis. The project must be compiled without errors
before being checked.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

38

Figure 41: Checker scan result

Double-click a violation report line (Figure 42) in the output to navigate to the
corresponding location of the source code.

Figure 42: Violation report

Use commands of the contextual popup menu to copy or export the report.

Note: an option is available in the 'Compiler' section of the 'Project Settings' box to
systematically run the Code Checker after any successful build.

Checker rules configuration
 Use the 'Configure' button to select and configure rules to be checked. This is also

available from the main tab of the 'Project Settings' box. Rules are shown in a tree
including check boxes. Unchecked rules will be skipped during scan. Double-click on a
rule to configure it.

 You can select for each rule a severity level: 'Not checked' or 'Info' or 'Warning' or
'Error' or 'Fatal'. You can also enter for each rule a text reference that will be

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

39

displayed in reports.
 For rules referring to metrics (e.g. name length) you can enter a minimum and

maximum value.
 For rules concerning variables, you can specify a filter based on the 'User's group'

column of the variable editor: either check only in some user's groups, or check
except in some user's groups. Please enter one user's group name per line

 For rule 1.4, you have to enter in the 'Data' box the list of forbidden names. Please
enter one name per line.

 In addition the rules configuration box enables you to export or import the
configuration as XML file.

3.7 Status Bar
The status bar informs about:

Figure 43: Workbench status bar

1. Workbench startup status: Indicates whether the workbench has finished starting,
creating or loading a new or existing project

2. Toolbar and menu configuration: Double click this section of the status bar to
configure the commands display for the toolbar and menu.

3. Target system configuration: Shows the runtime configuration being used for the
current program. Double click this section to select a different configuration setting.
The runtime configuration of the target system can be uploaded by right clicking the
task name in the workspace window and selecting 'Target System Configuration...'
from the popup menu.

4. Empty
5. Communication settings of the target runtime (TCP/IP and port number). In offline

mode, the communication parameters are displayed in the status bar. To change
them, use the Tools / Communication Parameters menu command or double-click
on the parameters in the status bar.

6. Workbench editing mode: program editing mode () or online mode (). In
online mode the source code of the program can not be changed, it is necessary to

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

40

first switch in editing mode before any source code modification is allowed
7. Position of the text cursor in the program editor
8. Selection size in document: The number of lines and text characters marked in the

program editor.
Example:

: 22 x 1 indicates that 22 character in the program editor has been
marked:

9. Mouse coordinates in document: Position of the mouse cursor in the program
editor.

10. Zoom: The size of the text and blocks of the program editor can be zoomed by
doubled clicking the zoom section in the status bar.

11. Quick Search: Simply click on the edit box, enter the text you want to search and
press ENTER key.

4 Single-Tasking

Depending on the target hardware platform the Win-GRAF runtime supports either
single-tasking or multi-tasking application. A single-task project is allowed to run on a
multi-tasking runtime but not vice versa. The workbench environment and procedure
for creating a single- or multi-tasking application differs. This chapter will focus on
describing the single tasking procedure.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

41

4.1 Create a Project

The basic steps for creating a single-tasking PLC project using Win-GRAF workbench:

 Start the Win-GRAF workbench has been started. The 'Workspace' is empty and the
'Start Page' list the available manuals, demo project and the recent opened project
(Figure 44). In addition two green command boxes are listed for directly creating a
single- or multi-task project

Figure 44: Workbench with empty workspace

 To open the project wizard for single-task project click either the green command
button in the 'Start Page' or go to 'File\Add New Project...'

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

42

 Click the 'Project', select the destination folder and enter the project name. Click
'Next'.
Note: For the project several folders and files are being generated. For easier
maintains it is therefore suggested to create a new folder for the project or use an
empty destination folder.

 Set the programming language of the first program (POU), compiling option, enter
the IP address of the remote device and leave the protocol to 'Logic Service'. All
settings still can be modified after the project has been created. Although the
wizard allows you to select only one programming language for the first program,
additional programs for different programming language can be added later on.
Click 'Next' to continue the configuration.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

43

 Select the additional components to use. If you are unsure which components to
add to the project at the current stage then leave the field unchecked. They can be
manually added at any time during the project development. Do not change the
'Binding' setting. Confirm the setting by clicking 'Finish'. A new project with the
current setting will be generated

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

44

 Figure 45 shows the 'Workspace' setting of a new single-tasking project. Double
click the 'Main' item to open the main programming editor.

Figure 45: Single-tasking project

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

45

4.2 Edit a Program

The main focus of this section is to give a brief introduction to the user interface of the
workbench and show how to use the tools provided by the workbench to edit the logic
for a PLC program. The Win-GRAF workbench supports all the five PLC programming
languages defined by IEC61131. For each programming language a separated editor is
provided. More information about each editors toolkit is given in chapter 6.

Basic procedure to declare variables and edit a function using the FBD programming
editor:

Step 1: Double click the name of the 'Main' program in the workspace to open the
program editor:

Note: Double click the program name and not the icon.

The PLC logic can now be edited using the FBD language. In the following steps
demonstrats how to add a function block to the editor and declare its in- and
output variables.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

46

Step 2: Add the 'AND' function block:
All the supported function block are listed in the 'Blocks' tab of the Info
window on the right. If the Info window is not visible then go to 'View/Infos
Tab2' in the menu bar to display the window.
The function blocks are listed according to different categories. The '(All)'
category list all the supported function blocks
Click the '(All)' tree node to display all function blocks.

Click the '&(*Boolean AND*)' function block and drag it onto the editor area.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

47

The 'AND' function block has got two input and one output variable. The '???'
at the inputs and output indicate that no variable has been assigned yet.

The size of the function block can be changed by clicking once on the block
and pressing the '+' or '-' key on the keyboard.

Moving the mouse pointer over the function displays the in- and output data
type required:

Step 3: Assigning variables to the function block:
- Double click on the grey input field with the question marks.
- Enter the name of the variable
- Click 'OK'

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

48

As the variable has not been declared in the project before a windows pops up
which allows you to select the data type, initial value, etc..
- The function block input data type is BOOL, therefore select BOOL
- The initial value is set to FALSE
- Click 'Yes' to add the variable to the project

Repeat the above procedure to add the variable 'Input2' to the second
function block input and a 'Output' variable to the output. All the newly

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

49

declared variables are listed in the variables view, on the right of the screen.

4.3 Create a Program

A task can handle several programs (POU) written in different languages. The number of
programs in an application is limited to 32767.

By default the single-tasking contain two exception programs which will be called once
during the PLC startup ('pStartup') and shutdown ('pShutDown') . Their purpose is to do
some system initialization and cleanup. The user can edit the code inside these
exception programs. If not required they can be disabled deleting their global definition.
The 'Global defines' editor has to be opened via the '§' command in the toolbar.

Figure 46: Exception programs

We will show how to add a new program to a task:

Step 1: Insert a new program. Right the program folder and select 'Insert New

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

50

Program...' from the popup menu.

Step 2: Make the following entries:
- Enter a name for the program
- Give a short program description (optional)
- Select one of the five IEC61131 programming languages (SFC, FBD, LD, ST,

IL) for the program. Remember that more than one program can be added
to the task. Each program can be programmed in a different language.

For this tutorial the 'FBD-Function Block Diagram (CFC)' is selected. Add the
program to the workspace by clicking 'OK'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

51

Programs must have unique names. The name cannot be a reserved keyword
of the programming languages and cannot have the same name as a standard
or 'C' function or function block. A variable should not have the same name as
a declared data type. The name of a program should begin by a letter or an
underscore ('_') mark, followed by letters, digits or underscore marks. It is not
allowed to put two consecutive underscores within a name. Naming is case
insensitive. Two names with different cases are considered as the same.

4.4 Task Configuration

A task of a PLC application can control several IEC 61131 programs (Figure 47). The user
is allowed to add several IEC programs to a task whereby each program has to be
written in one of the five programming language defined by IEC61131 (ST, LD, FB, IL,
SFC). Each programs of a task can be written in a different language. Programs are

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

52

executed according to the order defined by the user. The number of programs in an
application is limited to 32767.

Figure 47: PLC task-program architecture

Figure 48: Task with several programs

The function of a PLC task is to control the processing of each of its IEC programs (Figure
48). In the workbench the IEC programs are listed in the workspace tree below the task.
A task is defined by a name, a priority and by a type determining which condition will
trigger the start of the task. You can define this condition to be either cyclic or
freewheeling.

For each task, you can specify a series of program POUs that will be started by the task.
The execution order and period of each program can be set.
The combination of priority and condition will determine in which chronological order
the tasks will be executed.
For each task, you can configure a time control (watchdog). The possible settings
depend on the specific controller platform.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

53

4.4.1 Task Cycle Time

The Win-GRAF runtime supports two type of tasks: cyclic and freewheeling. PLC cycle
time is defined as the time it takes to run the code logic from start to finish.

Programs are executed sequentially within the target cycle, according to the following
model (Figure 49):

Figure 49: Task cycle execution

4.4.1.1 Cyclic Task

A Cyclic task is assigned a fixed cycle time which causes the runtime to trigger the task
execution at a set fixed time interval. The next cycle is triggered, once the cycle time has

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

54

elapsed.

Figure 50 shows the interface for setting the cycle time interval. The 'Cycle timing' is the
period of time, after which the task should be restarted. You can choose the desired
time unit in the selection box behind the edit field: milliseconds [ms] or microseconds
[µs].

Figure 50: Cyclic task time setting

Note:
- If the execution of one cycle takes longer than the defined cycle time, the next cycle

starts as soon as the previous cycle is finished without executing other lower priority
tasks. This will affect the execution of all tasks and cause the runtime to generate a
system watchdog exception and write a warning message to the output window.

- The runtime for Windows is not real time, therefore it is suggested to not set the
time interval below 100 milliseconds. The Windows OS timer accuracy is in the
range of about 100 milliseconds.

There are a few methods to decrease the PLC's response time if cycle time of a task has
to be reduced. Reducing cycle time of a task
- A faster CPU will execute code faster and reduce the overall cycle time.
- Another method for reducing cycle time is optimizing the code itself. Moving pieces

of code that do not have to run every cycle into a program with a higher cycle time,
but may not have much effect on the maximum cycle time.

- Prevent execution peaks loading. Execution peaks occur when all programs of a task
run in the same cycle. By distributing the program execution over several cycles
these peaks can be prevented (see Figure 53)

Set cyclic task time:
1. Open the 'Project setting' dialog by selecting 'Project\Settings...' in the menu bar.

Select the 'Option' item and double click the 'Cycling time' value to open the 'Cycle
time' configuration window.

2. Enable the 'Triggered' option and set the 'Cyclic timing' value. The 'Cyclic timing' is
the fixed time interval at which the task execution will be triggered.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

55

4.4.1.2 Freewheeling Task

A Freewheeling task does not have a fixed duration. In Freewheeling mode, each task
begins when the previous cycle has been completed. The cycle time is not triggered at a
fixed time interval.

Figure 51: Freewheeling Task setting

Note:
- Make sure the freewheeling task has the lowest priority setting otherwise other

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

56

tasks will be prevented from execution.
- Set all the freewheeling tasks to the same priority level otherwise the freewheeling

task with the lower priority will have not time slot to execute.

4.4.2 Program Execution Sequence

A task may consists of several programs. The workbench allows you to set the execution
order, the period and phase of each program.
For example Figure 52 shows an application where the main task consists of five
programs.

Figure 52: Main task with several programs (left); context menu (right)

Use the Cycle dialog (Figure 53) to define the execution properties of the various
programs. Open the Cycle dialog by right clicking the task name and selecting 'Cycle...'
from the popup menu (Figure 52).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

57

Figure 53: Cycle window for program execution property setting

The Cycle dialog shows the list of the main programs, as they will be executed in
runtime cycles.

Program
Execution
Property

Description

Program
execution
order

The programs will be executed in the sequence they appear in the
table of Cycle dialog from top to bottom. The order of execution is
determines by the vertical ordering and therefore the program
execution order of Figure 53is:

1. 'Prog1'
2. 'Prog2'
3. 'Prog3'
4. 'Prog4'
5. 'Prog5'

Period The 'Period' defines after how many cycles the program is executed
again. It defines how many cycles are set between two executions of
the same program. You can define various sampling periods for the

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

58

Program
Execution
Property

Description

programs of a task. By default the value is '1' which means the
program is executed in each task cycle. Valid range is 1 to 255. Giving a
slower period (=high 'Period' value) to some of the programs in a task
is an easy way to give a higher priority to some other programs.

Example:
 Period = 1 --> program is executed every cycle
 Period = 2 --> program is executed every second cycle
 Period = 10 --> program is executed every tenth task cycle

Phase The 'Phase' defines the cycle where the program is executed the first
time. It is an offset which enables you to dispatch slows programs
among few cycles.
The goal is to prevent slow program to be triggered all in the same
cycle and thereby causing peak loads. The 'Phase' setting allows you to
reduce execution peak loads by postponing slow program execution.
Slow programs are programs with a higher 'Period' value setting.
By default the value is '0' which means the program is executed with
the first task cycle. Valid range is 1 to 255.

Example:
 A Program with Period=2 and Phase=1 is executed each even

cycle
 A Program with Period=2 and Phase=0 is executed each odd

cycle
Program
enable/
disable

'Enabled' indicates whether the program should be built/compiled for
the application

Graph The Cycle window shows two graphs:
1. Top graph:

It shows how many programs are executed in each cycle. It
allows you to determine whether execution peaks loadings occur.

2. Bottom graph:
The squares indicates when a program execution will be
triggered in a task.

Hint:
More cycles will be shown if the Cycle dialog size is increased by
dragging the right edge to the left.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

59

Program
Execution
Property

Description

Table 4: Program execution properties

Icon Command Description
Move down Move the selected program one line down
Move up Move the selected program one line up
Program enable Include the program to the application. Program will be included in

the built/compiling process
Program disable Exclude the program from the application. Program will not be

included in the built/compiling process. A red cross will be shown
in the workspace window next to the program name

Increment Increment the period and phase value by one of selected program
Decrement Decrement the period and phase value by one of selected program
Default setting Set the default values for selected program
Help Open help documentation

Table 5: Cycle window commands

You can:
- use the Move buttons to change the program execution order within the task

cycle.
- use the Select buttons to specify if the program must be called in the cycle.

Unselected programs are ignored at compiling time, and are shown with a red cross
icon in the workspace (Figure 54).

- use the Increase/Decrease buttons when the Period or Phase column is
selected to change the scheduling of a program. This enables you to define 'slow'
programs that are not called on every cycle. See the Program advanced properties
for further details.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

60

Figure 54: Unselect a program for the compiling process

Example:
The following table (Table 6) shows for a task which executes five program the period
and phase settings. After the data has been set in the Cycle dialog (Figure 55) the top
bar chart in the Cycle dialog shows the number of programs to be executed in each cycle
and the bottom graph shows at which cycle the execution of each individual program
will be triggered.

Period Phase Description
1 0 - Period = 1: Program 'Prog1' is executed every cycle.

Therefore the phase has to be set to zero.
- Phase = 0: 'Prog1'starts to executed in the first cycle

2 1 - Period = 2: Program 'Prog2' is executed every second cycle.
 The phase can be set either to zero or to one.

- Phase = 1: 'Prog2'starts to executed in the second cycle
10 5 - Period = 10: Program 'Prog3' is executed every tenth task cycle.

 Valid phase range 0 to 9.
- Phase = 5: 'Prog3' starts to executed in the fifth cycle

8 0 - Period = 8: Program 'Prog4' is executed every eight task cycle.
Valid phase range 0 to 7.

- Phase = 0: 'Prog4' starts to executed in the first cycle
5 3 - Period = 5: Program 'Prog5' is executed every tenth task cycle.

Valid phase range 0 to 4.
- Phase = 3: 'Prog5' starts to executed in the fifth cycle

Table 6: Example - period and phase settings

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

61

Figure 55: Example - Cycle dialog

4.5 Build/Compile Application

The workbench supports two types of code generation: 'Release' and 'Debug' mode.

Application compiled in 'Debug' mode supports cycle by cycle execution, breakpoints
and step by step debugging. Breakpoints can be placed anywhere in the source code of
the application. The debugger also shows the call stack of the UDFBs and sub-programs
when in step by step execution.

An application compiled in 'Debug' mode includes additional information for stepping.
This leads to bigger code size and less performances. It is recommended to compile your
application in 'Release' mode before delivering the final product to the customer.

Build application procedure:

Step 1: Determine whether to generate 'Release' or 'Debug' code.
Open the 'Project settings' window by clicking the 'Project\Settings...'
command in the menu bar.
Select either 'Release' or 'Debug' by double clicking the 'Compiling' line in the
'Option' category.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

62

Step 2: Build the project:
- In the tool bar click the 'Build All projects' button or
- 'Project/Build All projects' in the menu bar or
- Press 'F7'

At the end of the build process the workbench indicates whether the build
was successful or an error occurred:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

63

4.6 Download Application

After the PLC application has been successfully compiled the application has to be
downloaded to the runtime in order to be executed. The Win-GRAF workbench
exchanges data with the runtime via TCP/IP communication.

Figure 56: Edit and download PLC program

In order to establish a TCP/IP communication the workbench needs to know the IP
address and the socket port number of the target runtime. Consult the user manual of
the target device to determine how to set and get the communication configuration
data.

Procedure for downloading the compiled application:

Step 1: Set the communication parameters between workbench and runtime:
1. Workbench: Set the IP address and socket port number of the target

runtime.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

64

- Select 'Tools/Communication Settings...' from the menu or double
click the 'Offline' section in the status bar at the bottom of the
window.

- Edit IP address and port number of the target runtime. Both
parameters has to be separated by a colon. Only Ethernet TCP/IP
communication is being supported.

- Click 'OK'

The current communication setting is being displayed at the bottom of
the screen. The setting can be directly modified by double clicking the IP
address in the status bar.

Step 2: Runtime:
2. Make sure that the runtime on the target device has been started.

Reference the device user manual regarding the runtime startup
procedure setting.

3. Ensure that no IP collision exist on the network to prevent
communication errors.

Step 3: Download the built plc application to the runtime:
- Click the download button in the toolbar or select 'Project\Download All

Projects...'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

65

- Click 'Load' to start the download process

Wait until the download has finished.

ATTENTION:
The runtime stops running the current application before application files are
downloaded.

Note:
- After the download process has completed the application does not

automatically restarted. This has to be done by the user. The user can
decide between a cold or warm start. During a cold restart the PLC
program begins again with the initial values while during a warm restart
the program uses retentive data.

- Some libraries, e.g. PLCopen library, do not support warm start. Therefore
make sure that all functions used in the source code support warm start
before activating this start type.

Step 4: Create a online connection between workbench and the runtime by

- clicking the 'On Line' button on the toolbar or
- enter 'Ctrl+F5'.

Step 5: Start the PLC application in 'Cold start' mode:
Click the 'Start' button in the toolbar and select the 'Cold start' option of
the 'Start mode' popup window and 'Start' the PLC application.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

66

Possible workbench online status:
Button Description

Download was successful and
application runs correctly
 Runtime has not started
 Incorrect communication

parameters
 Application has not been

downloaded or started yet.
Output window shows more
information about the cause

Function are available to directly manipulate a task:
- Stop a task and set the it again into idle mode
- Pause a task for one cycle
- Online change the cycle time for each task

Button Description
Start or stop task
Download program change
Online change
Pause (cycle to cycle)
Change cycle time

Table 7: Task commands

Variable monitoring are supported for all tasks. Next to each variable in the PLC
program code the current value of the application in the runtime will be shown (Figure
57).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

67

Figure 57: Workbench in online mode

4.7 Debugging

The workbench allows the user to directly change the variable values while the PLC
application is running. The workbench has to be connected to the runtime to display the
current variable value. This chapter describes how to monitor the PLC program and
manipulate the variables via the workbench.

The following procedure describes how to directly modify a PLC variable via the
workbench. It is assumed that the PLC application has already been download and is
running.

Step 1: Establish a TCP/IP connection between the workbench and runtime:
Click the 'Online' button:
After a connection has been established all the current values of each
variables are displayed next to the variable names. These variable values are
updates in each task cycle if the runtime is idling.

Step 2: Variable values can be directly changed via the workbench:
- Double click the 'Input1' variable next to the function block and click the

TRUE button of the popup window

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

68

The input variable changes now from FALSE to TRUE:

All PLC data type can be manipulated in the described way. This allows direct
testing of the PLC program.

The Spylist allows the user to add a number of variables to a monitoring list and thereby
have a quick overview of all the relevant data. A variable is added to the Spylist by
dragging it from the program editor and dropping it over the Spylist view. The Spylist
shows the current variable value.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

69

Figure 58: Drag and drop variable to the Spylist

To change a variable value double click a value in the Spylist and enter a new value in
the in the popup window.

Figure 59: Change variable value via Spylist

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

70

5 Multi-Tasking

The Win-GRAF runtime supports multitasking programming. The advantage of a multi-
tasking projects is that different operation and action within an application can be
subdivided according their execution priority and be assigned and executed by a PLC
task with the required priority level. The prioritization of the different operation allows a
efficient execution of the application. For example a task responsible for controlling the
trajectory a servo motor has greater priority than a task which updates the HMI or OPC
UA client with the current motion control status such as current position, velocity, etc..
Too many task on the other hand slows down the system due to the switching time
between task. It is therefore important to find the right number of task to achieve the
optimal performance of the system.
The number of task supported by the Win-GRAF varies across the ICPDAS hardware
platforms. Refer to the user manual to determine the supported task number.

The user interface for the single- and multitasking environment provided by the
workbench differs. For example 'Workspace' and 'Output' window displays different
items for the different environment. Single tasking program can be edited in a
multitasking environment but some single tasking functions (e.g. redundancy) are not
supported.

Is important to note that
 a multi-tasking application can only run on a target platform which supports multi-

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

71

tasking functionality.
 a single-tasking application can run on a multi-tasking platform
 the multi-tasking environment does not support redundancy. Use the single-tasking

workbench environment to implement redundancy functions if the target system
support redundancy.

 the multi-tasking environment allows you to implement a single-tasking application
without redundancy support

5.1 Create a Project

Create a multitasking project procedure:
Step 1: Open the project list to set the destination folder and name of the project and

select the number of tasks. This can be done in two ways:
1. Via the 'Start Page' by clicking the green 'Create Multitask Project'

command button.

2. By executing the 'File / New project list' menu command

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

72

Step 2: Enter the destination folder, project name and select the type of runtime. The
runtime type basically determines the number of tasks used for the
application. Confirm the setting with 'OK'.

A workspace with the selected number of tasks and a shared library is created:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

73

 Each 'task' appears as a separate programming environment, including POUs,
variables, I/O and Fieldbus configurations.

 You cannot remove or add tasks from the 'Workspace' after a project has been
created. Only the 'Main task' will start automatically once the application starts
executing. Within in the main task you have to programmable set the priority
'SYSCFGTASK(TaskNo)' and start the execution 'SYSSTARTTASK(TaskNo)' of the other
tasks. Therefore if you do not want to use some tasks listed in the 'Workspace' just
do not execute it by not calling 'SYSSTARTTASK(TaskNo)' in any of the active tasks
and it will remain inactive.

 You can add a program to each task and implement the execution logic.

5.2 Create and Edit a Program

This chapter describes how to proceed to implement a PLC program using the multi-
tasking environment.

Step 1: Insert a new program to implement the PLC logic. Right click the program
folder of the main task and select 'Insert New Program...' from the popup
menu.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

74

Step 2: Make the following entries:
- Enter a name for the program
- Give a short program description (optional)
- Select one of the five IEC61131 programming languages (SFC, FBD, LD, ST,

IL) for the program. Remember that more than one program can be added
to the task. Each program can be programmed in a different language.

For this tutorial the 'FBD-Function Block Diagram (CFC)' is selected. Add the
program to the workspace by clicking 'OK'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

75

Programs must have unique names. The name cannot be a reserved keyword
of the programming languages and cannot have the same name as a function
or function block. A variable should not have the same name as a declared
data type. The name of a program should begin either by a letter or an
underscore ('_'), followed by letters, digits or underscores. It is not allowed to
put two consecutive underscores within a name. Naming is case insensitive.
Two names with different cases are considered as the same.

Step 3: Double click the added program in the workspace to open the program editor:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

76

The PLC logic can now be edited using the FBD language. In the following steps
it is demonstrated how to add a function block to the editor and declare its in-
and output variables.

Step 4: Add programming logic to the program. The procedure for declaring variable
and adding function blocks to the editor is the same as described in chapter
4.2 for single-tasking programming environment. This example only
implements a 'AND' function as shown in chapter 4.2.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

77

5.3 Task Setting

The cycle of each task has to be directly set via the workbench by right clicking the task
name and selection 'Task...' from the pop-up menu. Double click the period column next
to the task to enter the cycle time. If only one task is being used then the 'Run as fast as
possible' option can be used (Figure 60). Chapter 4.4 provides more information
regarding the task and program execution settings.

Figure 60: Task cycle time configuration

In a multi-tasking environment the 'Main task' is the first task to be started when the
PLC program starts to execute. The other tasks has to be started from the 'Main task' or
from a task which is already running by calling the SYSSTARTTASK()function.
Additional functions are provided for configuring and terminating each task within the
PLC program (Figure 61).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

78

Figure 61: Task dedicated functions

The task library provides the function for configuring and controlling a task:
 To start another task:

SYSSTARTTASK(Task(*DINT*), Warm(*BOOL*))
This function should only be called once for starting a task.

 To stop a running task:
SYSSTOPTASK(Task(*DINT*))
A task can be stopped by any running task.

 Configure a running task:
SYSCFGTASK(Prio(*DINT*), Opts(*STRING*))
This function should only be called after a task has been started. It can only be
called by a program owned by the task to be configured. It sets the task priority
inside a running task. The 'Prio' and 'Opts' variable definition depends on the target
platform.

For Windows PC:
- Prio

Windows supports the following priority classes:
Priority Classes Description
IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS Default setting of the Win-GRAF runtime

By default the priority class of the Win-GRAF runtime (PC) is set to
REALTIME_PRIORITY_CLASS. This setting is fixed and can not be changed.

Thread Priority Level Prio Description
THREAD_PRIORITY_IDLE -15
THREAD_PRIORITY_LOWEST -2
THREAD_PRIORITY_BELOW_NORMAL -1
THREAD_PRIORITY_NORMAL 0

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

79

THREAD_PRIORITY_ABOVE_NORMAL 1
THREAD_PRIORITY_HIGHEST 2
THREAD_PRIORITY_TIME_CRITICAL 15

All tasks are created using THREAD_PRIORITY_TIME_CRITICAL. The
SYSCFGTASK internally calls the SetThreadPriority() Windows API to adjust
its priority relative to other threads in the process. To keep the priority setting
simple it is suggested to just select between THREAD_PRIORITY_NORMAL for
the normal task and THREAD_PRIORITY_TIME_CRITICAL for the high priority
task.

- Opts:
This parameter is not supported by the Win-GRAF runtime for Windows.
Therefore just enter an empty string (' ').

Each task is identified by a number from 1 to N (1 is the main task). Predefined aliases
are configured in the shared library:

Figure 62: Task definitions

You cannot remove or add tasks. The number of available tasks is defined by the
runtime system. If a task is unused, it means that it is simply not started by the main
task.

Example of creating a multitasking project:
This example uses a startup exception program for starting the other task in the 'Main
task'. Task can be started and terminated from any program within the main task.

Step 1: First add program(s) to the tasks which will be used for the PLC application. It
is necessary to always add at least one program to the Main task, otherwise
the PLC application will not run. The other task can remain empty if they are
not used. In this example a program is added to all four tasks.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

80

Step 2: Add a Startup exception program to the 'Main task':
1. Create an exception program in the Main task and assign it a name

('pStartup'). The exception program is created like a normal program and
can have any name and can be programmed in any language except SFC.

2. Add the line #OnStartup ProgramName to the define editor of the
startup exception program. In this example the startup program name is
'pStartup', therefore the line '#OnStartup pStartup' has to be
added.

3. Call the function SYSSTARTTASK()to start the execution of the specified
task.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

81

Step 3: Set the priority of each task
The task priority can only be set by a program which is controlled by the task
itself. For example: In order to set the priority of the 'Task2' it is necessary to
call the SYSCFGTASK(Prio, Opts) in one of the 'Task2' program ('T2_Prog1')
once. It is possible to change the task priority again if required. The task starts
with the default priority and continuous to run at this priority if not set
otherwise.
The workbench displays the running task in the output window:

It is possible to manually start and stop task using the tools shown in the
'Tasks' tab of the output window.

5.4 Data Sharing between Tasks

Global and retain variables can be shared among tasks by declaring it as a public
variable. Enable the check box in the public column next to the declared variable in the
variable editor. The shared variable can both be read and modified by all task (Figure
63).

Figure 63: Public variable with read and write access

If the variable should only to be modified by the task in which it was declared then
select the 'Read Only' attribute. This attribute setting allows only the owner task to
change the variable and restricts the other tasks to read access only (Figure 64).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

82

Figure 64: Public variable with read access

Shared variables together with the owner task are listed in the 'Public Variables' tab of
the Info window.

Figure 65: List of shared variables from all task

Variables published by other tasks are also available from the variable selection box.
Shared variables from other tasks are indicated by a dark cyan three dot icon:

Figure 66:Shared variables from other

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

83

The amount of memory available for shared variables is limited to 65536 bytes for the
Win-GRAF runtime. At the end of each build process the workbench shows the number
of bytes used for the public variables by the PLC program:

Figure 67: Size of public variables in byte

5.5 Get System Information

The 'GetSYSINFO()' function provides additional information about the current state of
the runtime and its task. Not all types are supported by every platform. Table 8 list the
type of available system information and Figure 68 shows its implementation in
structured text diagram.

Info Parameter Description
_SYSINFO_TRIGGER_MICROS Programmed cycle time in micro-seconds.
_SYSINFO_TRIGGER_MS Programmed cycle time in milliseconds.
_SYSINFO_CYCLETIME_MICROS Duration of the previous cycle in micro-seconds.
_SYSINFO_CYCLETIME_MS Duration of the previous cycle in milliseconds.
_SYSINFO_CYCLEMAX_MICROS Maximum detected cycle time in micro-seconds.
_SYSINFO_CYCLEMAX_MS Maximum detected cycle time in milliseconds.
_SYSINFO_CYCLESTAMP_MS Time stamp of the current cycle in milliseconds (platform

dependent).
_SYSINFO_CYCLEOVERFLOWS Number of detected cycle time overflows.
_SYSINFO_CYCLECOUNT Counter of cycles.
_SYSINFO_APPVERSION Version number of the application.
_SYSINFO_APPSTAMP Compiling date stamp of the application.
_SYSINFO_CODECRC CRC of the application code.
_SYSINFO_DATACRC CRC of the application symbols.
_SYSINFO_FREEHEAP Available space in memory heap (bytes)
_SYSINFO_DBSIZE Space used in RAM (bytes)
_SYSINFO_ELAPSED Seconds elapsed since startup
_SYSINFO_CHANGE_CYCLE Indicates a cycle just after an On Line Change

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

84

_SYSINFO_WARMSTART Non zero if RETAIN variables were loaded at the last start
_SYSINFO_NBLOCKED Number of locked variables
_SYSINFO_NBBREAKPOINTS Number of installed breakpoints
_SYSINFO_BIGENDIAN Non zero if the runtime processor is big endian
_SYSINFO_DEMOAPP Non zero if the application was compiled in DEMO mode
_SYSINFO_SIMUL Returns 0 in case of a normal runtime.

Returns 1 in case of a simulator.
Table 8: System information

Figure 68: Reading system information in a FBD language

5.6 Build/Compile Application

The workbench build procedure of the multi-tasking application is nearly identical to the
single-tasking application as described in chapter 4.5. The only difference is that it is
necessary to configure each task separately whether it should be compiled in release or
debug mode.

In the 'Project settings' the task to be set has to be selected from the drop list before
configuring the compiling mode (Figure 69).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

85

Figure 69: Compiling mode setting

5.7 Download Application

Only the difference between single- and multi-tasking environment will be point out in
this chapter. For more information see chapter 4.6.

In order to establish a TCP/IP communication the workbench needs to know the IP
address and the socket port number of the target runtime. Each PLC task communicate
through its own port number. By default the port number of the 'Main task' is set to
1100. The port number of the each task are incremented by one in the sequential order
of the task number: port 1101 for Task2, port 1102 for Task3, etc.. If required for some
platforms the port number of the 'Main task' and thereby the other tasks can be
changed via the Win-GRAF Runtime Utility.

Download a built multi-tasking application to the runtime:
Step 1: Click the download button in the toolbar or select 'Project\Download All

Projects...'.
1. The prompted dialog list all the task from the project to be downloaded.
2. Click 'Load' button to start the download process. Wait until the download

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

86

has finished.

ATTENTION:
The runtime stops all running tasks before the download process starts.

Note:
- By default all tasks files are selected for download. For large programs to

reduce the download time deselect the task files which have not been
changed since the last download.

- After the download process has been completed the application does not
automatically restarted. This has to be done by the user. The user can
decide between a cold or warm restart. During a cold restart the PLC
program begins again with the initial values while during a warm restart
the program uses retentive data.

Step 2: Connect the workbench to the runtime via Ethernet by clicking the 'On Line'
button on the toolbar or using the keyboard shortcut 'Ctrl+F5'.

Step 3: Start the PLC application in 'Cold start' mode:
Normally the 'Start mode' window automatically pops up right after creating a
online connection. In the 'Start mode' window select the first 'Cold start'
option and click the 'Start' button. Now the PLC application starts running.

If the 'Start mode' window does not pop up during the previous step, then you

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

87

can open this window as follows:
- Go to the 'Tasks' tab of output window at the bottom. All tasks are shown

in idle mode.

- First select the 'MainTask' item by clicking it and click the traffic light
button. Now the 'Start mode' window should pops up, which allows you to
select the start mode of the PLC application.

The main task will start executing the other tasks if the function SYSSTARTTASK() is being
called from the main task. Each task can be manually started by selecting it in the 'Tasks'
tab output window and activating the traffic light button.

Figure 70: Tasks status tab

As for single-tasking the same function are available to directly manipulate each task:
- Stop a task and set the it again into idle mode
- Pause a task for one cycle
- Online change the cycle time for each task
First select the task you like to control in the 'Tasks' tab (Figure 70) and then activate
one of the commands (Table 9).

Button Description
Start or stop task
Download program change
Online change

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

88

Pause (cycle to cycle)
Change cycle time

Table 9: Task commands

Variable monitoring are supported for all tasks. In the program code the current value of
each variable will be shown. For example in the FBD editor all the current in- and output
variable values are shown next to the function block and in the variable view (Figure 71).
Messages from each tasks are displayed in the output window.

Figure 71: Workbench in online mode

5.8 Debugging

The debugging function is identical to the single-tasking workbench environment (see
chapter 4.7).

6 Editing Programs

The programming environment provide language dedicated editors for:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

89

- Structure Text (ST)
- Function Block Diagram (FBD)
- Ladder Diagram (LD)
- Sequential Function Chart (SFC) and
- Instruction List (IL)

The editor provides you the ideal programming environment with drag and drop
features:
- Drag a variable from the list to the program to insert it.
- Drag a definition to the program to insert its name.
- Drag a block in the program to insert it.
- Drag a function block to the variable list to declare an instance.
- Drag a variable from the program or from the variable list to the spy list.
- Double-click on a line of the output window to highlight the corresponding code.

6.1 Structured Text (ST) and Instruction List (IL) Editor

The ST / IL editor is a powerful language sensitive text editor dedicated to IEC 61131-3
languages. The editor supports advanced graphic features such as drag and drop, syntax
coloring and active tooltips for efficient input and test of programs in ST and IL.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

90

Figure 72: Structure text editor

The ST / IL editor also supports context sensitive help. Place the caret on a keyword or
on the name of function or function block and hit F1 key to get help about the text.

In ST and IL Language you can use the following commands of the vertical toolbar:

Icon Function Description
Insert Variable Opens the dialog to create or insert a variable at the current

cursor position.
Insert FB Opens the Select dialog, to insert a function block.

List Key Words Opens the dialog to select the selected content to add it to the
program:
- #define
- Keywords and functions
- Variables: (all)

Insert comment
line (Ctrl+ K)

Changes an entry to an comment.
Add two forward slashes '//' to the beginning of the line.

For example mark the lines 1 to 4 with the mouse and click the
insert comment button to add a double forward slash at the
beginning of the line

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

91

Remove comment
(Ctrl + Shift + K)

Changes a comment to an normal entry.

For example: Mark the line 1 to 4 and click the 'Remove
comment' button to remove the double forward slashes at the
line start

Show Value in Text If enabled, the value of a variable is shown next to its name in
the code.

Show Expression Allows to see a alternative graphical view for regular expressions
in your code.
1. Select the expression
2. Press Show Expression to open a popup window
3. that shows the expression in a graphical view.

Indent text Indents the selected text.

Group/Ungroup
Lines

Allows to group or ungroup text lines, based on used control
structures (e.g. IF-ELSE) or multi-line comments. Grouped lines
can be collapsed and expanded in the editors display.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

92

Table 10: Vertical toolbar for ST and IL language

6.1.1 ST / IL Language Selection

The Workbench allows you to mix ST and IL languages in textual program. ST is the
default language. When you enter IL instructions, the program must be entered
between 'BEGIN_IL' and 'END_IL' keywords, such as in the following example:

Figure 73: IL example

6.1.2 ST / IL Syntax Coloring

The ST / IL editor supports syntax coloring according to the selected programming
language (ST or IL). The editor uses different colors for the following kind of words:

 Figure 74: Editor coloring

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

93

1. Default (identifiers, separators...)
2. Reserved keywords of the language
3. Constant expressions
4. Comments

The set of colors used can be changed from the Tools/Options menu command.

Figure 75: Color setting option

6.1.2.1 Intellisense

Some more features are available for smart editing and are referred to as ' IntelliSense'.
IntelliSense can be memory consuming and can be activated or deactivated from the
Tools/Options menu command. After activating or de-activating the IntelliSense, you
must close and reopen your project list.

Figure 76: Activate IntelliSense

The following features are available when IntelliSense is activated:

1. Conditional compiling coloring
Parts of code which should not be compiled can be set by conditional #ifdef
directives. Code which are shown in grey are not being compiled. Figure 77 shows

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

94

that the active part of the program changes once the conditional directive changes.

Figure 77: Conditional directives

The #ifdef identifier statement is equivalent to #ifdef 1 when identifier has
been defined. It's equivalent to #ifdef 0 when identifier has not been defined.
These directives check only for the presence or absence of identifiers defined with
#define.

The editor for defining the local preprocessor statements can be opened by right
clicking the ST Editor and selecting 'Show/Hide Local Defines' from the popup box:

Figure 78: Showing/Hiding the editor for defining local identifiers

2. Auto-indentation
Lines are automatically formatted (indented) on the left as you enter structured ST
statements.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

95

3. Auto-completion of ST statements
On an empty line, just enter the main keyword of a ST statement such as 'for', 'if'...
and immediately press the ENTER key. The whole statement will be completed
including comments that will guide you through the syntax. The caret is
automatically placed where you must enter the first required term or condition.

Example:
- Enter 'if' and press the ENTER key:

- Enter 'for' and press the ENTER key:

4. Auto-declaration of missing symbols
When you press ENTER at the end of a line containing an unknown variable symbol,
you will be prompted for declaring it immediately.

Example:
Enter a variable name 'myVariable' and press ENTER. A popup window shows up
which allows you to do the necessary variable declaration:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

96

5. Line indentation
When lines are selected, you can automatically indent them. Press TAB or
Shift+TAB keys to shift the lines to the left or to the right, by adding or removing
blank characters on the left.

6.1.2.2 Auto Completion of Words

The ST / IL editor includes commands for automatic completion of typed words,
according to declared variables and data types. The following features are available:

1. Auto completion of a variable name
If you enter the first letters of a variable name, you can hit the CTRL+SPACE key for
automatically completing the name. A popup list is displayed with possible choices
if several declared variable names match the type characters.

Example:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

97

2. Auto-completion of function calls
Enter the name of a function simply followed by an opening parenthesis and
immediately press the ENTER key. The call will be completed with the appropriate
argument list including comments and possibly default values so that you are
guided through the list of values to be passed to the called function.

Example:
Enter the Function name followed by a parenthesis 'SYSSTARTTASK()'and press
enter:

3. Selection of FB member
When you type the name of a function block instance (use either as an instance or
a data structure), pressing the point '.' after the name of the instance opens a
popup list with the names of possible members.

Example:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

98

6.1.3 Tooltips in the ST / IL Editor

During test (connected mode or simulation) of the program the ST / IL editor shows in a
tooltip the current value of the variable pointed to by the mouse cursor. You do not
need to run any specific command to open the tooltip. Just put the mouse on the
variable symbol and wait for one second.

The value shown in the tooltip is automatically refreshed while the tooltip is open.

6.1.4 Shortcuts for ST and IL Editor

Multiple lines of the same column in the ST/IL editor can be marked and replace by text.
Multiple lines at the same offset can be marked as follows:

- while pressing the Shift + Alt key the keyboard arrows can be used to select
vertical text blocks

- while pressing the Alt key the mouse can be used to select vertical text blocks
So it is possible to copy existing parts of a program and modify them in a short time.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

99

6.2 Function Block Diagram (FDB) Editor

The FBD editor is a powerful graphical tool that enables you to enter and manage
Function Block Diagrams according to the IEC 61131-3 standard. The editor supports
advanced graphic features such as drag and drop, object resizing and connection lines
routing features, so that you can rapidly and freely arrange the elements of your
diagram. It also enables you to insert in a FBD diagram graphic elements of the LD
(Ladder Diagram) language such as contacts and coils.

Figure 79: Function Block Editor

6.2.1 Using the FBD toolbar

The vertical toolbar on the left side of the editor contains buttons for all available editing
features. Push the wished button before using the mouse in the graphic area.

Icon Function Description
Selection In this mode, you cannot insert any element in the diagram. The

mouse is used for selecting object and lines, select tag name
areas, move or copy objects in the diagram. At any moment you
can press the ESCAPE key to go back to the Selection mode.

Add Block In this mode, the mouse is used for inserting blocks in the
diagram. Click in the diagram and drag the new block to the

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

100

wished position. The type of block that is inserted is the one
currently selected in the list of the main toolbar.

Add variable In this mode, the mouse is used for inserting variable tags.
Variable tags can then be wired to the input and output pins of
the blocks. Click in the diagram and drag the new variable to the
wished position.

Add Comment Insert comment text:
In this mode, the mouse is used for inserting comment text areas
in the diagram. Comment texts can be entered anywhere. Click in
the diagram and drag the text block to the wished position. The
text area can then be selected and resized.

Add Arc Insert connection line:
In this mode, the mouse is used to wire input and output pins of
the diagram objects. The line must always be drawn in the
direction of the data flow: from an output pin to an input pin.
The FBD editor automatically selects the best routing for the new
line. You can change the default routing by inserting corners on
lines. (see below)

You also can drag a line from an output pin to an empty space. In
that case the editor automatically finished the line with a user
defined corner so that you can continue drawing the connection
to the wished pin and force the routing while you are drawing
the line.

Add corner In this mode, the mouse is used for inserting a user defined
corner on a line. Corners are used to force the routing of
connection lines, as the FBD editor imposes a default routing
only between two pins or user defined corners. Corners can then
be selected and moved to change the routing of existing lines.

Add break Insert network break:
In this mode, the mouse is used for inserting a horizontal line
that acts as a break in the diagram. Breaks have no meaning for
the execution of the program. They just help the understanding
of big diagrams, by splitting them in a list of networks.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

101

Add ST condition
Add label In this mode, the mouse is used for inserting a label in the

diagram. A label is used as a destination for jump symbols (see
below).

Add jump In this mode, the mouse is used for inserting jump symbols in the
diagram. A jump indicates that the execution must be directed to
the corresponding label (having the same name as the jump
symbol). Jumps are conditional instructions. They must be linked
on their left side to a Boolean data flow.

Add left power rail In this mode, the mouse is used for inserting a left power rail in
the diagram. A left power rail is an element of the LD language,
and represents a TRUE state that can be used to initiate a data
flow. Power rails can then be selected and resized vertically
according to the wished network height.

Add direct contact In this mode, the mouse is used for inserting in the diagram a
contact as in Ladder Diagrams.

Add 'OR' bar In this mode, the mouse is used for inserting a rail that collects
several Boolean data flows for an 'OR' operation, in order to
insert parallel contacts such as done in Ladder Diagrams.

The OR rail has exactly the same meaning as an OR block
regarding the execution of the diagram.

Add direct coil In this mode, the mouse is used for inserting in the diagram a coil
as in Ladder Diagrams. It is not mandatory that a coil be

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

102

connected on its right side.
Add right power
rail

In this mode, the mouse is used for inserting a right power rail in
the diagram. A right power rail is an element of the LD language,
and is commonly used for terminating Boolean data flows.
However it is not mandatory to connect coils to power rails. Right
power rails have no meaning for the execution of the diagram.

Show execution
order

Display the execution order of the elements in the diagram. At
each element a yellow box is attached which shows the
execution sequence number.

Figure 80: Function block diagram (FBD) toolbar commands

6.2.1.1 FBD Variables

All variable symbols and constant expressions are entered in FBD diagrams using small
boxes.
Step 1: Insert variable tag

1. Press the 'Insert variable' button in the FBD toolbar
2. Click at a wished position in the FBD editor where to place the variable

tag.

Step 2: Double-click on a variable tag to open the variable selection box and either
select the symbol of the wished variable or enter a constant expression.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

103

Step 3: Variables tags must then be linked to other objects such as block inputs and
outputs using connection lines.
1. Click 'Add Arc' button to insert connection line.
2. Connect the variable tag either to the input or output of a block.

Step 4: You can resize a variable box vertically in order to display together with the
variable name its tag (short comment text), its description text, plus its I/O
location if the variable is mapped to an I/O channel. The variable name is
always displayed at the bottom of the rectangle:

- tag
- description
- % location
- name

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

104

6.2.1.2 FBD Comments

Comment text areas can be entered anywhere in a FDB diagram.

Step 1: Add a comment box to the FBD editor:
1. Press the 'Add comment' button in the FBD toolbar for inserting a new

comment area
2. Drag the comment box to the required position

Step 2: Edit a text into the comment box:
1. Double-click on the comment area for entering or changing the attached

text. You can also insert a bitmap to the comment box by entering the
directory of the bitmap

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

105

2. Confirm the setting. When selected, comment texts can be resized.

6.2.1.3 FBD Corners

Corners are used to force the routing of connection lines, as the FBD editor imposes a
default routing only between two pins or user defined corners.

Example:
The FBD editor connects the FBD elements by choosing the shortest distance. The
corners of the connection line are chosen by the FBD editor in such a way that the lines
do not cross another function block or variable element.

Figure 81 shows the connection line generated by the FBD editor

Figure 81: Connection line path generated by the FBD editor

Corners can then be selected and moved to change the routing of existing lines (Figure
82). In order to change the pathway of the line insert a corner on a line by pressing the
'Add corner' button in the FBD toolbar and clicking the connection line. The newly added
corner can now be move by the mouse to a new position and the connection line will

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

106

automatically follow the new corner position.

Figure 82: Connection line path manually edited by using corners

Before moving the corner make sure the corner is surrounded by a square otherwise a
new corner will be generated

You can drag a new line from an output pin to an empty space. In that case the editor
automatically finished the line with a user defined corner so that you can continue
drawing the connection to the wished pin and force the routing while you are drawing
the line.

6.2.1.4 FBD Network Breaks

Network breaks can be entered anywhere in a FBD diagram. Breaks have no meaning for
the execution of the program. They just help the understanding of big diagrams, by

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

107

splitting them in a list of networks.

Press the following button in the FBD toolbar for inserting a new break:

The break line is drawn on the whole diagram width. No other object can overlap a
network break. Break lines can then be selected and moved vertically to another
location.

Network breaks can also be used for browsing the diagram. Press Ctrl+Page Up or
Ctrl+Page Down keys to move the selection to the next or previous network break.

6.2.1.5 FBD 'OR' Vertical Rail

The FBD editor enables the drawing of LD rungs. A particular object, the 'OR' rail can be
inserted on a rung in order to connect parallel contacts together (Figure 83).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

108

Figure 83: Example of an 'OR' bar application

The OR rail has exactly the same meaning as an OR block regarding the execution of the
diagram (Figure 84).

Figure 84: Example of an 'OR' function

6.2.2 Drawing FBD connection lines

The connection lines are being used to connect input and output of the objects in the
FBD editor. The line must always be drawn in the direction of the data flow: from an
output pin to an input pin. The FBD editor automatically selects the best routing for the

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

109

new line. You can change the default routing by inserting corners on lines.
Press the button before inserting a new line.

Figure 85: Connection lines indicate the data flow

Connection line is colored in red if the two linked elements are not the same data type.

The editor enables you to terminate a connection line with a Boolean negation
represented by a small circle. To set or remove the Boolean negation, select the line and
press the SPACE bar.

Figure 86: Connection line with a Boolean negation termination

Connection lines must always be drawn in the direction of the data flow: from an output
pin to an input pin. The FBD editor automatically selects the best routing for the new
line. Connection lines indicate a data flow between the following possible objects:

Procedure for drawing a connection line:
Step 1: Add two blocks to the FBD editor:

1. Click the 'Add function block' command. Now a function block icon is
displayed next to the mouse pointer

This indicates that every mouse click drag on the FBD editor will generate
a new block at the current pointer position.

2. Insert two blocks: A block is being added left clicking the mouse and

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

110

dragging it. By default the function block which appears in the first row of
the selection list will be inserted.

3. Change the function block type by double clicking it

In this example the NOT function will be selected for the left block:

Step 2: Connect the output pin of the & function to the input pin of the NOT function
1. Click the 'Add arc' button on the left toolbar to enter the 'insert

connection line' mode. A line icon appears next to the mouse pointer

2. Move the mouse pointer over the output pin of the & block.

When a star appears the click the left mouse button and drag it to the

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

111

input pin of the NOT block.

Once the star appears at the input pin release the mouse button. A
connection line is drawn between the output and input.

6.2.3 Selecting FBD Variables and Instances

To attached a variable to a graphic object (e.g. input and output pin of a function block),
you must be in Selection mode. Simply double-click on the gray area of the variable tag
box.

Procedure for assigning a variable to a object in the FBD editor:
Step 1: Go into selection mode by clicking the 'Selection' button or press the 'Esc'

key. A rectangular will be shown next to the mouse pointer.

Step 2: Assign a variables:

1. Double click on the tag name in the gray area. A dialog with variable list
pops up.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

112

2. You have three possibilities to assign a variable:
 Select a variable from the variable list

 Declare a new variable in the variable list.
The variable list can also be used as an variable editor by entering a
new variable name in the list header and click 'OK'.

A dialog box pops up which allows you to directly declare the variable.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

113

 Assign a constant expression (e.g. UINT#440022, BOOL#FALSE).

Step 3: Option: It is also possible to drag a variable from the variable editor directly to
the grey variable tag.

6.2.4 Viewing FBD Diagrams

The diagram is entered in a logical grid. All objects are snapped to the grid. You can use
the commands of the View menu for displaying of hiding the points of the grid.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

114

Figure 87: Viewing commands

The (x,y) coordinates of the mouse cursor are displayed in the status bar. This helps you
locating errors detected by the compiler, or aligning objects in the diagram.

At any moment you can use the commands of the View menu for zooming in or out the
edited diagram. You also can press the [+] and [-] keys of the numerical keypad for
zooming the diagram in or out.

6.2.5 Moving or Copying FBD Objects

The FBD editor fully supports drag and drop for moving or copying objects.

6.2.5.1 Moving FBD Objects

To move objects, select them and simply drag them to the wished position.

Step 1: Select an object
1. Go into selection mode by clicking the 'Selection' button or press the 'Esc'

key.
2. Select the object by clicking on it with the mouse. The selected object will

be shown in a selection frame.

Step 2: Drag the object to a new position.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

115

6.2.5.1.1 Using the Keyboard

When graphic objects are selected, you can move them in the diagram by hitting the
following keys:

Shortcut Description
Shift + Up Move to the top.
Shift + Down Move to the bottom.
Shift + Left Move to left.
Shift + Right Move to right.

Table 11: Keyboard shortcuts for moving objects

When an object is selected, you can extend the selection by hitting the following keys:

Shortcut Description
Shift + Control + Home Extend to the top: select all objects before the selected

one.
Shift + Control + End Extend to the bottom: select all objects after the

selected one.
Table 12: Keyboard shortcuts for selection extension

To insert or delete space in the diagram, you can simply select an object, press
Shift+Control+End to extend the selection and then move selected objects up or down.

6.2.5.1.2 Auto alignment

When multiple objects are selected, the following keystrokes automatically align them:

Shortcut Description

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

116

Control + Up Align to the top.
Control + Down Align to the bottom.
Control + Left Align to left.
Control + Right Align to right.

Table 13: Keyboard shortcuts for auto alignment

6.2.5.2 Copying FBD Objects

To copy objects, select the object, and just press the CONTROL key while dragging.

Step 1: Select an object
1. Go into selection mode by clicking the 'Selection' button or press the 'Esc'

key.
2. Select the object by clicking on it with the mouse. The selected object will

be shown in a selection frame.

Step 2: Copy the object:
1. Press the 'Ctrl' key and drag the object to a new position.

It is also possible to drag pieces of diagrams from a program to another if both are open
and visible on the screen.

At any moment while dragging objects you can press ESCAPE to cancel the operation.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

117

Alternatively, you can use classical Copy / Cut / Paste commands from the Edit menu.
When you run the Paste command, the editors turns in Paste mode, with a special
mouse cursor (Figure 88). Click in the diagram and move the mouse cursor to the wished
position for inserting pasted objects.

Figure 88: Mouse cursor when in paste mode

6.2.6 Inserting FBD Objects on a Line

The FBD editor enables you to insert an object on an existing line and automatically
connect it to the line. This feature is available for all objects having one input pin and
one output pin, such as variable boxes, contacts and coils. This feature is mainly useful
when entering pieces of Ladder Diagrams. Just draw a horizontal line between left and
right power rails: this is the rung. Then you can simply insert contacts and coils on the
line to build the LD rung.

Example:
1. Add a left and right power rail to the editor and connect both ends with a

connection line .

2. Insert a contact , coil and variable on the line by dragging the objects
directly over the connection line:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

118

The FBD editor will automatically connect the new object to the existing connection
line:

6.2.7 Resizing FBD objects

Most of the objects provide inside the FBD editor can be resized. Objects which support
resizing show small square boxes after they have been selected. The square boxes
indicates in which direction the objects can be resized. Click on the small square boxes
for resizing the object in the wished direction.

Shortcut Description
Object can not be resized

Object can only be resized in horizontal direction

Object can only be resized in all directions

Resizing procedure:
Step 1: Select an object

1. Go into selection mode by clicking the 'Selection' button or press the 'Esc'
key.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

119

2. Select the object by clicking on it with the mouse. The selected object will
be surrounded by a rectangular frame with small squares.

Step 2: Move the mouse pointer over one of the tiny squared boxes, click on it and
drag the boundary to the required size.

Step 3: Optional: Some function (e.g. OR, AND, etc.) allows the user to increase the
number of input pins. The number of pins can be increased/decreased by
resizing the block in vertical direction:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

120

6.3 Ladder Diagram (LD) Editor

The LD editor is a powerful graphical tool that enables you to enter and manages Ladder
Diagrams according to the IEC 61131-3 standard. The editor enables quick input using
the keyboards, and supports advanced graphic features such as drag and drop.

Figure 89: Ladder diagram (LD) editor

A Ladder Diagram is a list of rungs. Each rung represents a Boolean data flow from a
power rail on the left to a power rail on the right. The left power rail represents the
TRUE state. The data flow must be understood from the left to the right. Each symbol
connected to the rung either changes the rung state or performs an operation. Below
are possible graphic items to be entered in LD diagrams:
- Power Rails
- Contacts and Coils
- Operations, Functions and Function blocks, represented by rectangular blocks
- Labels and Jumps
- Use of ST instructions in graphic languages

6.3.1 Using the LD Toolbar

The vertical toolbar on the left side of the LD editor contains buttons for inserting items
in the diagrams. Items are inserted at the current position in the diagram.

Icon Shortcut Description
Shift+F4 Insert a contact before the selected item.
F4 Insert a contact after the selected item.
Ctrl+F4 Insert a contact in parallel with the selected items

Ctrl+Space Insert a horizontal line before the selected item so that it is
pushed to the right.

Spacebar Swap item style of the current cell for a contact coil

Shift+F8 Insert a block before the selected item.
F8 Insert a block after the selected item.
Ctrl+F8 Insert a block in parallel to the selected items.
Shift+F9 Add a jump in parallel to the selected coil.
F9 Add a coil in parallel to the selected coil or contact.
Ctrl+R Inserts a new rung in the diagram before the current one.

Hint: If you mark a rung and press CTRL while clicking on the
vertical toolbar entry, the rung will be inserted after the marked
rung.

Ctrl+D Insert a comment between rungs.

Align the coils
Figure 90: Ladder diagram (LD) toolbar

6.3.2 Managing Rungs

A LD diagram is a sequential list of rungs. Each rung represents left to right Boolean
power flow, that begins with a power rail, always drawn in the first column of the
diagram, and finishes with a coil or a jump symbol.

Each Rung is identified by a default numbered identifier (Rnnn) displayed on the left of
the power rail. The rung identifier can be used as a target for jump instructions.
Alternatively you can enter a specific rung label by double-click in the rung head on the
left margin.

The LD editor enables you to manipulate whole rungs by selecting only their head in the
left margin. The following example shows a selected rung:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

122

Figure 91: Rung in a ladder diagram

When a rung is selected, use the commands of the Edit menu to delete, copy or cut it.

Figure 92: Copy, cut and delete commands for the ladder diagram

Steps for adding a new rung:
Step 1: Select a line at the which the rung has to be inserted.
Step 2: Click on the 'Insert new rung' button on the left toolbar

A new rung is added one line above the selected line:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

123

6.3.3 Contacts

Contacts are basic graphic elements of the LD language. A contact is associated to a
Boolean variable written upon its graphic symbol. A contact sets the state of the rung on
its right side, according to the value of the associated variable and the rung state on its
left side.

Below are the possible contact symbols and how they change the rung state:

Symbol Description
Normal: the rung state on the right is the Boolean AND
between the rung state on the left and the associated
variable.
Negated: the rung state on the right is the Boolean AND
between the rung state on the left and the negation of the
associated variable.
Positive pulse: the rung state on the right is TRUE only
when the rung state on the left is TRUE and the associated
variable changes from FALSE to TRUE (rising edge).
Negative pulse: the rung state on the right is TRUE only
when the rung state on the left is TRUE and the associated
variable changes from TRUE to FALSE (falling edge).

Table 14: Contact symbols

Info
When a contact or a coil is selected, You can press the SPACE bar to change its type
(normal, negated, pulse...).

Two serial normal contacts represent an AND operation.

Two contacts in parallel represent an OR operation.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

124

6.3.4 Coils

Coils are basic graphic elements of the LD language. A coil is associated to a Boolean
variable written upon its graphic symbol. A coil performs a change of the associated
variable according to the rung state on its left side.

Below are the possible coil symbols and how they change the rung state:

Symbol Description
Normal: the associated variable is forced to the value of the
rung state on the left of the coil.
Negated: the associated variable is forced to the negation
of the rung state on the left of the coil.
Positive Transition-Sensing Coil:
A Positive Transition Contact gives a single one-shot pulse
when the bit operand it is linked to rises from FALSE (logic
0) to TRUE (logic 1).

Negative Transition-Sensing Coil:
A Negative Transition Contact gives a single one-shot pulse
when the bit operand it is linked to falls from TRUE (logic 1)
to FALSE (logic 0).

Set: the associated variable is forced to TRUE if the rung
state on the left is TRUE. (no action if the rung state is
FALSE)
Reset: the associated variable is forced to FALSE if the rung
state on the left is TRUE. (no action if the rung state is
FALSE)

Table 15: Coils symbols

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

125

Info
When a contact or a coil is selected. You can press the SPACE bar to change its type
(normal, negated, pulse...).

Attention
Even though coils are commonly connected to a power rail on the right, the rung may be
continued after a coil. The rung state is never changed by a coil symbol.

6.3.5 Power Rails

Vertical power rails are used in LD language for representing the limits of a rung.

The power rail on the left represents the TRUE value and initiates the rung state. The
power rail on the right receives connections from the coils and has no influence on the
execution of the program.

Figure 93: Vertical power rails (left and right)

Power rails can also be used in FBD language. Only Boolean objects can be connected to
left and right power rails.

6.3.6 Calling a Function or Function Block

To call a function block in FBD or LD languages, you just need to insert the block in the
diagram and to connect its inputs and outputs. The name of the instance must be
specified upon the rectangle of the block.

All available operators, functions and function blocks are listed in the bottom/right area
of the editor. The list of available blocks is sorted into categories.

The All category enables you to see the complete list of available blocks. The Recent
category contains the last used blocks. The Project category lists all UDFBs and sub-

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

126

programs declared in the project.

To insert a block in a program, simply select it in the list and drag it with the mouse to
the wished position in the ladder diagram.

Press the F1 key when a block is selected to have help about its function, input and
output pins. In selection mode, you also can double-click the mouse on a block of the
diagram to change its type, and set the number of input pins if the block can be
extended.

6.3.6.1 EN Input and ENO Output for Blocks

The rung state in a LD diagram is always Boolean. Blocks are connected to the rung with
their first input and output. This implies that special EN and ENO input and output are
added to the block if its first input or output is not Boolean.

The EN input is a condition. It means that the operation represented by the block is not
performed if the rung state (EN) is FALSE. The ENO output always represents the sane
status as the EN input: the rung state is not modified by a block having an ENO output.

Examples:
1. XOR block, having Boolean inputs and outputs, and requiring no EN or ENO pin.

First input is the rung. The rung is the output.

2. > (greater than) block, having no Boolean inputs and a Boolean output. This block
has an EN input in LD language.
The comparison is executed only if EN is TRUE.

3. The SEL function has a Boolean input, but no Boolean output. This block has an
ENO output in LD language.
The input rung is the selector. ENO has the same value as SELECT.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

127

4. Addition, having only numerical arguments (no Boolean inputs and no Boolean
output). This block has both EN and ENO pins in LD language.
The addition is executed only if EN is TRUE. ENO is equal to EN.

6.3.7 Jumps - Labels

A jump to a label branches the execution of the program after the specified label. The
jump is performed only if the input is TRUE. In LD language the target label name, is
used as a coil at the end of a rung. The jump is performed only if the rung state is TRUE.

Figure 94: Jump-label in a ladder diagram

A label must be represented by a unique name and is shown on the left side of the rung.
- A jump is added by first selecting the target cell in the ladder editor and clicking the

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

128

'Insert jump' command.
- A label is inserted to the LD editor by double clicking the first cell of a rung and

entering the label name in the popup edit box.

Attention
Backward jumps may lead to infinite loops that block the target cycle.

6.3.8 Use of ST Expressions

The workbench enables any complex Structure Text (ST) expression to be associated
with a graphic element in either LD or FBD language. This feature makes it possible to
simplify LD and FBD diagrams when some trivial calculation has to be entered. It also
enables you to use graphic features for representing a main algorithm where as text is
used for detailed implementation.

Expression must be written in ST language. An expression is anything you can imagine
between parenthesis in a ST program. Obviously the ST expression must meet the data
type required by the diagram (e.g. an expression put on a contact must be Boolean).

Figure 95: ST expression as input in a LD editor

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

129

6.3.9 Comments in LD Diagrams

The LD editor enables you to insert comment texts in the diagram. A comments is a
single line of text inserted between two rungs. The comment text is displayed on a
double line in the diagram:

Figure 96: Comments (green) in a LD editor

Comment texts have no meaning for the execution of the diagram. They are used to
enhance the readability of the program, enabling the description of each rung.

The comment text remains visible when the diagram is scrolled horizontally. To change
the text of the comment, place the selection anywhere on the comment line and hit
ENTER key, or simply double-click on the comment line.

Steps for adding a comment line:
Step 1: Select a line at the which the comment has to be inserted.
Step 2: Click on the 'Insert comment line' button on the left toolbar

A new comment line is added one line above the selected line:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

130

Step 3: Insert text to the comment line by double clicking the line:

Step 4: Click the check button to insert the text:

6.3.10 Viewing LD diagrams

The diagram is entered in a logical grid. All objects are snapped to the grid. You can use
the commands of the View menu for displaying of hiding grid lines.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

131

Figure 97: Displaying/hiding grid line

The (x,y) coordinates of the mouse cursor are displayed in the status bar. This helps you
locating errors detected by the compiler, or aligning objects in the diagram.

At any moment you can use the commands of the View menu for zooming in or out the
edited diagram. You also can press the [+] and [-] keys of the numerical keypad for
zooming the diagram in or out.

You also can drag the separation lines in vertical and horizontal rulers to freely resize
the cells of the grid:

Figure 98: Resizing the cells

The LD editor adjust the size of the font according to the zoom ratio so that the name of
variables associated with contacts and coils are always visible. If cells have sufficient
height, variable names are completed with other pieces of information about the
variable:
- Its tag (short description).
- Its description text.
- Its I/O name (%...) if the variable has a user defined name.

6.3.11 Moving and Copying LD Objects

The LD editor fully supports drag and drop for moving or copying objects.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

132

6.3.11.1 Moving LD Objects

To move objects, select them and simply drag them to the wished position, in the same
rung or in another rung.
Alternatively, you can use classical Cut/Paste commands from the Edit menu. Paste is
performed at the current position.
At any moment while dragging objects you can press ESCAPE to cancel the operation.

Step 1: Select the item to move:
1. Click on the item to move. The background of the selected item turns

yellow.

2. Now click on the item again and hold the left mouse button down until
the background color turns grey. A rectangular attached to the mouse
icon indicates that the item is ready to be moved.

Step 2: Move the object
1. With the left mouse button still down move the item to a new position.
2. Release the mouse button when the target position has been reached.

Remember that item is moved to the cell which precedes the selected
cell.

After the left mouse button has been release the item is dropped to the
cell which column precedes the selected target column.

Step 3: hh

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

133

6.3.11.2 Copying LD Objects

To copy objects, select them and just press the 'Ctrl' key while dragging. It is also
possible to drag pieces of diagrams from a program to another if both are open and
visible on the screen. The procedure is the same as moving object except that in
addition the 'Ctrl' key has to be pressed while dragging the object.

Alternatively, you can use classical Copy/Paste commands from the Edit menu. Paste is
performed at the current position.

At any moment while dragging objects you can press ESCAPE to cancel the operation.

You can manipulate whole rungs by selecting only their head in the left margin (select
only the cell where the rung number is displayed).

Step 1: Select the rung to copy:
1. Click on the first cell of the row to copy. The background of the selected

cell turns yellow.

2. Now click on the cell again and hold the left mouse button down until the
background color turns grey. A rectangular attached to the mouse icon
indicates that the item is ready to be moved or copied.

Step 2: Copy the rung:
1. With the left mouse button still down press the 'Ctrl' key move the item

to a new position.
2. Release the mouse button when the target position has been reached.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

134

The selected rung is copied to the selected row:

6.4 Converting a Program to Another Language

The Workbench includes a feature that enables you to convert a program written in an
IEC language to another language. Use the contextual popup menu in the Workspace to
convert a program to another language.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

135

Figure 99: Converting a Structure Text into another language

Any conversion in between ST, IL, LD and FBD are possible. Conversion of SFC programs
is not allowed. Converted POUs can be main programs, UDFBs or sub-programs.

The program must be saved and the project built without errors before converting a
program.

When a program is converted to another language, its former implementation in the
original language is kept until you make a change in the converted program. Thus, if you
re-convert it back to the original language, you get 100% of the original contents.

Info
When a program is converted, some presentation items (such as blank lines in ST or
specific alignment in FBD) are lost.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

136

It is possible that converting a language requires some new intermediate variables to be
declared. Such variables are declared locally to the program and are prefixed with '_T'.

6.5 Some Tips

6.5.1 Bookmarks

Bookmarks are used for navigating in a document. You can freely insert bookmarks
everywhere in a document and jump from one bookmark to another with a single
command. Bookmarks are supported in all program editors plus the variable editor.

Below are the available commands for using bookmarks:

Shortcut Description
Ctrl + F2 Toggle the bookmark at the current position.
Shift + F2 Go to the next bookmark.

Table 16: Bookmark commands

Info:
Bookmarks are valid only while the editing window is open, and are not stored in the
document when the window is closed.

The possible locations for a bookmark are:
- In the text editor, a bookmark is placed on a line of text.

- In the SFC editor, a bookmark is placed on a SFC symbol (step, transition, jump...).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

137

- In the FBD editor, a bookmark is placed on any FBD object (not on a line).

- In the LD editor, a bookmark is placed on a rung header.

- In the variable editor, a bookmark is placed on any line of the grid (variable or
group).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

138

6.5.2 Handling Exceptions

The compiler enables you to write your own exception programs for handling particular
system events. The following exceptions can be handled:
- Startup (before the first cycle)
- Shutdown (after the last cycle)
- Division by zero
- Array index out of bounds

6.5.2.1 Startup

You can write your own exception program to be executed before the first application
cycle is executed. Add the following command to the to define editor of the startup
exception program:

#OnStartup ProgramName

The 'ProgramName' has to be replaced by the name of the exception program.

The startup exception program is executed before all other programs within the first
cycle. The program is called only once before the first cycle. This implies that the cycle
timing may be longer during the first cycle. You cannot put breakpoints in the Startup
program.

In the startup program you can system initialization:
- Start other tasks executions
- Initialization of complex data structures
- Initialize variables from recipe: 'Initial values'

ApplyRecipeColumn ('Initial values', 0);
- Fieldbus intialization

Procedure for adding an exception program:
Step 1: Create a new program that will handle the exception. It cannot be a SFC

program. The exception program can have any name. In this example it is
called 'pStartup'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

139

Step 2: Edit code to the exception program:
1. Inform the compiler that the program is an exception program:

 Open the define editor by right clicking the program editor and
selecting 'Show/Hide Local Defines'

 Insert the following line in the:
#OnStartup pStartup

2. Edit the source code for the exception program

6.5.2.2 Shutdown

You can write your own exception program to be executed after the last application
cycle when the runtime system is cleanly stopped.

Create a new program that will handle the shutdown exception. It cannot be a SFC
program. In the local define editor of the shutdown program, insert the following line:

#OnShutdown ProgramName

The 'ProgramName' should to be replaced by the name of the exception program
(Figure 100).
You cannot put breakpoints in the Shutdown program.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

140

Figure 100: Shutdown exception program

6.5.2.3 Division by Zero

You can write your own exception program for handling the 'Division by zero' exception.
Create a new sub-program without any parameter that will handle the exception. In the
define section of the subprogram, insert the following line:

#OnDivZero SubProgramName

The 'SubProgramName' should to be replaced by the name of the exception sub-
program.

In the sub-program that handles the exception you can perform any safety or trace
operation. You then have the selection between the following possibilities (Figure 101):
- Return without any special call. In that case the standard handling will be performed:

a system error message is generated, the result of the division is replaced by a
maximum value and the application continues.

- Call the FatalStop function. The runtime then stops immediately in Fatal Error
mode.

- Call the CycleStop function. The runtime finishes the current program and then
turns in cycle setting mode.

Handlers can also be used in DEBUG mode for tracking the bad operation. Just put a
breakpoint in your handler. When stopped, the call stack will show you the location of
the division in the source code of the program.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

141

Figure 101: 'Divide by zero'- exception sub-program

Below is the procedure you must follow for setting an exception handler:
Step 1: Create a sub-program. In this example the name of the sub-program is

'pOnDivZero'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

142

Step 2: Do not define any in/output parameters for the sub-program.

Step 3: Add the following line to the define editor (Figure 101):
#OnDivZero pOnDivZero

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

143

Step 4: Edit the source code for the exception sub-program.

6.5.2.4 Array Index Out of Bounds

You can write your own exception program for handling the 'Array index out of bounds'
exception. The procedure for the setting an exception handler is similar to the 'Division
by zero' exception (Figure 102):
Step 1: First create a new sub-program without any parameters the exception
Step 2: In the define section of the subprogram, insert the following line:

OnBadArrayIndex SubProgramName
The 'SubProgramName' should to be replaced by the name of the exception
sub-program.

Step 3: Edit the code of the exception program.

Figure 102: Array index exception sub-program

Note:
The array index out of bound error is a fatal error. If the 'Check array bounds' compiling
option is set, the runtime goes in 'fatal error' mode after calling your sub-program.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

144

7 Variable Monitoring (Debugging Tools)

The workbench provides several windows and tools for monitoring and manipulating variables
while the PLC program is executing. The workbench has to be connected to the runtime and the
application project needs to be open in order for the workbench to display the current variable
values.

The following tools are available for monitoring and debugging the application program:
- Monitoring variables
- Diagnostic information: A diagnostic window displays messages of the runtime
- SpyList: Variable values are displayed in the program or in the lists of variable. Variable lists

allow you to spy on real-time values of variables. SpyList monitors variable values of more
than one task, program or function at the same time.

- Test Sequences: The workbench includes an integrated tool for designing and running
automated test scenarios.

- Graphics monitoring: Graphic libraries are provided to create simple graphic interfaces to
monitor and write variables. User interfaces for debugging and monitoring purpose can be
done via drag and drop and linking the graphic object to a application variable.

- Step by Step debugging: When the program has reached a breakpoint you can execute the
program in single steps. At each halt position you see the current value of the variables in
the monitoring views. In addition to the cycle by cycle execution mode is supported which
stops the program at the end of each cycle.

- Recipes: The recipe manager allows the user to force a number of variables values at the
same time.

- Soft scope: An integrated oscilloscope displays variable values in a real time.

7.1 Monitoring Variable Values

When the workbench is connected to the runtime (online) you can monitor the values of the
variables of the running application. It is possible to change the value of some variables while
you are monitoring the variable values.

7.1.1 Inline Monitoring

If the workbench is online and the inline monitoring is activated, the inline monitoring
boxes are placed behind each variable in the code, or next to the variable in the function
block. The inline monitoring boxes shows the actual value of the variable in real time
(Figure 103: Area 1).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

145

Figure 103: Monitoring variables

To activate or deactivate Inline monitoring click the 'Show Value in Text' () button on
the left edge of the program editor window. Variable values can not be changed directly
via the program editor.

7.1.2 Monitoring in the Variable Editor

The variable editor contains all the variable declared for a POU. Once the workbench is
connected to a running PLC application each variable is updated with the current
application value in real time (Figure 104). The current variable value is shown in the
'Value' column. If the variable type is an array, structure or function block, then first
double click the variable name to open a dialog to show the variables with its values.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

146

Figure 104: Variable editor with showing the current values

You can write and force a value by double clicking a variable in the variable editor. A
dialog with the current value pops up (Figure 105). Enter a new value and click the
'Force' button to changed the variable value while the program is running. The variable
will be set to this value at the beginning of the next cycle.

Figure 105: Force variable

7.2 SpyList

The SpyList is a monitoring tool that enables you to watch variables of the application at
run time. The user can define a list of project variables that are collected in one view for
the purpose of monitoring their values. Variables of simple data type as well as arrays,
data structures and statements are all supported by the SpyList. In online mode, you can
write and force variable values in a SpyList to actively influence the PLC application
behavior. The SpyList configuration with it list of variable can be saved and be used for
the next debugging session. The SpyList purpose it to help the programmer to track
down errors and resolve problems.
A PLC application program contains many hundreds of declared variables. The
workbench allows the user to add a selected number of variables to the SpyList to
monitor its current value and state in the runtime. The variables are dynamically
updated by the workbench during runtime idle time or when free runtime resource are
available and is not updated more than once in a task cycle. The values of each variables
in the SpyList can be changed by the user.

SpyList can reference global, system, and local variables. Three type of SpyLists are

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

147

provided:
- Program SpyList (Local SpyList): Only variables which are declared in the program are

supported by the local SpyList.
- Task SpyList: A task may have several programs; variable of any program in the task

can be added to the Task SpyList
- Multi SpyList: Any variable declared in the application can be monitored

7.2.1 Local SpyList

Each program editor has a local SpyList. If the SpyList is not visible then select in the
menu 'View/Info Tab2' to display it. The variables, structure and function block instances
of the local program are added to the local SpyList by simple drag and dropping it from
the program or variable editor (Figure 106). In the program editor double click the
variable name to mark it and then drag the name over the SpyList window to drop it.

Figure 106: Local SpyList

7.2.2 Task-SpyList

A task controls several program and sub programs. The Task-SpyList monitors all the
variables declared within the task. Several SpyList items can be inserted to put the
variables into different groups.

Creating a Task-SpyList and adding variables:

Step 1: Right-click the task name in the workspace and select 'Insert New Item...'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

148

Step 2: Select SpyList from the item list

Step 3: Assign the SpyList a name and click 'OK'

The new SpyList is being added to the task in the workspace.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

149

Step 4: Drag a variable from the variable editor to the task SpyList. Add all successive
variables that will be monitored with this list. You can change the variable
order by using drag and drop operations. If the workbench is connected to the
runtime then the current variable values are shown.

7.2.3 Multi-SpyList

The Multi-SpyList provides the ability to watch variables within your application. Local
and global declared variables are support. The variable name with its location with in
the program are shown in the list.

Creating a Multi -SpyList and adding variables:

Step 1: Right-click the '(All Project)' in the workspace and select 'Insert New
Multispylist'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

150

A new Multi-SpyList item will appear in the workspace:

Step 2: Add a variable to the SpyList editor:
1. Open the SpyList editor by double clicking the name in the workspace
2. Double an empty space in the SpyList editor to open a variable list. The

list displays all the variables declared for the application project
3. Select a variable from the list and click ok

Step 3: Connect the workbench to the runtime. Current variable values are shown.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

151

Step 4: Forcing and writing variable value.
1. Double click the variable value in the 'Value' column
2. From the popup window enter or select a new value

7.3 Soft Oscilloscope

The soft oscilloscope is a tool which allows the user to view in a two-dimensional graph,
how the value of one or more variables (vertical axis) evolves over time (horizontal axis).
The soft oscilloscope enables you to track the value of boolean or numerical variables
and display it in a time curve. Traced variables are tracked by the runtime, which detects
changes and assign time stamps to each value record so that the trend displayed is very
accurate. The soft oscilloscope is available during online debugging.

Typical applications for using Soft Oscilloscope:
- Tracing the motion path of an axis during motion control execution
- Tracing the feedback position and velocity of an axis
- Any values of digital and analog input channels (current, voltage, temperature, etc.)
- Recording a variable value change in each cycle

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

152

Figure 107: Soft Oscilloscope

The Soft Oscilloscope window is divided into two sections:
1. List of variables to be displayed.
2. Diagram area (oscilloscope display).
In the diagram area, the user can zoom, explore a particular time range and
automatically scroll the diagrams.

To add new variables to the oscilloscope display, drag and drop them from the variable
editor, or double-click an empty line in the list area. These new variables can be added
in both online or offline modes.

The variable list supports the following configuration:
Parameter Description
Symbol Name of the traced variable.
Color Color used to draw the curve.
#Diagram Index of the diagram pane - default is 1.

You can define up to 30 panes.
Hysteresis Hysteresis to apply for change detection of

analog values.
The hysteresis is entered as an absolute value.

Value The current value of the variable is refreshed
in this column.

Minimum/Maximum Range of the Y axis.
Time Time and date of the last change.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

153

Description Free description text.
Table 17: Variable display configuration for the Soft Oscilloscope

The following commands are available from the Soft Oscilloscope toolbar:
Icon Description

 Move the selected variable up or down in the list.
Sort variables according to alphabetic order in the list.
Set refresh rate and Setup time ranges.
Start the oscilloscope.
Stop the oscilloscope.
Start recording.
Save record to the file.
Reload record from file.
Auto-scroll mode (toggle).

Table 18: Soft Oscilloscope toolbar

Steps for creating and configuring the Soft Oscilloscope:
Step 1: Right click a task name in the workspace and select 'Insert New Item...' from

the pop menu.

Step 2: Select 'Soft Scope' from the item list and click 'next'

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

154

Step 3: Enter a name for the Soft Oscilloscope and click 'OK'.

A new Soft Oscilloscope item with the defined name appears in the
workspace:

Double click the oft Oscilloscope item to open its editor and display window.

Step 4: Select a variable to be displayed in the Soft Oscilloscope:
1. Double click the white area of the variable list. A window pops up which

list all the variables declared in the task.
2. Select a variable from the list click 'OK'

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

155

Step 5: Select the color for displaying the variable curve. Do all the setting described
in Table 17. Repeat this process for each variable.

Step 6: Set the refresh and time range by double clicking the button:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

156

Step 7: Start the sampling process by clicking .
When sampling is active, you can start recording all events from now by
clicking on corresponding (red) button . You must specify a csv file where
samples will be recorded. All events on all symbols will be recorded in this file
until you uncheck recording by clicking the button again.

Step 8: Save display to file:
When sampling is inactive, you can save particular parts of the diagrams to
file.
1. Select the variable which curve needs to be saved. Select multiple

variables by pressing the 'Ctrl' and clicking the variable with the mouse.
2. Select the time range to save.
3. Store the file as a .rec format by clicking the 'Save selected diagrams'

button. The file can be loaded by clicking the 'Restore diagrams' button.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

157

7.4 Control Panel for Debugging

The control panel tool enables you to create graphic user interface for the workbench.
When the workbench is connected to the runtime (online mode) the graphic user
interface is updated in real time with the current values of the project. Via this interface
variables of the PLC application can me directly manipulated by modifying its value or
status. The control panel tools assist the user to create a HMI for debugging purpose to
operate the PLC application. The HMI can only run together with the workbench or the
X5Viewer tool but it can not act as a stand alone HMI. The X5Viewer tool which is
installed with the Workbench runs and displays the control panel.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

158

Figure 108: Control panel design interface (1- graphic area, 2- graphic object property, 3- available
graphic objects)

Table 19 list all the graphic objects available for designing the control panel.

Graphic Objects Description
Basic shapes A collection of basic drawings is available. Each

object may be either static, or linked to a
variable used to enable its visibility
(show/hide).

Bitmaps Bitmap file (BMP, GIF, JPG) can be inserted in
the graphic area.

Scales Scales are static drawings representing a X or Y
axis, generally used to document other objects
such as trend charts or bargraphs.

Text boxes Static, animated or edit text boxes are available
for displaying / forcing variables. For edit boxes
at runtime, double-click on the object to enter
the value and then hit ENTER to validate the
input.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

159

Graphic Objects Description

Switches and 2-
state displays

Buttons, switches and 2-state displays are used
for control or display of a boolean variable.

Analog buttons Analog buttons are used for setting the value of
an integer or real variable. Mouse is used for
setting the value.

Bargraphs Bargraphs are rectangles filled according to the
value of an analog variable. Bargraphs can be
horizontal or vertical.

Trend charts Trend charts enable the tracing of a variable as
with an oscilloscope.

Analog meters
Analog meters provide a graphical display of an
analog value.

Sliders Sliders are used for entering an analog value
with a horirontal or vertical mouse driven
cursor.

Digital meters Digital meters (digits) display the value of a
variable with the same aspect as a digital clock.

Links Links are mouse driven hyperlinks that are used
as shortcuts for opening another graphic
document. Using links enable the design of
multi page animated applications.

Connection
status

Connection status is a box actuated with the
current status of the connection and the
connected runtime application. It is aimed for
diagnostic.

Gauge
Analog view meter.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

160

Graphic Objects Description

Table 19: Graphic objects provided for the control panel

Table 20 list the toolbar commands available for the graphic editor.

Icon Description
Set Operate or Edit mode.
The Operate button is used to enable/disable changes in the graphic
when the workbench is online. When the operate mode is selected, no
change can be made. In that mode, the mouse can be used for driving
active objects such as buttons.
Select the previous item in the graphic area.
Select the next item in the graphic area.
Align selected items on the left.
Select items with CTRL key pressed.
Align selected items on the top.
Align selected items on the right.
Align selected items on the bottom.
Makes all selected items the same width (*).
Makes all selected items the same height (*).
Makes all selected items the same width and height (*).
Send to front: move the selected item to the top in Z order.
Send to back: move the selected item to the bottom in Z order.
Define the background color for the graphic area.
Export graphics
 Export graphic for display in the X5Viewer tool
 Export graphic as HMTL5 file (not supported by the runtime)

Table 20: Graphic editor toolbar

The Z-order tab in the property area shows the list of the graphic items sorted according
to their Z order. You can simply move objects in that list to change the Z-order and thus
arrange overlapping items.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

161

Figure 109: Z-order property

Table 21 details all possible properties for graphic objects.

Graphic Object Properties Description
Identifier You can freely attach a text identifier to each graphic object inserted in

a document. Identifiers are useful for arranging overlapped objects as
they appear in the Z-order list.

Variable symbol This is the full name of the application variable connected to the graphic
object. In case of a local variable, its symbol must be prefixed with the
parent program name, separated with '/'.
Example: 'MyProg/MyVar'.

Spying delay This is the minimum period for actuating the value of the connected
variable, expressed as a number of milliseconds. If the delay is not
specified or equal to 0, refresh is done as fast as possible.

Border size This property indicates the width of the border drawn around the
object, as a number of pixels. If this property is 0, then no border is
drawn.

Border color This property indicates the color of the border drawn around the object.
Border style This property indicates the possible 3D effect used for drawing the

border around the object. Possible values are:
 FLAT = no 3D effect
 3DUP = depressed 3D effect
 3DDOWN = pressed 3D effect
 3D = default 3D effect

Text color This property indicates the color used for drawing texts in the graphic
object.

Text mode This property indicates the font effect used for drawing texts in the
graphic object. Possible values are:
 HIDE = text is not displayed
 NORMAL = normal font
 BOLD = bold text
 ITALIC = italic text
 UNDERLINE = underlined text

Font name This property indicates the name of the character font used for drawing
texts in the graphic object.

Font size This property indicates the size of the character font used for drawing

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

162

Graphic Object Properties Description
texts in the graphic object. The size is expressed as a percentage of the
actual height of the object. Maximum possible value is 100. This ensures
that the ratio is kept when the object is resized.

Background color This property indicates the color used for filling the background of the
object. In case of a bitmap, it specifies the color that should not be
drawn if the TRANS (transparent) background mode is specified.

Background mode This property indicates whether the background of the object must be
filled or not. If this property is OPAQUE, then the background is filled
with the specified background color. If this property is TRANS
(transparent) then background is not filled. Transparent drawing mode
may be useful in case of overlapping objects.

Attention
Specifying the TRANS (transparent) mode for large bitmaps is time
consuming and will affect the real time performances of graphic
updates.

Data format If defined, this property indicates that the value of the connected
variable must be displayed on the graphic object. You must specify for
this property a format string that indicates how the data must be
formatted.

Attention
The text property is ignored when a data format is specified.

Format string has the same format as the famous 'printf' function of 'C'
language. It may include static characters together with one of the
following possible pragmas that specify the value:
 %s = default formatting according to IEC syntax
 %d = integer (decimal)
 %X = hexadecimal
 %g = floating point
 %.nf = decimal real (n is the number of displayed decimal digits)

Info
Only one % pragma can be used in a string.

Text If defined, this property indicates the text to be displayed on the graphic
object.

Attention
This property is ignored when a data format is specified.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

163

Graphic Object Properties Description
Bitmap display mode For bitmap based objects, this property indicates whether the attached

bitmap must keep its original aspect or be stretched to the actual size of
the object. Possible values are:
 ORIGINAL = Keep the original aspect of the bitmap (cut if too large).
 STRETCH = Stretch or shrink the bitmap for fitting the actual size of

the graphic object.

Attention
Large bitmaps with STRETCH display mode are time consuming during
animation and can lead to poor performances.

Minimum value For analog animated objects (meters, bargraphs, trends...) this property
indicates the minimum possible value that can be displayed. For static
scales, it indicates the value of the lowest mark.

Maximum value For analog animated objects (meters, bargraphs, trends...) this property
indicates the maximum possible value that can be displayed. For static
scales, it indicates the value of the highest mark.

Data color This property indicates the color used to represent the value of
connected variable within the object (for example the filled part of a
bargraph).

Nb divisions (main) For objects including a graphic scale, this property indicates the number
of main division marks to be drawn in the scale.

Nb divisions (small) For objects including a graphic scale, this property indicates the number
of small division marks to be drawn in the scale, between each main
division mark.

Scale color For objects including a graphic scale, this property indicates the color
used for drawing the axis, the division marks and corresponding values
of the scale.

Bitmap pathname For bitmaps, this property specifies the pathname of the bitmap to be
displayed. BMP, GIF and JPG formats are supported. If no directory is
specified, the specified file name is searched:
 In the project folder.
 In the '\BITMAP' folder of the workbench.

Bitmap for 'TRUE' state For 2-state objects having the CUSTOM aspect, this property specifies
the pathname of the bitmap to be displayed when the value of the
attached variable is TRUE (or not zero for analogs). BMP, GIF and JPG
formats are supported. If no directory is specified, the specified file
name is searched:
 In the project folder.
 In the '\BITMAP' folder of the workbench.

Bitmap for 'FALSE' state For 2-state objects having the CUSTOM aspect, this property specifies
the pathname of the bitmap to be displayed when the value of the
attached variable is FALSE (or zero for analogs). BMP, GIF and JPG
formats are supported. If no directory is specified, the specified file
name is searched:
 In the project folder.
 In the '\BITMAP' folder of the workbench.

Color when not connected For shapes, this property indicates the color used for filling shapes when
no variable is attached to the graphic object.

TRUE color For shapes, this property indicates the color used for filling shapes when
the attached variable has the TRUE state, or non zero for analogs.

FALSE color For shapes, this property indicates the color used for filling shapes when

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

164

Graphic Object Properties Description
the attached variable has the FALSE state, or zero for analogs.

Direction (basic shapes) For oriented shapes such as triangles, half ellipses or cylender, this
property indicates the direction of the drawing; to the left, to the right,
to the top or to the bottom.

Direction (scale) For scales, this property indicates the direction of the axis. If LEFT, the
minimum value is on the left side. If RIGHT, the minimum value is on the
right side.

Placement (scale) For scales, this property indicates the location of the scale within the
object rectangle: on the left, on the right, on the top or at the bottom.

Action (text) Indicates the possible mouse action for text boxes. Following values are
possible:
- STATIC = No mouse action.
- EDIT = Double-click opens an edit box for entering the variable

value.
Action (switch) Indicates the possible mouse action for switches. Following values are

possible:
 STATIC = No mouse action.
 PUSHBUTTON = The variable is forced to TRUE when pressed and to

FALSE when depressed.
 SWITCH = The status of the variable is inverted when the button is

pressed (toggle).
 ONESHOTBUTTON = Same as switch, but the display remains

depressed when the mouse is released.
Direction (bargraph) For bargraphs, this property indicates the growing direction: to the left,

to the right, to the top or to the bottom.
Nb of points (trends) For trend charts, this property indicates the maximum number of stored

points. If the width of the object (in pixels) is less than this number, then
oldest points are not visible.

Direction (slider) For slider, this property indicates whether the slider is horizontal
(RIGHT) or vertical (TOP).

Link This property indicates the name of the target .GRA animated document
for shortcuts. If no directory is specified in the link, then the file is
searched in the project folder.

Aspect (shapes) This property indicates the type of basic shape to be drawn. Possible
aspects are:
 CYLINDER = A 3D like cylinder.
 ELLIPSE = An ellipse.
 HALFELLPISE = One half of an ellipse.
 GATE = A simple vector drawing for a valve.
 RECTANGLE = A rectangle.
 ROUNDRECT = A rectangle with rounded corners.
 TRIANGLE = A triangle.

Aspect (switches) This property indicates the type of switch to be drawn. Possible aspects
are:
 DEFAULT = A standard Windows-like push button.
 CUSTOM = A button with TRUE and FALSE drawings defined with

bitmaps.
Aspect (trend charts) This property indicates the type of drawing for a trend chart. Possible

aspects are:
 POINT = Only relevant dots are drawn.
 LINE = Lines are drawn from point to point.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

165

Graphic Object Properties Description
 HISTO = Histogram style.

Aspect (digits) This property indicates the type of drawing for a digital meter. Possible
aspects are:
 DEFAULT = Plain drawing.
 BEZEL = All segments have a 3D effect.

Table 21: Graphic object properties

7.4.1 Create Control Panel

This section describes the procedure of creating a control panel on the workbench for
debugging the PLC application in online mode.

Step 1: Add control panel:
1. Right click a task in the workspace tree and select 'Insert New Item...'

from the pop menu.
2. Select the 'Graphics' item and click 'Next'.
3. Assign the control panel a name and click 'OK'

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

166

Step 2: Open the control panel graphic area by double clicking the newly added
control panel name in the workspace.
The Graphics window on the right hand of the graphic area list all the graphic
objects with its properties supported by the workbench. Insert a graphic
object to the graphic area by simple drag it over the area and drop it where
you want to place it.

In the following it is shown how to add a meter object to the graphic area and link it to a
PLC variable.

Step 3: Drag the analog meter graphic object to the graphic area:

Step 4: Set the property of the graphic object (e.g. color, range, name, front style, etc.
)

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

167

Step 5: Link the graphic object to a variable which value is has to represent
1. Double click the 'Variable symbol' property
2. Select a variable from the variable list. The value of this variable will be

shown by the graphic object
3. Click 'OK' to confirm the selection

Step 6: Connect the workbench to the runtime. The graphic object displays the
current value to which it has been linked.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

168

In the following steps a switch is added which serves as an example to show how to
modify a PLC variable via the control panel.

Step 7: Drag a round switch and a green LED to the graphic interface.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

169

Step 8: Set the properties of the round switch and the green LED.
Step 9: Map both the round switch and the green LED to the same BOOL variable

1. Double click the 'Variable symbol'
2. Select a BOOL variable from the variable list
3. Click 'OK'

Step 10: Set the workbench in online mode. By turning the switch from 0 to 1 the
linked BOOL variable is forced from false to true or vice versa.

7.4.2 Exporting Control Panel to X5Viewer

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

170

The control panel developed with the workbench can also be opened and run with
X5Viewer which is part of the workbench package. It is necessary to export the control
panel as a .X5T file before it can be displayed by the X5Viewer tool.

The procedure of exporting the control panel and running it by X5Viewer are explained
in the following steps:
Step 1: Export the graphic display

1. Click the 'Export graphic' command in the toolbar
2. Select 'Export graphic for display in the X5Viewer tool' option. After

clicking 'OK' a wizard window pops up.
3. Follow the steps provided by the wizard guide

Step 2: Follow the steps provided by the wizard guide
1. Select the folder where to save the .X5T file
2. Set the name of the X5T file
3. Set driver used for communication with the runtime. Specify

K5NET5.DLL for the standard runtime.
4. Set communication parameters for connecting to the runtime. The IP

address has to be followed by colons (:) and the IP port number. If not
specified, the default port number used is 1100.

5. ZIP file name: This field has to be empty
6. Include symbol table: Do not check this option
7. Check the 'Display X5T graphic file' option

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

171

Step 3: After clicking 'Finish' the X5Viewer with the control panel starts. The X5Viewer
automatically connects to the runtime IP address set in the previous step and
continuously updates the control objects with the linked variable value. Via
X5Viewer variables can be forced to new values, e.g. by changing the state of
a switch.

The X5Viewer execution file location is in the following directory:
C:\Program Files (x86)\Win-GRAF Workbench\Win-GRAF Wb 9.xx

The control panel can be directly open by the X5Viewer by clicking 'File/Open from file...'
and selecting a xxx.X5T file.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

172

Figure 110: Open a X5T file in X5Viewer

7.5 Recipe Control

Similar to the variable editor or SpyList the recipe control enable the user monitor the
values of a list of variables. In contrast to the variable editor and SpyList the recipe
control has a couple of advantages:
- The values of more than one variables can be force synchronously in one cycle time.

The SpyList only allows one variable value change at a time while the recipe control
supports up to 50 variable value change per command by one mouse click. This
ensures that all variables are written together at the same moment in the runtime,
i.e. in between two cycles.

- Values of multiple variables can be saved (latched) with one command
- Several columns can be created which stores multiple variable values. The runtime

can be forced to replace all current values with the values stored in one a column

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

173

Figure 111: Recipe control

Several toolbar commands are available to add, delete, copy, move columns (Table 22).

Icon Description
Insert a new column to the recipe table
Add a new column behind the last column
Remove selected column
Rename column: Change the header name of selected column
Copy column: copy values of selected column to another column
Move selected column to the left
Move selected column to the right
Move variable one row down
Move variable one row up
Send recipe: sends the values of the current selected column to the runtime to
replace the all the current variables values (force variable value change)
Save recipe: copies the current variable values of the 'Value' column to a new
column.
Sort variables in the recipe table in alphabetical order

Table 22: Recipe editor toolbar commands

Procedure to add a new recipe control to the workbench:

Step 1: Right click a task or program item in the workspace and select 'Insert New

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

174

Item...' from the popup menu.

Step 2: Select 'Recipe' and click 'Next'

Step 3: Enter a recipe name

Step 4: Open the recipe editor by double clicking its name in the workspace

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

175

Step 5: Add variables to the recipe editor:
1. Double click the white field in the recipe editor. A variable list will pop up.
2. Select a variable from the list
3. Click 'OK' and the variable name will appear in the first column of the

recipe editor.

Repeat this step to add several variable to list which can be monitored.

Step 6: Connect the workbench to the runtime. Now the variable values are
continuously being updated with the current values of the runtime.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

176

Application examples:
1. Forcing one variable value

In online mode the 'Value' column is continuously updated with the current
variable values.
Step 1: Double click a value in the 'Value' column to open a windows which

allows you to force / control the value of the selected variable. You can
also first select the a value in the 'Value' column and press the ENTER key
to open the force variable window

Step 2: Enter a new value for the variable and
Step 3: Click 'Force' button to replace the current value with the new value.

2. Forcing a column of variable values
In the recipe editor a new column can be created and be filled with new values.
With one force command all the current variable values are replaced by the new
column values at the same time between two cycles. A maximum of 50 variables
(or less if strings) can be sent at the same time.
Step 1: Define a new column add fill it with new values

- Click 'Insert Column' button to add a new column to the recipe editor

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

177

- Enter a name for the column header (e.g. 'Value_1')
- Enter new values for each variable in the new column. If no value is

assigned for a variable (e.g. Var5, Var9) then the current value for
this variable in the runtime is not being replaced if the new column
value is forced to replace the current values.

Several new columns can be created. In the figure below two columns
('Value_1', 'MyInitValues') has been added and filled with values.

Step 2: Set the workbench in online mode
- Select a column (e.g. 'MyInitValues') which variable values will be

forced by the workbench to replace the values in the runtime
- Click the 'Send Recipe' button to force a variable value replacement.

All the variable values are replaced at the same time between two
cycles. In the next cycle the 'Value' column shows the replaced
values.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

178

3. Latch all variable values in a column
In online mode the values in the 'Value' column are continuously being updated
with the current values in the runtime. All the values listed in the 'Value' can be
latched at the same time with one command and saved to a new column.
Step 1: Latch column values

- Click the 'Save Recipe' button. A new column is being created and
filled with the latched values (grey reactangle)

- Enter a name for the new column

7.6 Test Sequences

The Workbench includes an integrated tool for designing and running automated test
scenarios. Test scenarios are expression evaluations and forcing variable values. Test
sequence does not need to be command and can be edited while the workbench is in
online mode.

Figure 112: Test sequence syntax (left) and execution result (right)

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

179

Syntax
The following syntaxes are allowed in a text sequence:

1. Comments
Empty and comment lines are allowed. Comments may have the following
syntaxes:
// comment up to the end of line
(* delimited comment *)

2. Evaluation of an expression
You can evaluate a complex expression using ST operators. Function calls are not
allowed within an expression.

Examples:
Var1
Var2 > 1000
Bool1 & (Var3 > 1000)

If an expression is entered alone on a line of a sequence, its value is simply
displayed in the 'Status' column when run.

3. Forcing a variable
A line may contain a statement to force a variable, using the syntax:
variable_name := expression;

Examples:
Var1 := 1000;
Var1 := Var1 + 1;

The status column indicates whether forcing a variable was successful.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

180

4. Waiting for an expression to be TRUE
Use the following syntax to wait for an expression to be TRUE:
wait expression;
The default wait timeout is 10 seconds. A timeout can be specified in between
brackets after the 'wait' keyword:

wait [timeout] expression;

Examples:
wait Bool1;
While wait command is executing the status column displays 'Executing
instruction'. If the default wait time of 10 seconds has elapsed before the
expression turned TRUE then a 'Timeout(>)' is shown in the status column.

wait Bool1 == FALSE;
Once the expression turns TRUE the wait command ends and the status column
shows TRUE.

wait [t#5s] Bool1 OR Bool2;
Add a wait time of 5 seconds to the wait command. If the expression does not turn
TRUE within the wait time a timeout status is being shown.

5. Execution delay
The delay statement holds the execution of the test sequence for the set time.
Delay statement syntax:
wait_time time_value;

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

181

Examples:
wait_time t#2s;

Delay the execution of the next command by 10 seconds:
Var1 := Var1 + 1;
wait_time t#10s;
Var1 := Var1 + 1;

Use the editor toolbar to check and run your sequence (Table 23):
Icon Description

Use this button to activate or deactivate the sequence. The sequence must be
deactivated for editing. When activated, the sequence can be run and tested.
Check the syntax of the sequence.
Abort the sequence when running.
Pause the sequence when running.
Start the execution of the sequence.
Single step: execute the selected line
Set/remove a breakpoint on the current line.
Remove all breakpoints.

Table 23: Sequence editor toolbar commands

Steps for adding a test sequence:
Step 1: Right click a task or program item in the workspace and select 'Insert New

Item...' from the popup menu.

Step 2: Select 'Test Sequence' and click 'Next'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

182

Enter a name for the test sequence.

Step 3: Edit test sequence commands:
1. Open the sequence editor by double clicking its name in the workspace

tree
2. Drag and drop the variable which needs to be evaluated or forced a new

value from the variable editor to the sequence editor

Step 4: After the test sequence has been edited check for any syntax error by clicking
the 'Check Test Sequence' button.

Step 5: Run the test sequence
1. Make sure the workbench is online
2. Activate the test sequence. Click 'Activate/Deactivate' button

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

183

3. Click 'Run Test Sequence' button to execute the test

The result of the test sequence execution is shown in the status column.

Note:
1. To run the test sequence the PLC program does not need to be

recompiled.
2. The test sequence does not need to be compiled.
3. The test sequence can be edited while the workbench is online the and

the PLC application is running.

7.7 Debug Message (PRINTF)

The PRINTF function outputs a trace statement from the runtime to the workbench. It is
used for debugging to trace data of the PLC application and has to be embedded in the
PLC code. PRINTF give you the opportunity to print out information during application
execution and allows you to trace a particular path of execution and watching the order
of execution to ensure that everything is happening when you expect it to occur.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

184

This function works similar to the 'printf' function of the 'C' language and supports up to
four integer (DINT) arguments. You can use the following pragmas in the FMT trace
message to represent the arguments according to their left to the right order:
- %ld signed value in decimal
- %lu unsigned value in decimal
- %lx value in hexadecimal
This function can be used in debug and release mode.

Figure 113: PRINTF function

Variable Data Type Description
Input Fmt STRING Trace message.

Arg1 DINT Numerical arguments to be included in the trace.
Arg2 DINT Numerical arguments to be included in the trace.
Arg3 DINT Numerical arguments to be included in the trace.
Arg4 DINT Numerical arguments to be included in the trace.

Output Q BOOL Return check.
Table 24: PRINTF function input and output variables

The trace message is displayed in the 'Runtime' window of the workbench (Figure 114).
PRINTF is supported by the simulator. Trace messages shown in the 'Runtime' log
window can be saved to file.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

185

Figure 114: PRINTF output window using Structured Text

Figure 115: PRINTF function call in Function Block Diagram

PRINTF function is supported by both the Debug and Release mode compiler.
Conditional statement has to be added to the source code if the PRINTF function should
only output trace statements when the application is compiled in debug mode. The
condition '__DEBUG' is automatically defined by the workbench when the application is
compiled in debug mode. Add the __DEBUG conditional statement in your code to
prevent the PRINTF function from outputting messages in release mode.

#ifdef __DEBUG
PRINTF ('Searched home finished;');
PRINTF ('Current position: x=%ld, y=%ld', Pos[0], Pos[1]);
#endif
Figure 116: Structure Text - Conditional compile statement

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

186

Figure 117: Function Block Diagram - Conditional compile statement

7.8 Breakpoints - Step by Step Debugging

The step by step debugging feature is enabled by setting one or more breakpoints in the
source code of the application (Figure 118). Breakpoints are a marker that is set in the
source code which, when reached, stops the code's execution at the location.

Step by step debugging is available:
- In ST and IL text programs (a step is a statement).
- In LD program (a step is a rung).
- In FBD (a step is a graphic symbol corresponding to an action).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

187

Figure 118: Program with debug breakpoints

Attention
- Step by step debugging is available only if the project has been compiled with the

debug option (Figure 119). This option can be selected from the project settings
dialog box ('Project\Settings...'). Make sure that the compiler for the task which
needs to be debugged is set into debug mode. The compiler for other task can be
left in release mode.

- An application compiled in debug mode includes additional information for
stepping. This leads to bigger code size and less performances. It is recommended to
compile your application in release mode when the debugging is finished.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

188

Figure 119: Set compiler in debug mode

When the program has reached a breakpoint you can execute the program in single
steps. At each halt position you see the current value of the variables in the monitoring
views.
When the breakpoint is reached, the execution stops at the specified location and you
can step further in the program. A yellow arrow next to the breakpoint () indicates at
which breakpoint the execution has stopped.
Breakpoints are shown as a brown dot (dark or light) in the left frame of the program
editor. Breakpoints are active () when the dot is dark brown and inactive () when the
dot is light brown. Breakpoints are inactive if the workbench is not in online mode
(connected to runtime) , the target application is not running or the version of running
application and the source code is not identical.

7.8.1 Add a Breakpoint

To add or remove a breakpoint, click the line in the source code where to add/remove a
breakpoint then right click and select 'Set/Remove Breakpoint' from the popup menu
(Figure 120) or press F9 key. Breakpoints are added to the left frame of the program
editor. If the current position is not on a valid line for stepping, the breakpoint is
automatically moved to the nearest valid position.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

189

Figure 120: Set/Remove Breakpoint

Breakpoints can be placed in programs, sub-programs or UDFBs. They are not available
in SFC programs.

A list of active breakpoints are shown in the 'Tasks' Log Window (Figure 121). From here
you can directly remove breakpoints in the program. Double clicking on a breakpoint in
the Log window the program editor jumps to the position of the breakpoint in the
program.

Figure 121: Tasks Log Window

Run To Selection
It is possible to run a program to a defined position. The 'Run To Selection' function is
available in the context menu (Figure 120) of the program editor, when step-by-step
execution is active. This function is supported in ST, FBD and LD.

Icon Description
Step over:
The debugger (yellow triangle) jumps to the next source code line in the

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

190

program editor. Now the program executes the instruction at which the
debugger in the previous step was located and stops the program execution at
the new debugger position.
The debugger will not leave the current program editor page. If the next
instruction is a function or function block call then the debugger will not enter
the source code of the call, but just jumps to the next instruction line of current
program editor page.
Step in:
If the next instruction is a function or function block call, then the debugger
leaves the current program editor page and steps into the function or function
block instance and stops the execution at the first line.
Step out:
If the current debugger position is inside a function or function block source
code page, then in the next step the debugger leaves the page and jumps to the
instruction which follows the function call. The program executes the function or
function block from the previous debugger position up to the end of the block.

Table 25: Step by Step commands

Icon Shortcut Command
CTRL + Alt + F4 On line change
CTRL + F5 Debug

F4 Pause/resume
F5 Simulation

F9 Set/Remove breakpoint
F11 Download
SHIFT + CTRL + F4 Start/stop application
F8 Step In
CTRL + F8 Step Out
SHIFT + F8 Step Over
Ctrl+F10 Run to Selection

Table 26: Key shortcuts for debugging commands

7.8.2 Example

Example of a step by step debug procedure:

Step 1: Set compiler to debug mode ('Project\Settings...')

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

191

Step 2: Compile your program, download it to the target runtime.
Step 3: Set the workbench in online mode and start the application from the

workbench.
Step 4: Add a breakpoint at line 2:

Set the cursor at line 2 and press F9.
Once the program hits the breakpoint the program execution stops and a
yellow triangle appears next to the breakpoint. The code of line 2 will not be
executed.

Step 5: Run program to next line by clicking the 'Step Over' button.
Now the program executes the instruction of line 2 and stops the program at
line 3.

Click the 'Step Over' button again to stop at the next line (line 4)

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

192

Step 6: Enter a function call:
Line 4 calls a user defined function ('MyFunction'). In the next step we want to
enter the source code of this function. Click the 'Step In' button to stop the
program at the first instruction line of the function.

The workbench opens the source code page of the calling function and set the
stop triangle at the first line.

Step 7: Leave the source code of the function by clicking the 'Step Out' button
In this step the program should execute the function until the end and stop at
the instruction following the function call.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

193

Step 8: Run the program to the end of the cycle.
1. Remove the breakpoint in line 2 by setting the cursor to line 2 and

pressing F9 key.
2. Click the 'Execute a single cycle' button to let the program to execute all

the code from the current position to the last instruction of the cycle.

Step 9: Run a full single cycle.
If no break point exist in the program and the 'Execute a single cycle' button is
activated then the program executes one full cycle before it stops at the cycle
end.

Step 10: Run the program continuously without a break (normal execution mode).
1. Remove all breakpoints. Make sure no break point exist in the program
2. Click 'Resume cycle to cycle' mode.

The program runs now continuously without interrupt.

If you want to stop the program at the end of the cycle and go back into cycle
to cycle debug mode then click the 'Pause (cycle to cycle)' button

Step 11: Remember to compile the application in release mode after debugging has
been finished.

7.9 W5Monitoring Utility

When the workbench is set into online mode the current variable values of the
application are being shown in a box next to each variable in the source code and in the
variable editor. The source code in the programming area can not be modified while the
workbench is in online mode but the variable editor allows the user to force a variable

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

194

value change.

The purpose of the W5Monitoring utility is to monitor variable values and support
forced variable value change without using the workbench. The utility provides similar
functions as the workbench when in online mode: current values are shown inline next
to the variables in the source code and in the variable editor (Figure 122).

Figure 122: W5Monitoring utility

The data to be displayed in the utility has to be set via the workbench wizard. The
wizard allows you to select which programs, variable list and runtime messages to be
monitored by the W5Monitoring utility. Normally a PLC project exist of at least one task
and several program organization units (POUs). IEC 61131-3 defines three types of
POUs: programs, function blocks, and functions (Figure 123). The W5Monitoring utility
can only display the POU of one task and therefore the user has to decide which task
and POU to display. If inside the task more than one program, function block or
functions has been defined then the user can select which one to display during
execution. If required all the POU defined within one task can be selected.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

195

Figure 123: The IEC 61131-3 software model

All POU stored in the monitoring application are encrypted. For security reasons the
W5Monitoring utility does allow any POU content to be copied or dragged to another
program.

7.9.1 Create Monitoring Application File

This section describes how to use the workbench wizard to create a monitoring file for
the W5Monitoring utility.

Step 1: Compile the project and download it to the runtime.
In the following steps it is shown to create a monitoring file for the main task.
In this example the main task runs three POUs: a program 'MyCounter', a
function 'MyFunction' and a user defined function block 'MyUDFB'. All three
POUs will be exported to the W5Monitoring utility.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

196

Step 2: Start the monitoring wizard:
1. Double click the 'Main task' in the workspace to tell the workbench that

the POU of this task will be exported
2. Select 'Build Monitoring Application...'from the menu bar 'Tools'.

Step 3: Give a name to the monitoring application.
This name will be displayed in the main title bar of the W5Monitoring utility.
The configuration of a monitoring application can be saved to the workbench
project. This allows you to modify the configuration at a later stage.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

197

Step 4: Select how to display the POU in the tree. In addition select to display the
program editor of the POU, the variable editor, or both. Here we select both
(Default).

If you check the 'Include symbol table' option, the monitoring application will
work on the full symbol table generated by the compiler. In this case you have
to make sure that the same version of the application is running on the
runtime. If you don't select this option, then the W5Monitoring utility will
automatically upload symbols from the target at connection time. In this case,

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

198

you have to ensure that all used symbols are embedded in the runtime
application.

Step 5: Select the items (POU, variables) of the project that you want to include in the
monitoring application. By default all items are selected. Deselect the items
that should not be displayed in the W5Monitoring utility.

Step 6: Add passwords protection for selected items (optional)
For each item included in the application you can define a password so that
the corresponding document will be protected in the monitoring application.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

199

Step 7: Passwords for variables
You can define passwords for the W5Monitoring utility to enable write access
(forcing) to runtime variables. For each variable you can select one of the
following access protection:
- Free : the variable can be freely forced.
- Protected : forcing the variable is possible with a password.
- No : the variable can never be forced.
Simply drag variables from the list at the bottom to the upper list to set its
protection mode. The 'Default' choice indicates the protection mode to be to
applied to all variables which hav not been dragged to the upper list.

Step 8: Set the monitoring application file name and the directory.
Here we select 'MyFirstMonitor.K5m' as a name. After clicking 'Next' the
monitoring application file is being generated and stored as a unique
compressed file. To protect your application from piracy all POU stored in the
monitoring application are encrypted.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

200

Step 9: Save current monitoring application configuration.
This configuring file can be loaded and modified at a later stage if required.
The configuration will be save once the 'Finish' has been clicked.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

201

7.9.2 Running Monitoring Application

The W5Monitoring utility can be started in two ways:
- Via the Start menu:

Step 1: WinGRAF Workbench x.x -->Tools->W5Monitoring
Step 2: Open the monitoring file (*.Km5)
Step 3: Enter the IP address and port number of the target runtime

Now the W5Monitoring utility shows the POU with the variable values.

- Via the workbench wizard:
Step 1: Make sure the communication setting is set to the IP address and port

number of the target runtime (Tools-->Communication Settings...)
Step 2: Open the wizard: 'Tool/Built Monitoring Application...'
Step 3: Select an application from the configuration list
Step 4: Click 'Next' button six times until you reach the last page of the wizard

Click the 'Run application' button.

Now the W5Monitoring utility shows the POU with the variable values.

The tree view on the left list all the items (programs, variable list, etc.) which has been
exported by the workbench wizard. By double clicking one of the items a window with
the items data pops up. Several windows of different item can be open at the same time
(Figure 124). To protect your software POU data displayed in the W5Monitoring utility
can not be copied.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

202

Figure 124: W5Monitoring utility running a monitoring application

Items in the 'Variables' tree view shows all the exported variable editors of the
workbench. In the workbench each POU has its own variable editor and the user can
decide which one to export to the monitoring application which has been described in
the previous section. Depending of the protection mode set in the monitoring
application file variable value change is supported (Figure 125):

 Free: the variable can be freely forced.
 Protected: forcing the variable is possible with a password.
 No: the variable can never be forced.

Figure 125: Force variable value change

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

203

8 Online Program Change

Online Change enables you to update your PLC application on the fly, while it is running.
You do not need to stop the application, download the new code and start again. You
only need to modify, recompile and download the new code.
Depending on the PLC code size, the time to perform the Online Change operation can
take more than one cycle. In that case, you can miss one PLC cycle before the
changeover becomes effective.

Online Change functions should primarily be used for the rare cases where small
modifications to the program code of an application has to be done while the
application is not allowed to be halted and has to run non-stop. In general it is not
recommended to do online modification and rather stop the running control application
before downloading a modified version.

8.1 Online Changes Limitations

When Online Change is enabled, the following kinds of changes on the fly are
supported:
- Change the code of a program.
- Change the condition of a SFC transition or the actions of a SFC step (Figure 126).
- Create, rename or delete global and local variables and function block instances ().

Figure 126: Condition change for SFC transition

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

204

Figure 127: Create and delete a global variable

The following kind of online changes are not allowed:
- Create, delete or rename a program. (It will appear a warning message if a program

is attempted to be deleted)
- Change SFC charts.
- Change the local parameters and variables of a UDFB.
- Change the type or dimension (or string length) of a variable or function block

instance.
- Change the set of I/O boards.
- Change the definition of RETAIN variables.

In addition, the following programming features are not safe during a online change and
therefore should not be used:
- Pulse (P or N) contacts and coils (edge detection).
 Instead, you must use declared instances of R_TRIG and F_TRIG function blocks.

Rising Pulse Detection

P
(False > True)

Before Enable After Enable

Decreased Pulse Detection

N
(True > False)

- Loops in FBD with no declared variable linked.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

205

 You need to explicitly insert a variable in the loop.

8.2 Using Online Change

The normal procedure for developing a PLC application is as follows: The developer
creates a new PLC application and adds logic and function blocks to the program and
compiles and download it to the runtime. If necessary the developer can modify the
program by changing the program logic, adding or deleting variables or function block
instances, recompile and download the application. Variables which have been deleted
are not shown in the variable list of the workbench any longer.

Once the Online Change for the application has been activated all the variable and
function block changes made afterwards will be shown in the variable list. Newly added
variables will be shown in blue and deleted variable in red. The attribute for variables
and function blocks instances which have been added after the Online Change has been
activate are shown as 'Added' and deleted variables as 'Deleted'. In addition the
workbench will automatically add the prefix '_del_' to the names of deleted variables
(Figure 128).

Figure 128: Variable changes done after online change has been activated

The Online Change should only be activated once the main application development has
finished and it has been determined that the control logic is running fine. The purpose
of the Online Change functions is just to do minor adjustments to the logic control and
therefore should only be used where small modifications to the program code is
necessary.

Procedure for using online change:

Step 1: Enable the online change function for the task which needs to support
online change. of the workbench. This can be done as follows: Right click

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

206

the task name and select 'Settings...'

From the popup window select 'Runtime' and double click 'On Line
Change' item to set it 'Enabled'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

207

Another pop-up window will appear in which you can allocate the
memory to be reserved for added variables.

In order to allow the declaration of new variables and blocks after the
Online Change function has been enabled, you have to define the amount
of memory to be allocated in the target runtime for each type of data.
This includes:

 The number of variable for each type (8, 16, 32 or 64 bits,
character strings).

 The number of function block instances.
 The amount of memory for storing character strings.
 The amount of memory for private data of function block

instances.
 The amount of variables published (with embedded symbol or

profile).
 The sizing of extra segment for storing complex variables.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

208

To setup a value, select the corresponding item in the list, select the
Value option, enter a new number in the Value box and press the Set
button. You can select several items in the list for assigning the value to
any selected items.

If your project has been built, the box shows you in the list the size
actually used by the application according to the last build. A progress bar
shows you the percentage of used space for each item. In addition,
instead of entering an absolute value, you may select to enter a
percentage of the used memory to add to the used space.

Step 2: Recompile the application again:

Ignore the warning message generated by the compiler:

Step 3: Download the application to the runtime

Step 4: Connect to the runtime and start the application.

Make sure the application is running:

Step 5: Do minor changes to the logic program by adding and deleting variables.
If the workbench in the online mode it shows all the current values of

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

209

each variable next to the variables. In this mode the logic program can
not be changed. Therefore first set the workbench in offline mode:

The offline mode will be displayed in the status bar at the bottom of the
window:

Add new variables and delete variables. Deleted variables will be shown
in red with a 'Deleted' attribute and newly added variables are shown in
blue with 'Added' attribute.

In the following code the both inputs of the AND function are replace by
the newly added input variables:
Input1 is replace with NewVar1 and Input2 is replaced with NewVar2.

Figure 129: Original program

Figure 130: Modified program

Step 6: Recompile the program after the modifications have been made.

Step 7: Go into online mode

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

210

The workbench will indicate that the logic code of the application on the
runtime is not identical to the code of the workbench.

Step 8: Download the modified application to the runtime by clicking the
'Download changes' icon in the output window:

Step 9: Click the Online Change icon to update your PLC application on the fly:

A popup window appears where you have to confirm that you want to
update the application. Click Yes.

The task will switch into run status and the current values of the newly
added variables will be shown next to the variable names.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

211

9 Modbus Networking

The Win-GRAF runtime includes fully integrated Modbus master and slave functions for
enabling Modbus communication on serial link or Ethernet.

The following Modbus function codes are supported:
- read coils
- read bit inputs
- read holding registers
- read input registers
- write 1 coil
- write 1 register
- write N coils
- write N registers

Architecture:
The Win-GRAF runtime can be used either as a server (Modbus slave) or as a client
(Modbus master). Both server and client may be active at the same time. This allows
multiple applications such as:
- Slave connection to a Modbus master such as a SCADA system.
- Master connection to pilot Modbus I/Os.
- Win-GRAF to Win-GRAF communication for real time exchange of variables (binding).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

212

The configuration of slave and master functions is done in the Workbench.

10 Modbus Slave

This chapter describes how to setup the runtime to act as a Modbus slave. Three types
of slaves can be installed: Modbus TCP, Modbus RTU and Modbus ASCII.
The Win-GRAF runtime can act as a multiple slave.

The Modbus slave of the Win-GRAF runtime first has to be configured via the workbench
in order for the remote Modbus master to access it. The communication layer (Ethernet,
serial), the register types and number of registers (data block) of the slave have to be
set. Below is a simple example of a slave configuration (Figure 131):

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

213

Figure 131: Modbus slave configuration

10.1 Slave Data Block Configuration

10.1.1 Selecting Slave

Step 1: Double click the 'Fieldbus Configuration' tree item in one of the tasks to
open the 'IO Drivers' window.

Step 2: Click the 'Insert Configuration' button on the left side of the 'IO Drivers'
window and then select the 'MODBUS Slave' and click 'OK' to enable a
Modbus Slave.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

214

Step 3: Click the 'Insert Master/Port' button on the left side to set the 'Slave
number' (here the value is '1'), and click the 'OK' button.

Step 4: If you add more than one slave then assign each slave a ID to easier
identify the server in the PLC program (e.g. Srv_1)

Step 5: Now define the Modbus register and coils supported by the runtime slave
This will be described in the following section

10.1.2 Define Slave Register

The following standard Modbus register and coils are supported by Win-GRAF:
- Input register (read by masters)
- Holding register (read/write by master)
- Coils (read/write by master)
- Discrete inputs (read by masters)

Modbus slave register type and size has to be configured via dialog (Figure 132) which

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

215

can be accessed from the menu ('Insert'->Insert Slave/Data block...) .

Figure 132: Modbus slave register configuration

Description:
1. The description field allows you to shortly describe the purpose of the data

block. This field can be left empty
2. First decide whether the master should only have read access or have both

read and write access to the data block. In addition decide the data format of
the block.

Access Option Data type

Read
Input Bits BOOL
Input Register BYTE, INT, DINT, REAL, etc.

Read/Write
Coil Bits BOOL
Holding Register BYTE, INT, DINT, REAL, etc.

3. Set the start address (base address) of the number of register (Nb) of the data
block. Depending of the selection made in 2 the register size unit is either BIT
or WORD. It is recommended to set the start address to 1. If two blocks of the
same register type are added make sure that the start address of the second

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

216

block continuous with the end address of the first block. This allows the
master to access the two blocks in one datagram and decrease the number of
datagram exchange between master and slave. If the data address requested
from the Modbus Master (e.g., the SCADA software) is smaller than the start
address or greater than the maximum address (start address + Nb -1) than the
slave of the Win-GRAF runtime will not respond.

4. If required the workbench automatically declares new variables and directly
map them to the newly created data block.

10.1.2.1 Define Holding Register

The following procedure describes how to add a holding register data block:

1. Add a holding register and map global variable in one step.
Open the slave configuration window by clicking the 'Inset Slave/Data Block'
icon (Figure 133).
- Set the name of the block to 'MyFirstBlock'.
- Add a data block of the holding register type which holds 10 registers

(Nb=10) and the first register address starts (base address) at 1.
- Declare a number of 10 INT variables and map it to the data block:

- Select the check box next to 'Declare variables'
- Set the name of the variables to 'MyVar%' whereby the % represents a

value which starts from 1 (Set via the 'From:' text box) and increments
by one with each following variable declaration (MyVar1, MyVar2,
MyVar3, ...).

- Select INT as data type.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

217

Figure 133: Define Slave data block and assign variables

After confirming the setting the workbench adds a new data block with the
name 'MyFirstBlock' to the Modbus slave and new global variables are
automatically being declared and assigned to the data block (Figure 134). The
PLC program has to use these new variables to access the data block.

Figure 134: Slave data block with mapped variables

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

218

2. Add a holding register and map global variable in several steps

Step 1: Click the 'Insert Slave/Data Block' icon to open the configuration window.
1. Set the name of the block to 'MySecondBlock'.
2. Add a data block of the holding register type which holds 5

registers (Nb=5) and the first register address starts (base
address) at 11. The register address of the previous block
'MyFirstBlock' ends with 10 therefore the first address of the
second block continuous with 11 in order for the slave to have
one consistence address range for the same register type (here:
Holding register).

3. We want to declare and map the variable for the holding
register data block by ourselves and therefore make sure the
check box is unchecked.

The workbench adds a empty holding register data block with the name '
MySecondBlock' to the Fieldbus window:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

219

Step 2: Declare 5 global variables of INT type:
1. Right click a global variable and select 'Add Multi Variables ...'

2.
i. Enter the variable name. The % symbol at the end of the

name indicates that a number will be attached to the variable
name at an incremental order. The start number has to be
entered in the 'From' and the end number in the 'To' text
box.

ii. Select the variable type to declare (here: INT)
iii. Declare the variables as global
iv. Click 'Create all' to declare the variables and 'Cancel' to close

the window

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

220

The workbench adds the declared variables to the variable editor:

Step 3: Map the newly declared variables to the Modbus register data block
1. Drag and drop the variables to the mapping area

The workbench set the data block offset of each variable by default
to zero which means there the variable memory are overlapping as
they share the same memory area.

2. Assign each variable to a offset position in the data block.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

221

Double click the offset column next to the variable and assign is
a offset position. The first variable should start at the offset at
0, the seconds at 1, etc..

Note:
- The memory size of one Modbus holding register is 16

bits (INT), this means the offset distance is two bytes.
The 'Default' entry in the 'Storage' column indicates
that the variable needs one holding register (16 bits
memory) in the data block.

- If a 32-bits or greater data type (e.g. DINT, REAL,
STRING) has been assigned to the data block then the
storage size has to be adjusted.

Example:
For a DINT or REAL variable select DWORD for storage
For a STRING variable select the string size as storage

Tip:
The Workbench provides a function which allows you to quickly
assign memory offsets for each variable.
- Click the head line of the offset column to select all its

entries.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

222

- Click the 'Iterate Property' button on the left to open the
'Offset' editor. Enter the start offset number and the offset
increment value. Confirm the setting with entering 'OK'.

All the variables are assigned a offset value in sequential
order:

The workbench allows the user to set the storage for all
variable in one action:
- Click the 'Storage' header to select the entire column and

then press 'Enter' key to display a drop-down menu.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

223

- Select a storage type and press enter

10.1.2.2 Define Input Bit Data Block

The following procedure describes how to add a input bit data block which can only be
read by the master.

Open the slave configuration window by clicking the 'Inset Slave/Data Block' icon (Figure
135).
- Set the name of the block to 'MyInputBitBlock'.
- Add a data block which holds 16 input bit data types (Nb=16). The address starts

(base address) at 1 for the first bit entry.
- Declare a number of 16 BOOL variables and map it to the data block:

- Activate the check box next to 'Declare variables'
- Set the name of the variables to 'MyReadBool%' whereby the % represents

a value which starts from 1 (set via edit box 'From:') and increments by
one for variable declaration (MyReadBool 1, MyReadBool 2, MyReadBool 3,
...).

- Confirm the setting by clicking 'OK'

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

224

Figure 135: Define Slave data block and assign variables

The workbench adds a new input bit data block with the name 'MyInputBitBlock' to
the Modbus slave Fieldbus configuration area. 16 new BOOL variables are decaled
and mapped to the data block (Figure 136). The PLC program can access the
Modbus data block via the newly created variables.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

225

Figure 136: Slave data block with mapped variables

10.2 Slave Type Configuration

The Modbus data block configuration done in the previous section defines the memory
size and structure of the slave. This chapter explains how to create a communication
interface through which the Master can exchange data with the slave data block (Figure
137). Win-GRAF provides Modbus slave function blocks which handles the
communication between master and the slave data block by processing the request
received from the master. If the master request the content of the slave data block then
the slave function block reads the data from the data block and write it to the response
data frame to the master. Function blocks are provided which supports Ethernet and
serial communication (Figure 138).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

226

Figure 137: Procedure for creating a Modbus slave

Modbus Slave Function Blocks
Ethernet Serial (RS232, RS485)
MBSLAVETCP MBSLAVERTU

MPSLAVETCPEX MBSLAVERTUEX

MBSLAVEUDP MBSLAVERTUEXD

MBSLAVEUDPEX

Figure 138: Function blocks for setting the Modbus protocol type

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

227

10.2.1 Single Data Block

The following procedure shows how to add a Modbus slave function block to the PLC
program which will allow the master to access the slave data block which has been
created in the previous chapter (Figure 139).

Figure 139: Slave data block

Step 1: Create a program called 'MbScan'. Right click in the workspace the 'Programs'
tree item to insert a new program.

Step 2: Define the slave type. Select one of the following type.
- Modbus TCP slave: This allows the Modbus TCP master to access the slave

data block. Add a 'MBSLAVETCP' function block to the 'MbScan' program.
The standard port number for Modbus TCP is 502. A different port number
can be selected if it is being supported by the master supports. As long as
the IN input is true the 'MBSLAVETCP' function checks in every program
cycle whether a new master command has arrived, process the command
and responds to the master.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

228

- Modbus RTU slave: A Modbus RTU master can access the data block
through one of the serial ports (RS232, RS485, RS422) on which the Win-
GRAF runtime is executing. Add a instance of 'MBSLAVERTU' function block
to the 'MbScan' program. The PORT input need a string of the serial port
('COM1:9600,N,8,1') and the SLV input the Modbus slave number.

- Modbus UDP slave: Modbus UDP protocol is nearly identical to Modbus
TCP except that it runs connectionless on UDP/IP. Unlike TCP which is a
guaranteed delivery service, when using UDP the application layer is
responsible for any retries required due to possible loss of frames. The
advantages of ModbusUDP are that it is in most cases faster than a TCP/IP
connection.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

229

Step 3: Set the time interval at which the slave function block should check the port
(Ethernet or serial buffer) Ethernet port for an incoming Modbus master
request or command.
- Set task cycle time: Right click the task name in the tree view and select

'Settings...'. Make sure the cycle time is shorter than the polling time of the
master.

- Set execution period: Right click the program name 'MbScan' in the tree,
select 'Properties...' and click the 'Advance' tab. Here configure the
execution mode.

1. Example: The Modbus master polling time is 100 ms. If the task cycle
time is 100 ms then the 'MbScan' program should be called in each

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

230

task cycle.
2. Example: The Modbus master polling time is 100 ms. If the task cycle

time is 10 ms then the 'MbScan' program should be called
periodically at every 5th task cycle.

Note:
- It is important that the Modbus slave function block scans the

communication buffer for a master command in a regular time interval.
Make sure that the function block call interval is shorter than the master
polling interval.

- If the Modbus master encounters a respond timeout error then it is
necessary to increase the frequency at which the Modbus slave function
block is being called in the PLC program. Another alternative is to increase
the timeout setting of the Modbus master.

- The standard Modbus TCP/UDP port is 502. Only one Modbus function
block instance in the PLC program is allowed to use the 502 port. In order
to share Modbus data with other task use the shared memory method. If
the Modbus Master supports more than one port number setting (502,
503, 504, etc.) then different ports number can be used for each task.

10.2.2 Multiple Data Block

Win-GRAF is able to process both Modbus TCP and Modbus RTU communication within
one application. If the device on which the runtime is installed has multiple serial
communication ports, then Win-GRAF allows the programmer to define for each COM
port a separate Modbus RTU slave. In general for each communication port (serial) a
Modbus slave can be created.

The best way to create multiple slaves for an PLC application is to define for each slave a
separated data block in the 'Fieldbus Configuration' area (Figure 140). The Modbus
protocol for each data block is set by adding a Modbus protocol function block (Figure
138) to the programming area and linking the function block to the data block via the
input 'SrvID'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

231

Figure 140: Multiple data block definitions

Example:

Figure 141: Creating multiple Modbus slaves

In this example (Figure 141) the first block will be assigned to a Modbus TCP slave, which
means only a Modbus TCP master can access the information stored in the Block 1. The
second block will be linked to a Modbus RTU slave which communicates via the serial
COM1 port and the third block will be assigned to a Modbus RTU slave which exchanges
data via the serial COM2. Extended Modbus protocol function blocks (postfix EX) has to
be used to link each data block to a different Modbus protocol.

- Set block 1 as a memory area for Modbus TCP slave:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

232

Figure 142: Configure data block 1 as Modbus TCP server

- Configure data block 2 as a Modbus RTU slave with slave number 1 and
communication via COM1 port (Figure 143):

Figure 143: Set data block 2 as a Modbus RTU slave

- Configure data block 3 as a Modbus RTU slave with slave number 1 and
communication via COM2 port(Figure 144).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

233

Figure 144: Set data block 3 as Modbus RTU slave

11 Modbus Master

Win-GRAF Modbus master supports three communication protocols: Modbus TCP,
Modbus RTU and Modbus ASCII. Several Modbus masters can be implemented by the
same PLC application. Only one master (Modbus RTU, Modbus ASCII) can be created per
serial communication port (RS232, RS485, RS422) and several Modbus TCP (Ethernet)
masters.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

234

Figure 145: Modbus RTU master

11.1 Modbus RTU/ASCII Master

The following shows how to create a RTU Modbus RTU master which communicates via
the serial port COM1 to a network of Modbus slaves.

11.1.1 Configure Communication Interface

Step 1: Select Modbus master as the fieldbus:
1. In the workspace double click the 'Fieldbus Configurations' item
2. Click the 'Insert Configuration' button on the left of the 'IO Drivers'

window
3. Select 'MODBUS Master' from the pop-up window and
4. click 'OK' to select Modbus Master as a fieldbus.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

235

Step 2: Add a Modbus RTU master to the workbench and configure its communication
port:
1. Click the 'Insert Master/Port' button on the left side to open the

communication port configuration window
5. Select 'Serial MODBUS-RTU' and set the serial communication COM port

(e.g., 'COM1:9600,N,8,1') . For a Modbus ASCII Master the ASCII key word
has to be added in front of the COM port setting (e.g.
'ASCII:COM2:9600,N,8,1'

6. Delay time between a slave responds and next master request
(recommended value: 10 ms, it can be 0 to 10000),

7. An option is provided allowing the master to retry opening the port each
time the communication fails. Another option at the 'port' level is to
enable the MODBUS stack to record diagnostic information for each
slave.

8. and then click 'OK'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

236

The master communication parameters are shown in the property window
and can be modified by either double clicking the master or by directly
modifying the settings in the property window.

Step 3: Add a data block to the master which stores input data received from the
slave and output data to be sent to the slave.
1. Click the 'Insert Slave/Data Block' button on the left side to create a data

block.
2. Slave/Unit: Enter the Net-ID of the Slave device. (Example: Remote slave

ID is '1').
3. MODBUS Request: Select the Modbus command type (function code) to

be used for accessing the slave table (Table 27). Example: <2> Read Input
Bits

Type Function
Code

Modbus Request Description

Read 1 Read coil bits Read digital output (DO) data

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

237

Type Function
Code

Modbus Request Description

2 Read input bits Read digital input (DI) data

3 Read holding registers Read analog output (AO) data

4 Read input registers Read analog input (AI) data

Write

5 Write single coil bit Write digital output (DO) data

6 Write single holding
register

Write one analog output (AO)
data (16-bit)

15 Write coil bits
Write multiple digital output
(DO) data.

16 Write Holding Registers Write multiple analog output
(AO) data (16/32 bits)

Table 27: Function code table

9. Configure the data block which holds data from the slave. The data block
setup of the master should be an exact representation of the slave table.
In other word it should be an image of the slave data block in size and
data type. Data read from the slave is being stored to the read section of
the data block and data which has been modified in the write section of
the data block is being sent to the slave.

- Each data block is identified by a MODBUS slave number, a base
address and a number of items/entries (bits or words). The number of
items/entries is limited by MODBUS (2000 bits read, 1968 bits forced,
125 words read or 120 words forced).

- Base address: Starts from '1' by default. It indicates the start address of
the Modbus slave table from which the master starts to read. The data
read from the start address will be copied to the first position of the
master input block data area.
 Note: If you want to change the 'Base address', right-click the

'MODBUS Master' and then select the 'MODBUS Master
Addresses' to modify the value.

- Nb items: The number of slave table entries to read. (Example: the
number is set to 16).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

238

Figure 146: Base address set to 9 and Nb to 16

Example:
Figure 147 creates a input data block which holds 16 input bits and start
reading from the slave discrete input table at address 1.

10. Activation: Set how the Modbus request is being triggered by the master.
- Periodic: Sending the request periodically. (Example: send once every

two seconds.) 'on error' means the next sending time after an Modbus
exception occurred (e.g., 15 seconds).

- On call: The request is activated via a program call by using a variable. If
the variable mapped to 'Command (one shot)' operation turns from
false to true a Modbus request is being triggered (Figure 150).

- On change: The request is triggered once a variable mapped to the
output area has changed. This option is can only be used for writing and
not reading commands.

11. Timeout: Set a timeout value. If the slave does not respond to the master
request within the timeout period an timeout error will be generated.
(The recommended timeout value for the Modbus RTU/ASCII
communication is between 200 and 1000 ms.).
Nb Trials: If the slave fails to respond or the master receives an invalid
response, the master will then retry for the configured number of retries
before moving on to the next command in the list.

12. Declare variables: This option allows the user to declare new variables
and automatically map them to the Modbus master data block. Enter a
variable name and add the symbol '%' at the end of the name and enter
the start number for the '%' symbol. The workbench replace the '%' with
a number which increases incrementally for each new variable as
indicated at the bottom of the window (Figure 147). The new variables
are automatically mapped to the Modbus master data block (Figure 148).
Disable this option if variables has already been declared in the variable
editor. In this case the variables have to be mapped manually by dragging
the variable from the variable editor and dropping it to the mapping area.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

239

Figure 147: Modbus Master data block setting

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

240

Figure 148: Variable mapped to the Master data block

Step 4: This step needs only to be done if the 'Declare variable' option (Figure 147)
has not been selected. Declare and map variables to the master data block:
1. Declare new variables and drag and drop the variable to the data block

mapping area.

13. Offset: Set the data block offset of each variable. Each variable should
have a different offset number otherwise memory overlap occurs.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

241

14. Mask:
- The mask in the mapping area only has to be set for input and holding

registers and is being ignored for coil and input bits.
- A Modbus register has a memory size of 16 bit (same as INT, UINT,

WORD). The mask (hex number) can be used to filter out bits from the
register.

- Example:
Register Value Mask (hex) Result
65565 0001 1
65565 00FF 255
65565 FFFF 65565

15. Storage:
- The storage column is only relevant for the input and holding register

setting.
- For exchanging 32 bit variables (DINT, REAL...), two consecutive

Modbus register can be mapped to one variable.
- For exchanging strings multiple register can be mapped to one string

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

242

Figure 149: Mapping 32 bit variables to holding register

Step 5: This step has only to be done if the 'On call' checkbox has been selected (No. 5
in Figure 147). If the master is in the 'On call' mode the Win-GRAF runtime
does not automatically sent a request to the slave. The logic program of the
PLC has to trigger a request. Two command types are available to initiate a
request:
1. Command (one shot)

- A request will be sent once the attached flag (Figure 150: 'ReqTrigger')
changes from FALSE to TRUE. Each time the PLC logic switches the flag
to TRUE one Modbus command is being sent to the slave. After the
request has been sent the flag will automatically be reset to zero by the
runtime.

2. Command (Enable)
- Once the BOOL variable mapped to the 'Command (Enable)' operation

is set TRUE by the PLC logic the Modbus master will send requests to
the slave until the variable is set to FALSE. No commands will be sent if
the variable is set to FALSE.

Procedure for implementing the 'On call' procedure:
1. Declare a BOOL variable
2. Drag and drop the new variable to the mapping area
3. Select the 'Command (one shot)' by double clicking the 'Operation' column

next to the new variable. The setting in the offset and storage column is
only relevant for 'Data exchange' operation and therefore can be ignored.
If the PLC logic sets the 'RegTrigger' to TRUE one master request will be
sent to the slave and the runtime automatically resets the variable back to
FALSE once the response has been received.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

243

Figure 150: Create a 'On call' variable

Step 6: Map a variable to the diagnostic and status information of the master.
Information like communication timeout, invalid data address, invalid
command, number of failed request etc. are recorded by the master. In the
following a variable will be mapped to the 'Error report' operation which
records the error of the last request. Table 28 shows all the error codes used
by the 'Error report' operation.

Error Code Description

0 The communication is OK.

1 MODBUS function not supported.

2 Invalid MODBUS address.

3 Invalid MODBUS value.

4 MODBUS Server failure.

6 Server is busy.

8 Data Parity Error.

10 Invalid gateway path.

11 Gateway target failed.

128 Communication timeout.

129 Bad CRC16.

130 RS-232 communication error.

Table 28: Error code for 'Error report' operation

Procedure for implementing the 'Error report' procedure (Figure 151):
1. Declare a INT variable (e.g. 'MbErrorReport').
2. Drag and drop the new variable to the mapping list.
3. Double click the 'Operation' column next to the variable and select 'Error

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

244

report'. The offset and storage column setting is ignored by this
operation. The variable will show an error code when a Modbus request
error occurs, and will be reset to zero after the next request was
successful.

Figure 151: Error report setting

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

245

12 Variables

All variables used in programs must be first declared in the variable editor. Each variable
belongs to a group and is must be identified by a unique name within its group.

Groups
A group is a set of variables. A group either refers to a physical class of variables, or
identifies the variables local to a program or user defined function block.

Below are the possible groups:
Group Description
Global Internal variables known by all programs
Retain Non-volatile internal variables known by all programs
Programxxx All internal variables local to a program

(The name of the group is the name of the program)
UDFBxxx All internal variables local to a User Define Function Block (UDFB)

plus its IN and OUT parameters
(The name of the group is the name of the program)

%I.. Channels of an input board - variables with same data type linked
to a physical input device.

%Q.. Channels of an output board - variables with same data type linked
to a physical output device.

Table 29: Groups

Data type and dimension

Each variable must have a valid data type. It can be either a basic data type or a function
block. In that case the variable is an instance of the function block.
If the selected data type is STRING, you must specify a maximum length, that cannot
exceed 255 characters.

Refer to the list of available data types for more information. Refer to the section
describing function blocks for further information about how to use a function instance.

Additionally, you can specify dimension(s) for an internal variable, in order to declare an
array. Arrays have at most 3 dimensions. All indexes are 0 based. For instance, in case of
single dimension array, the first element is always identified by ArrayName[0]. The total
number of items in an array (merging all dimensions) cannot exceed 65535. The possible
range of Arrays reaches from ArrayName 0 until ArrayName 65534.

Naming a variable

A variable must be identified by a unique name within its parent group. The variable
name cannot be a reserved keyword of the programming languages and cannot have
the same name as a function block listed in the function block library. A variable should
not have the same name as a program or a user defined function block.

The name of a variable should begin by a letter or an underscore ('_') mark, followed by
letters, digits or underscore marks. It is not allowed to put two consecutive underscores
within a variable name.
Note:
Naming is case insensitive. Two names with different cases are considered as the same.

Attributes of a variable

For each internal variable, you can select the 'Read Only' option.

Parameters of User Defined Function Blocks and sub-programs are marked as either IN
or OUT.

Parameters of sub-programs and UDFBs

Sub-programs and UDFBs may have input or output parameters. Output parameters
cannot be arrays of data structures but only single data. When an array is passed as an
input parameter to a UDFB, it is considered as INOUT so the UDFB can read and write in
it. The support of complex data types for input parameters may depend on selected
compiling options.

12.1 Create Variables

To increase the readability of the PLC program it is suggested to stick to a naming
convention for the variable names. The Win-GRAF workbench allows you to set the
prefixes for each variable type (e.g. 'b' for BOOL, 'si' for SINT, etc.).
Got to 'Tools/Options...' in the menu and select 'Prefixes' to set the prefixes for each
variable type (Figure 152) and enable the use of prefixes. The enables the workbench
during a variable declaration to automatically selects the type after entering the variable
name with the prefix.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

247

Figure 152: Variable type prefix setting

12.1.1 Declare Variable in the Variable Editor

First determine group in which to declare a global, retain or local variable.
Step 1: Open the variable editor by double clicking the 'Variables' in the

workspace
Step 2: Right click the group (Global, Retain, local) and select 'Add Variables'

(Figure 153). A alternative way is to select the group and press the
'Insert' key on the keyboard. A variable with the name 'NewVar' of
BOOL type is being added to the editor.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

248

Figure 153: Declare a variable using the variable editor

Step 3: Set variable name:
Double click the variable name, enter a new name in the edit box and
press enter to assign the new name.

Step 4: Set data type:
Double the 'Type' field to open a list of available data types and
function blocks. Select one of the data types.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

249

Step 5: Set array dimension:
Ignore this step if you do not want to declare an array.

Single dimensional array
Double click the dimension 'Dim' field and assign the size of the array.

All indexes are 0 based. Arrays have at most 3 dimensions. For
instance, in case of single dimension array, the first element is always
identified by MyVar[0]. The total number of items in an array (merging
all dimensions) cannot exceed 65535. The possible range of Arrays
reaches from ArrayName 0 until ArrayName 65534.

Multi-dimensional array:
Using the variable editor, you must enter the number of elements for
each dimensions separated by commas. Note that arrays have at most
three dimension.
For example '3,10,5' is a three dimensional array, the first dimension
has three elements, the second dimension has 10 elements, and the
third dimension has five elements (Figure 154).

Figure 154: Multi-dimensional array declaration

After the dimension has been edited the variable editor shows the
following dimension information (Figure 155):

Figure 155':Multi-dimensional array information after declaration

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

250

Step 6: Set initial value:
Double click the 'Init value' field and enter a initial value.

Initialize an array:
- Double clicking the 'Init value' will open a window which list all

the array element. A value can be assigned to each single element
by double clicking the element line.

- Initialization of multi-dimensional arrays is done in the same
manner as by one-dimensional arrays; first all elements for the
first dimension are initialized (i.e. for example array[0,0],
array[0,1], array[0,2] to array[0,n]) and then the procedure is
repeated for the other values of the first index.

- To initial all the array element to the same value click the 'Select
All' button on the left top window to select all the elements. Enter
a value via the keyboard which will be shown in a popup edit box.
Press the 'Enter' key of the key board to assign the value to all
array elements.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

251

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

252

Step 7: Public variable: If other tasks needs to access the variable then the
checkbox in the 'Public' field has to be enabled.

Other task has now read and write access to this variable. The access
can be limited to read only if the attribute is set to 'Read Only' in the
'Attrib.' column.

12.1.2 Declare Variable as Text

An alternative way for declaring variables is to directly type the variable name with the
data type as an text using the IEC61131-3 format.

Step 1: Open the IEC61131-3 variable editor: Right click the variable editor area and
select 'Edit Variables as Text...' from the popup menu.

The editor shows all the declared variable of the group:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

253

Step 2: Add a new variable declaration and click save to validate the new settings.

After the save button has been clicked the Win-GRAF workbench will check
the declaration for any syntax errors. If any error were detected the file will
not be saved and the errors will be shown at the bottom of the window. By
double clicking the error message the workbench will jump to the variable
declaration were the error was detected.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

254

12.1.3 Declare Variable from the Program Editor

12.1.3.1 Declare a simple Variable

Variables can be directly create via the program editor. The following describes the
procedure of adding a variable to the function block diagram (FBD) area. The procedures
for the other ICE 61131 programming languages are very similar.

Step 1: Add a variable box:
The variable box represent a variable in FB and Ladder programming. Click the
'Add variable' button on the left of the program editor and click a location in
the editor where to place the variable box.

Step 2: Set variable name and type:
Double click the variable box. A popup window shows all the already declared
variables. You can declare a new variable or select one of the available

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

255

variables from the list. Declare a new variable by entering a new name in the
top text box of the popup window. The name is prefixed by 'b' which indicates
that a BOOL type should be declared as defined in the prefix table (Figure
152). After clicking 'OK' the workbench will automatically declare a variable of
an BOOL type.

If the variable name (e.g. 'NewVar') does not contain a prefixed character (e.g.
'b') as defined in the prefix table then a pop up windows appear which enables
you to select the data type, group, array dimension, etc.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

256

12.1.3.2 Declare Variable for Function In-and Output

After a function has been added to the programming area variables needs to be
assigned to the in and outputs. Existing variables listed in the variable editor can be
assigned or new variables can be directly declared in the program editor. The procedure
to add a variable to the in- and outputs of a function is as follows:

Step 1: After a function has been added to the function block program editor the in
and outputs are marked by '???' which indicates that no variables have been
assigned yet. Hover the mouse over the function block to get information
about the data type of each port. Click the block and press F1 to open the
help file for the function.

Step 2: Declare variable:
Double click a box which contains three question marks ('???') to open an
editor to enter a variable name (e.g. 'MyTasNo'). Click 'OK' to confirm the
name.

The popup editor also list all the declared variables. If the variable to be
assigned to the block port has already been declared previously you just need
to select the variable name from the list and click 'OK'

Step 3: Set variable type:
If the variable has not been declared before a window pops up which allows
you to directly set the data type, location, initial value, etc. of the variable.
By default the popup editor will set the data type to the type required by the
corresponding function block in- or output port.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

257

After clicking 'Yes' the variable is added to variable list in the variable editor
and assigned to the function port

12.1.3.3 Assign Variable a Constant Expression

Constant expressions can be used in all five programming languages for assigning a
variable with a value (Figure 156). All constant expressions have a well defined data type
according to their semantics. If you program an operation between variables and
constant expressions having inconsistent data types, it will lead to syntax errors when
the program is compiled.

Figure 156: Example of assigning a variable with a value

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

258

Below are the syntactic rules for constant expressions according to possible data types:

Type Prefix Description
BOOL Boolean

- There are only two possible Boolean constant expressions. They are
reserved keywords TRUE and FALSE.

SINT SINT# Small (8 bit) Integer
- Small integer constant expressions are valid integer values

(between -128 and 127) and must be prefixed with SINT#.
- All integer expressions having no prefix are considered as DINT

integers.

USINT / BYTE USINT# Unsigned 8 bit Integer
- Unsigned small integer constant expressions are valid integer

values (between 0 and 255) and must be prefixed with USINT#.
- All integer expressions having no prefix are considered as DINT

integers.
INT INT# 16 bit integer

- 16 bit integer constant expressions are valid integer values
(between -32768 and 32767) and must be prefixed with INT#.

- All integer expressions having no prefix are considered as DINT
integers.

UINT / WORD UINT# Unsigned 16 bit integer
- Unsigned 16 bit integer constant expressions are valid integer

values (between 0 and 255) and must be prefixed with UINT#.
- All integer expressions having no prefix are considered as DINT

integers.
DINT 32 bit (default) integer

- 32 bit integer constant expressions must be valid numbers between
-2147483648 to +2147483647.

- DINT is the default size for integers: such constant expressions do
not need any prefix.

- You can use 2#, 8# or 16# prefixes for specifying a number in
respectively binary, octal or hexadecimal basis.

UDINT /
DWORD

UDINT# Unsigned 32 bit integer
- Unsigned 32 bit integer constant expressions are valid integer

values (between 0 and 4294967295) and must be prefixed with
UDINT#.

- All integer expressions having no prefix are considered as DINT
integers.

LINT LINT# Long (64 bit) integer
- Long integer constant expressions are valid integer values and must

be prefixed with LINT#.
- All integer expressions having no prefix are considered as DINT

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

259

Type Prefix Description
integers.

REAL Single precision floating point value
- Real constant expressions must be valid number, and must include

a dot ('.').
- If you need to enter a real expression having an integer value,

add .0 at the end of the number.
- You can use F or E separators for specifying the exponent in case of

a scientist representation.
- REAL is the default precision for floating points: such expressions do

not need any prefix.

LREAL LREAL# Double precision floating point value
- Real constant expressions must be valid number, and must include

a dot ('.'), and must be prefixed with LREAL#.
- If you need to enter a real expression having an integer value,

add .0 at the end of the number.
- You can use F or E separators for specifying the exponent in case of

a scientist representation.

TIME TIME#
or
T#

Time of day
- Time constant expressions represent durations that must be less

than 24 hours. Expressions must be prefixed by either TIME# or T#.
They are expressed as
 a number of hours followed by h,
 a number of minutes followed by m,
 a number of seconds followed by s, and
 a number of milliseconds followed by ms.

- The order of units (hour, minutes, seconds, milliseconds) must be
respected.

- You cannot insert blank characters in the time expression. There
must be at least one valid unit letter in the expression.

- Example:
T#23h59m59s999ms - maximum TIME value
TIME#0s - null TIME value
T#1h123ms - TIME value with some units missing

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

260

Type Prefix Description
STRING Character string

- String expressions must be written between single quote marks.
- The length of the string cannot exceed 255 characters.
- You can use the following sequences to represent a special or not

printable character within a string:

Sequence Description
$$ a '$' character
$' a single quote
$T a tab stop (ASCII code 9)
$R a carriage return character (ASCII code 13)
$L a line feed character (ASCII code 10)
$N carriage return plus line feed characters

(ASCII codes 13 and 10)
$P a page break character (ASCII code 12)
$xx any character (xx is the ASCII code

expressed on two hexadecimal digits

- Example:
'hello' - character string
'name$Tage' - character string with two words
 separated by a tab
'I$'m here' - character string with a quote inside (I'm here)
'x$00y' - character string with two characters
 separated by a null character (ASCII code 0)

Table 30: Prefixes for constant expressions

Below are some examples of typical errors in constant expressions:
Expression Error-Description
1a2b basis prefix ('16#') omitted
1E-200 'LREAL#' prefix omitted for a double precision float
T#12 Time unit missing
'I'm here' quote within a string with '$' mark omitted
hello quotes omitted around a character string
Table 31: Constant expressions syntax errors

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

261

12.2 Retain Variables

A retain variable is a PLC variable which:
- is non-volatile and is stored in a normal disk file.
- is known by all programs (when its content is changed, the change is propagated to

all equations in which this variable is used)
- normally does not contain real-time critical data.

Retain variables are declared in the same way as a volatile variable. In the variable
editor retain variables have to be declared in the 'RETAIN variables' section (Figure 157).
Function blocks instances can not be set as retain variables.

Figure 157: Retain variable declaration

Retain variables are saved when Win-GRAF runtimes shuts down. The retain variables of
each task are stored in a separated file (Main task: 't5_1.ret'; Task 2: 't5_2.ret'; Task3:
't5_3.ret', etc.). The next time the runtime is started the retain variables are initialized
with the value stored.
When using the workbench to start the PLC application the user can select whether the
retain value are initialized with the default value or with the with the value stored in the
file (Figure 158):
- On an application 'Cold start - Don't load RETAIN variables', the workbench initializes

the retain variables with their default value. Default values are values entered in the
'Init value' column of the variable editor.

- On an application 'Cold start - Load RETAIN variables', the workbench initializes the
retain variables with the value stored in the disk file.

Figure 158: Workbench

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

262

12.2.1 Programmatically Save/Load Retain Variables

The runtime will automatically store the retain variables to file once the runtime is
stopped. The files of the '.ret' format are located in the directory of the runtime
execution file.

Win-GRAF provides functions which allows the user to programmatically save and load
retain variables. Retain variables can be written to the file with the 'F_SAVERETAIN'
function and be loaded by the 'F_LOADRETAIN' function (Table 32). By using these two
functions the user can within the PLC program implement the time interval or a trigger
event at which the retain variables are saved or loaded.

Function Description
F_SAVERETAIN (Path) Save retain variable data to a file at the specified path

every time the function is being called.

F_LOADERETAIN (Path) Load retain variable data from a file at the specified
path.

Table 32: Functions for saving and loading retain variables

Note:
- F_SAVERETAIN and F_LOADRETAIN will not automatically create a folder if it does

not exist. Table 33 shows the different path names supported by the functions.
- Do not change the retain variable declaration after a retain variable file has been

created otherwise a variable mismatch may occur when the PLC application starts
running and initializing the retain variable by loading the stored values from the disk.
It is strongly suggested to delete the retain file ('.ret') from the disk before changing
the retain variable declaration.

The following actions will reset retained value(s) to their Init value(s):
 Changing the type of a retain variable
 Changing the length of a string retain variable
 Changing the size of an array variable
 Changing any element of a structure variable

Path Description

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

263

FileName.ret File will be in the directory of the runtime
execution file

Folder/FileName.ret File will be in the subdirectory 'Folder' of the
runtime execution file directory./Folder/FileName.ret

/Folder/FileName.ret File will be in the directory 'Local Disk\Folder',
whereby the 'Local Disk' is the disk of the
runtime execution (e.g. D:\Folder\
FileName.ret)

Table 33: Path name definition

Figure 159 shows an example of how to programmatically use the F_SAVERETAIN and
F_LOADRETAIN functions. Saving/loading data takes some time and slows down the
system and therefore it is not suggested to call these function in a short time interval. In
order to prevent the retain data to be save in every cycle flags (flgSave, flgLoad) are
being used to trigger a save or load action.

Figure 159: Programmatically saving and loading retain variable values

13 Derived Data Type

Derived types are data types specified by manufacturer or by user and can be declared
by means of textual structure TYPE…END_TYPE. The names of new types, their data
types, possible with their initial values, are given within this textual structure. These
derived data types can be further used together with the elementary data types in
declarations of variables. The definition of the derived data type is global, i.e. can be
used in any PLC program part. The derived data type takes adopts the type features
from which it was derived from.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

264

13.1 Structures

A structure is a user defined data type. A structure can be derived from elementary as
well as from derived data types. Structures can be used like other data types to declare
variables.

According to IC61133 the definition of a new structure data type is done using the
keywords STRUCT and END_STRUCT. Data types of individual members of a structure
and their names are stated inside STRUCT … END_STRUCT. It is possible to initialize
structures by stating member values behind the sign ':=' (Figure 160). Member of a
structure can have an initial value. In that case, corresponding members of all declared
variables having this structure type will be initialized with the initial value of the
member.
Use the name of the structure instance followed by a dot and member name to access
individual structure members: 'instanceName.memberName'.

Figure 160: Structure definition

A structure can be created hierarchical which means that an already defined structure
can be an member of another structure. A structure must be defined before it can be
used as a member of another structure.

13.1.1 Define a Structure

13.1.1.1 Define a Structure from the Editors

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

265

Step 1: Open the structure editor:
Go to the 'Library' node in the workspace and double click the 'Structures'
item in the 'Types' tree to open the editor. If the 'Types' tree is not visible
then enable it by right clicking the 'Library' node and selecting 'Shortcuts\
Types' from the popup menu.

Step 2: Click the 'Insert Type' button on the top left to add a new structure

Make sure that the icon with the superscripted 'S' is active which indicates
that structure types are being displayed.

Icon Data Type
Structure
Enumeration
Bitfield

Step 3: Double click the newly added structure 'NewStructure' to rename it (e.g.
MyFirstStruct)

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

266

Step 4: Add a variable to the structure:
Click the structure name and press the 'Insert' key or click 'Insert Variable'
button

Step 5: Set structure member:
1. Rename the variable by double clicking the variable name.
2. Reset the data type by double clicking the type field.
3. Set initial value by double clicking the 'Init value' field

Step 6: Repeat step 4 and 5 to add variables to the structure

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

267

Step 7: Close the structure editor.
It is important to close the structure editor before the structure can be
used. Closing the editor causes the workbench to store the structure
definition and make it available for declaring structure instances.

13.1.1.2 Define a Structure as Text

The workbench provides a text editor for directly adding members to the structure
without using the edit function provided by the user interface (Figure 161).

Step 1: Add a new structure (follow the steps 1 to 3) described in chapter 13.1.1.1.
Step 2: Open the text editor for the structure by right clicking the structure name

and selecting 'Edit Variable as Text...'

Step 3: Edit member variables and initialization values. Save the structure before
closing the window.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

268

Figure 161: Edit structure members as text

If the workbench encounters a structure syntax error the save process will
be aborted and the error type will be listed at the bottom. By double
clicking the error message the workbench will jump to the line of the
structure where the errors was detected.

13.1.2 Declare Instance of a Structure

The instance of a structure is declared in the same way as a new variable or a instance
of a function block.

Step 1: Declare a new variable:
1. Open the variable editor by double clicking the 'Variable' item in the

workspace
2. Right click the group to which the instance should be added and select

'Add Variable'. An alternative way is to click a group and press the
'Insert' key of the keyboard.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

269

Step 2: Change variable name and data type:
1. Double click the name to rename the structure instance (e.g.

InstMyStruct)
2. Double click the 'Type' field to select the name of the structure type

('MyFirstStruct').

Step 4: The structure instance can now be used in the PLC program like any
variable. For accessing a member of a structured variable use the following
notation:
VariableName.MemberName

Example:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

270

InstMyStruct.bVar
InstMyStruct.diVar
InstMyStruct.siVar
InstMyStruct.udVar

13.2 Enums

The enumerated data type also belongs to simple derived data types. It is usually used
for naming features or versions instead of using a number code to each version which
makes the program easier to read. The initialization value of the enumerated data type
is always the value of the first element stated in the enumeration.

You can define some new data types that are a enumeration of named values. For
example:
type: LIGHT
values: GREEN, ORANGE, RED

Then in programs, you can use one of the enumerated values, prefixed by the type
name:
Light1 := LIGHT#RED;

Variables having enumerated data types can only be used for assignment, comparison,
and SEL/MUX functions.

Figure 162: Defined enumerate data types

13.2.1 Define a Enumerate Type

An enumerate data type is created as follows:

Step 1: Open the enum editor:
Go to the 'Library' node in the workspace and double click the 'Enumerated

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

271

Data Types' item in the 'Types' tree to open the editor. If the 'Types' tree is not
visible then enable it by right clicking the 'Library' node and selecting
'Shortcuts\Types' from the popup menu.

Step 2: Click the 'Insert Type' button on the top left or press the 'Insert' key to add a
new enum type.

Make sure that the icon with the superscripted 'E' is active which indicates
that only enum data types can be edited.

Icon Data Type
Structure
Enumeration
Bitfield

Step 3: Rename the type and assign type a number of named values:
1. Double click the type field to rename it (e.g. enumTrafficLight) and press

enter
2. Double click the 'Value' field to add named values. An editor pops up

which allows you to enter the names. Each name must be edited in a new
line.

3. Click the button with the check sign to confirm the setting

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

272

Note:
- An enum must contain at least two named values.
- An enum should not contain special characters such as #, @, etc.

The named values are listed in the 'Value' field.

The new enum data type is automatically added to the 'Enum' tab of the
information window

Step 4: Close the editor after the enum type has been defined. The new enum type
only take effect after the editor has been closed.

13.2.2 Declare an Enumerate Variable

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

273

Enumerate variables are declared in the same way as basic type variables.

Step 1: Add a new variable by opening the variable editor and pressing the 'Insert'
key. Alternatively you can right click the variable editor and select 'Add
Variable' from the popup menu.

Step 2: Configure the variable:
1. Rename the variable by double clicking the name
2. Select the enum data type from the popup list (e.g. 'enumTrafficLigth')

by double clicking the 'Type' field
3. Set the initial value by double clicking the 'Init value' field and selecting

one of the named values.

Step 3: Use of enum variable:
1. Add the new variable name (e.g.'TrafficLight') to the programming editor

(e.g. Structured Text) either by typing the name or by drag and drop from
the variable editor.

2. Click the 'Insert Variable' button on the top left to open the variable list
3. Select '#define' form the drop box. All the enumerate entries are stored

in the '#define' category.
4. Scroll to the corresponding enumerate entry and select one entry.

Confirm the setting by clicking 'OK'.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

274

13.3 Bit Field

A bit field is a data structure which consists of a number of adjacent memory locations
which have been allocated to hold a sequence of bits, stored so that any single bit or
group of bits within the set can be addressed. A bit field is most commonly used to
represent integral types of known, fixed bit-width (e.g. SINT, USINT etc.).
The meaning of the individual bits within the field is determined by the programmer. For
example a bit can represent a state of a digital input.

Figure 163: Bit field definition

You can define new bit field data types derived from integer data types and assign each
bit or a group of bit a name (Figure 163). The single bit can be accessed in the program
by using the variable name followed by a dot and the bit name:

VarName.BitName

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

275

Example:
Example refers to Figure 163.
//Declare bit field variable
VAR
 AxisStatus : bfAxisState := USINT#0 ;
END_VAR

//Use bit field variable
AxisStatus.Emergency = TRUE;
AxisStatus.Limit = TRUE;
AxisStatus.Home = TRUE;

13.3.1 Define a Bit Field Type

An enumerate data type is created as follows:

Step 1: Open the bit field editor:
Go to the 'Library' node in the workspace and double click the 'Bit Fields' item
in the 'Types' tree to open the editor. If the 'Types' tree is not visible then
enable it by right clicking the 'Library' node and selecting 'Shortcuts\Types'
from the popup menu.

Step 2: Click the 'Insert Type' button on the top left or press the 'Insert' key to add a
new bit field type. By default a bit field with the name 'BitField1' of the INT
type is being create.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

276

Make sure that the icon with the superscripted 'B' is active which indicates
that only bit field data types can be edited.

Icon Data Type
Structure
Enumeration
Bitfield

Step 3: Rename the bit field and assign a integer type:
1. Double click the type field to rename it (e.g. bfAxisState) and press enter
2. Double click the 'Value' field to select an integral type which represents

the bit field length.

Step 4: Enter a name next to each bit in order to identify the bit in the program. A
name can represent a single bit (e.g. Emergency) or a bit field (e.g.'Error').

The USINT is 8 bit long. The bit field is divided into 6 subfields:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

277

Step 5: Close the editor after the bit field type has been defined. The new bit field
type can only be used after the bit field editor has been closed.

13.3.2 Declare Bit Field Variable

Bit field variables are declared in the same way as basic type variables.

Step 1: Add a new variable by opening the variable editor and pressing the 'Insert'
key. Alternatively you can right click the variable editor and select 'Add
Variable' from the popup menu.

Step 2: Configure the variable:
1. Rename the variable by double clicking the name
2. Select a bit field data type from the popup list (e.g. 'bfAxisState') by

double clicking the 'Type' field
3. Set the initial value by double clicking the 'Init value' field and editing a

value.

Step 3: Use of bit field variable:
1. Add the new variable name to the programming editor (Structured Text)

either by typing the name or by drag and drop from the variable editor.
2. Add a dot after the variable name which causes the variable list to pop

up.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

278

3. Select one of the bit name from the variable list and click 'OK'.

13.4 Function and Function Block

According to the IEC 61131-3 standard, there is a difference between a function and a
function block in PLC programming. The main difference involves internal memory. The
main difference is that a function block has a permanent internal memory whereas a
function memory is only temporary and is being released after the function call so that
all internal data are lost. A instance of a function block has to be creates before it can
be called whereas a function can be directly called.

Function Block Function
Memory to store internal data Temporary memory, no internal data

are stored
Function block call requires an function block
instance

Function can be directly called

Supports multiple output parameters Only one output parameter
A function blocks has very often its own,
internal machine state and an output to
indicate when the function blocks execution is

Functions are synchronous, which
means the calling program waits until
the function finishes before executing

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

279

done. A FB is most likely to be asynchronous. the next command.
Table 34: Function block and function comparison

A function can be described as something like an equation or formula that accepts
inputs and calculates an output value. Moreover, it always returns the same output
value for the same inputs. In contrast, a function block relies on internal memory. So it
is possible to have a different output value with the same inputs because there is
another value stored in memory that has an impact on the final output value. Function
blocks normally need multiple task cycle to execute. A input triggers the execution of
the function block, the output shows the status of execution in each cycle until it has
finished. Often, you will have to use the same piece of code in your PLC program
multiple times. It could be a function for controlling a valve, a motor etc. With function
blocks you can make a function block specific for a motor and use it several times.

Win-GRAF comes with many standard function blocks in the library. The workbench
allows you to create your own function blocks (User Defined Function Blocks, UDFB) and
it can be programmed in one of the five PLC programming languages.

Example:
By default adding a function block to the programming editor via drag and drop causes
the workbench to automatically declare a function block instance in the variable editor
and show the instance name in the title bar of the block (Figure 164). In contrary no
instance is being generated when a function is added to programming editor.

Figure 164: Function block and function

Note:
During PLC logic programming it is important to remember that after deleting a function
block from the programming editor to also manually remove its instance from the
variable editor. The workbench can be configured to remove any unreferenced variables
(Figure 165).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

280

Figure 165: Automatically remove a unreferenced instance from the variable editor

The Win-GRAF workbench handles all private variables declared inside a function block
as statically allocated in memory. Each time a function block is initiated, its private
variables are duplicated for the declare instance, which means for each function block
instance a memory for the private variables will be allocated. The private variables of a
function block instance are independent of private variables of other instances and just
store internal data of their instance and no data exchange takes place between private
variables across different instances. From outside, only input and output parameters of
a function block are accessible, that is, the private variables of a function block are
hidden to the user of the function block. A privates data for example may represent the
state of the function block state machine. The state of the state machine of each
instance of a function block differs depending on when the instance has been activated
and the device it is representing (e.g. servo motor).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

281

Figure 166: Two instance of the same function block

13.4.1 Define Function Block

13.4.1.1 Function Block Input and Output Parameters

Function blocks three type of external variables:
1. Input variables (IN):

- Input parameters can only be read by the function block and data is passed by
the calling program to function block.

- The input variables are listed on the left side of the function block in a graphical
representation.

- Exception: Complex parameters (array, structures) should always be declared as
input parameters (IN). Internally complex parameters can be read and modified
by the function block

- A maximum of 32 input parameters are allowed
2. Output variables (OUT)

- The function block writes data to the output. Output variables are provided by
the function block to the calling program. The calling program can only read this
output and can not directly modify its data value.

- In a graphical representation output parameters are shown on the right hand
sight of the function block.

- Only simple data types can be output parameters (Table 30). If the user needs to
create a function block with a complex structure (array or structure) as an
output parameter then this structure has to be declared as input parameter. In
this case internally the function block has read/write access to the parameter.

- A maximum of 32 output parameters are allowed
3. Input/output variables (IN_OUT)

- The function block can read and directly modify the IN_OUT variables
- In a graphical representation IN_OUT parameters are shown on the left hand

sight of the function block. The IN_OUT parameter is indicated by the '@'
symbol in front of name.

- Only simple data types can be declared as input/output parameters.

Function Block Description
Input parameter is an SINT array

Input parameter is a user define structure type

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

282

Input parameter is IN_OUT of a simple data type

Table 35: Function block with different input parameter type

This section explains how to use the wizard to create a new function block.

Step 1: Add empty function block program editor:
1. Right click the 'Blocks' in the 'Library' tree of the workspace and select

'Insert New Program..'. A dialog for selecting the program type pops up.
2. Enter the name of the function block
3. Enter the programming language to be use for programming the function

block body code
4. Select UDFB (User Defined Function Block)
5. Click 'OK'. A dialog for editing the function block parameters pops up.

Step 2: Declare the input and output parameters for the function block. The input and
output variables can also be declared in the variable editor of the function
block program after it has been created.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

283

Edit input parameter:
1. Click the '...' in the input area
2. Click 'Edit' or double click the entry '...' in the input area
3. Enter the name and data type for the input parameter and click 'OK'

Note:
 If the 'IN_OUT' check box is not checked, the input can be only read by the

function block. If checked, then the block can change the value of the input.
An 'IN_OUT' parameter must be a single data type therefore can neither be
an array nor a structure.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

284

 Parameters being arrays of structures must always be declared as INPUTs.
However, they are always considered implicitly as IN_OUT, which means
the function block can read data from and write data to the array or
structure. Declaring complex parameters for a function block can have
some limitations if the 'Complex variables in a separate segment' option is
not enabled in the project settings.

Edit output parameter:
1. Click the '...' in the output area
2. Click 'Edit' or double click the entry '...' in the output area
3. Enter the name and data type for the output parameter and click 'OK'

Step 3: The input and output parameter list can be modified after they have been
edited.

Button Description
Edit Click this button to change the

parameter name or its data type
Remove Press this button to remove a the

selected parameter from the list
Move up This button moves a parameter

entry in the list one position up
Move down This button moves a parameter in

the list one line down
>IN Moves am output parameter from

the output area to the input area

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

285

>OUT Moves a input parameter from the
input area to the output area

All used defined function blocks are automatically added to the 'Library' category in the
'Blocks' window (Figure 167). It is necessary to close the programming editor of the
function block (Window with the green frame) in order for it to be listed in the 'Library'
category. The used defined function blocks can be used in the same way as the standard
function blocks provided by the Workbench by drag and drop to the programming
editor.

Figure 167: User defined function block

In the library manager of Win-GRAF the user defined function blocks are indicated by a
special icon which makes it more easier to distinguish from the standard function blocks
(Table 36). In addition the user defined function blocks are shown in the function block
diagram as a different color (Table 37).

Function Block Icon Description
Win-GRAF preinstalled function block
Indicates user defined function block

Table 36: Function block icons

Function Block Description
Win-GRAF preinstalled function block

User defined function block (UDFB)

Table 37: Function block

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

286

13.4.1.2 Define Function Block Variables

A function block has three types of variables: Input, output and local variables.
The previous section describes the declaration of the input and output variables of a
function block by using the function block wizard. The variable editor of the workbench
allows the user to directly declare new input and output variables or remove existing
after the function blocks wizard has been closed. Local variables can only be declared via
the variable editor.

The following procedure shows how to add a private, input or output variable to the
function block:

Step 1: Open the function block program editor:
Double click the function block name in the workspace.

Step 2: Add a new variable:
Click on the variable editor and press the 'Insert' to add a new variable. A
window pops up which allows you to select the type of variable to enter:
Input, output or private variable.

The attribute column 'Attrib.' indicates the type of variable:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

287

- 'IN' - input variable
- 'OUT' - output variable
- Empty attribute indicates a private variable

The basic setting of the attribute field can not be changed via the variable
editor. This has to be done by using
1. the class wizard (right click the class name in the workspace tree and

select 'Parameters...' from the popup menu)
2. the variable text editor (right click the variable in the variable editor and

select 'Edit Variable as Text...')

Step 3: Set variable name and type:
1. Set name: Double click the 'Name field' and enter a new name
2. Set variable type: Double click the 'Type' field and select a type from the

drop list
3. Set the attribute: Only the 'IN' attribute can be changed to 'INOUT'.

Double click the 'Attrib.' field to change the attribute from 'IN' to 'INOUT'
or vice versa.

The variables can now be used inside the user defined function block in the same way as
in a normal PLC program.

13.4.1.3 Implementing Function Block Logic

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

288

Programming a function block is very much the same as writing a normal PLC program.
The programming can be done in one of the five programming language defined by IEC
61131.
It is important to pay attention to a few point:
- Do not write or change input data if it is of a simple data type. Only the calling

program has write access to it.
- Input parameters of complex structure types (e.g. arrays, structure) are regarded by

the workbench as an input/output type and therefore the function block body and
the calling program has read and write access to it.

- Only the function block body has write access to a output parameter of a simple data
type. The calling program has only read access.

- Use the private data to store some information from the current cycle which is
needed by the function block for the next cycle (e.g. state of state machine, previous
input, etc.)

- Declare a parameter of a simple data type as input/output when both the calling
program and the function block body has write access to it.

- A maximum of 32 input and 32 output parameters are supported for a function block

Example:
In the following a function block is being implemented which triggers an output when a
rising edge is being detected at its input (Figure 168).

Figure 168: Rising edge function block

Three parameter are being declared for the function block body (Figure 169):
- One input parameter which shows the active level of the signal,
- One output parameter which indicates to the calling program when a rising input

signal has been detected
- One private variable which records the signal level of the current cycle.

Figure 169: Variable declaration

Function body logic description (Figure 170):
- If the signal level of the previous cycle was off (PrevSignal := FALSE) and the input

signal of the current signal is active (Signal := TRUE), then a rising edge has been
detected and the output variable will be activate (Q := TRUE).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

289

- If the input signal was active in the previous cycle (PrevSignal := TRUE) and is still
active in the current cycle (Signal := TRUE) then no rising edge has been detected
with the result that the output is to false (Q := FALSE).

- If the input signal for the previous and current cycle is inactive (PrevSignal := FALSE ;
Signal := TRUE) then the output will be set to false (Q := FALSE).

Figure 170: Function block body

Creating an instance of the function block
The user defined function block is automatically being added to the library category of
the 'Blocks' tab. By simple dragging and dropping the function block over the program
editor an instance of the function block is being created. Next the input and output have
to be linked to variables. This can be done by simple dragging a variable from the
variable editor to the input or output area of the function block (Figure 171).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

290

Figure 171: Creating a function block instance

13.4.2 Define Function

13.4.2.1 Function Input and Output Parameters

A function is defined as a program organization unit which, when called, yields exactly
one result and arbitrarily many additional output elements (the function result can be
multi-valued, e.g., an array or structure). Functions contain no internal state
information, therefore a function execution with the same input parameters shall
always yield the same output values .
The preinstalled Win-GRAF functions has one or more input parameters but only one
output parameter. The Win-GRAF workbench allows the user to defined functions with
multiple in- and outputs.
The procedure of defining a function is very similar to a function block definition.
Therefore this section only describes very briefly the procedure. For more information
read the description of the function block definition procedure.

The steps explains how to use the wizard to create a new function.

Step 1: Add empty function block program editor:
1. Right click the 'Blocks' in the 'Library' tree of the workspace and select

'Insert New Program...'. A dialog box pops up.
2. Enter the name of the function
3. Select the programming language to be use for programming the

function code
4. Select 'Sub program'
5. Click 'OK'. A window will pop up which allows you to define the input and

output parameters of the function.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

291

Step 2: Define the input and output parameters for the function in the function
parameter editor. The input and output variables can also be defined in the
variable editor of the function program after it has been created. Refer to the
function block section to get more information about the function parameter
editor.
Click 'OK' after the parameters have been edited.

Step 3: Edit the source code for the function body (see function block description).

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

292

The new function will be also automatically added to the 'Library' node in the workspace
and to the category in the 'Blocks' window after the programming editor for the
function body has been closed (Figure 172).

Figure 172: User defined function added to the library directory

The library manager of Win-GRAF assign different icons and diagram colors to the
preinstalled and user defined functions (Table 38, Table 39).

Function Block Icon Description
Win-GRAF preinstalled function
User defined function

Table 38: Function icons

Function Block Description
Win-GRAF preinstalled function

User defined function

Table 39: Preinstalled and user define function diagrams

14 Backup Management

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

293

14.1 Save Project Backup to Local PC

It is suggested to regularly make a backup of your project to prevent any accidental loss
of data. The workbench allows you to save the project as a zip file to memory (Figure
173). The project zip file can be directly loaded by the workbench. During the loading
process the zip file will be automatically unzipped.

Figure 173: Saving (left) and open (right) a backup file

14.2 Save Project to Runtime Target

The workbench enables you to embed on the target runtime the source code of the
project, so that it can be uploaded later. Source code is filtered and zipped in order to
reduce backup memory requirements. As sending source to the target may involve a
significant download time, it is up to you to explicitly activate the download command.

Note:
The project can only be save to the runtime if it has been created in single-tasking
environment (chapter: Single-Tasking). Projects created in a multi-tasking environment
(chapter: Multi-Tasking) can not be saved to the runtime.

Those commands are available from the contextual popup menu in the workspace
window:
- Save Project to Target: zip project source files and send them to the target.
- Open project from Target: upload zipped source file from the target and rebuild the

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

294

project.

When saving the project to the target you have to specify the address and
communication parameters of the remote runtime system. The following options enable
you to send more or less optional information with project source code:

 Symbol table: the symbol table will be required after upload for monitoring variables.
If you do not embed the symbol table, you will have to recompile the uploaded
application for reading or writing variables.

 Debug information: this file will be required after upload for step by step debugging
and use of breakpoints. If you do not embed the symbol table, you will have to
recompile the uploaded application for stepping the application.

 Spy lists: these are all files created with the Watch Window, such as lists and recipes.
 Wizard settings: these are current settings of wizards such as the Monitoring

Application Builder.
 Project history: this is the list of modifications entered in the project.
 Comment texts: all comments entered for variables, programs. Comments within the

programs are always saved.
 Bitmaps and icons: these are all BMP, GIF, JPG or ICO files stored in the project folder

and possibly used in monitoring views.
 Referenced OEM library elements: definition of all the library elements ('C' functions

and blocks, I/Os, profiles) actually used in the project.
In addition to standard files, you can specify some extra files to be downloaded. In that
case, all of them will be located in the loaded project folder after upload, even if they
are originally located in other folders.

Removing some options enables you to reduce the size of embedded source code.

15 Target Runtime Configuration

The variable types, functions and function blocks provided by the workbench are not all
supported by every Win-GRAF runtime versions. It is therefore suggested to first upload
the target runtime configuration before compiling the application, to enable the
compiler to check for any unsupported data types. The runtime configuration list all the
supported data types and the runtime type and version number. The compiler uses this
configuration information for the compiling process to determine whether the source

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

295

code meets the specifications of the target runtime.

After the configuration has been uploaded the variable types, functions and function
blocks not supported by the runtime are marked in red (Figure 174). The compiler will
output an error if it encounters an unsupported data types.

Figure 174: Target system configuration

Procedure for uploading the configuration data of the target platform:

Step 1: Make sure the runtime is executing.
Step 2: Open the configuration dialog

The dialog can be opened in the following two ways:
1. Right click any task in the workspace and select 'Target System

Configuration...' from the popup

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

296

2. Double-click on third section of the status bar entry.

Hint: If no configuration is set, 'Default' will be displayed in the status bar.
If there is no open project, nothing will be displayed.

Step 3: Upload the configuration of the target runtime.
1. Click the 'Upload' button in the 'Select' tab.
2. In the communication window enter the IP address and port number of

the target runtime
3. Click 'OK' to start the upload process. It will take a few seconds. Once the

data has been uploaded a 'Save As' dialog pops up

4. Save the configuration as a '.cfg' format to the following 'CONFIG'
directory of the workbench:

 'C:\Users\Public\Documents\Win-GRAF Workbench\Win-GRAF Wb xx.xx\CONFIG'
The user can assign any name for the configuration file. It is best to select
a name which is related to the target system for easier identification.

5. After the file has been saved its name will be listed in the configuration
list. Configuration files from many different runtime platforms can be
added to the list.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

297

Step 4: Click the different tabs to get more information of the target system. Data
types which are not supported are indicated in red.

Tab Name Description
Select Win-GRAF preinstalled function
Description Shows detailed information about the selected Target

System Configuration according to the Select tab

Data type Shows all data types available on the selected target system.

Standard Shows all standard blocks and functions available on the
target system.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

298

OEM Shows all OEM specific blocks and functions available on the
target system.

Step 5: After selecting the target configuration from the 'Configurations' dialog and
clicking 'OK' the unsupported functions/function blocks are shown in a red
color. The compiler will generate an error if it encounters one of the
unsupported functions/function blocks or data type.

16 Basic Operations

Below are the language features for basic data manipulation:
- Variable assignment
- Bit access

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

299

- Parenthesis
- Calling a function
- Calling a function block
- Calling a sub-program
- MOVEBLOCK: Copying/moving array items
- COUNTOF: Number of items in an array
- INC: Increase a variable
- DEC: decrease a variable

Below are the language features for controlling the execution of a program:
- Labels
- Jumps
- RETURN

Below are the structured statements for controlling the execution of a program (Table
40):

Statement Description
IF Conditional execution of statements.
WHILE Repeat statements while a condition is TRUE.
REPEAT Repeat statements until a condition is TRUE.
FOR Execute iterations of statements.
CASE Switch to one of various possible statements.
EXIT Exit from a loop instruction.
WAIT Delay program execution
ON Conditional execution

Table 40: Program execution statements

16.1 Variable assignment

An assignment statement consists of a variable reference on the left-hand side, followed
by the assignment operator ':=', followed by the expression to be evaluated. The output
variable and the input expression must have the same type.

 Operator :=

The assignment statement can be used to assign
- a simple variable:

INT_1 := INT_2;

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

300

- a whole data structure (multi-element variables)
Struct_1 := Struct_2;

- a return value of a function

Example:
ST Language

//Copy IN to variable Q:
Q := IN;

//Assign the result of a complex expression
Q := (IN1 + (IN2 / IN 3)) * IN4;

//Assign a variable with the result of a
//function
result := SIN (angle);

//Assign a variable with an output parameter
// of a function block
time := MyTon.ET;

FBD Language In LD FBD languages, the 1 block is available to perform a '1 gain'

data copy.

LD Language In LD the 1 block is available to perform a '1 gain' data copy.
In LD language, the input rung (EN) enables the assignment, and the
output rung keeps the state of the input rung.
The copy is executed only if EN is TRUE.
ENO has the same value as EN.

16.2 Access to bits of an integer

You can directly specify a bit within an integer variable in expressions and diagrams,
using the following notation:

 Variable.BitNo

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

301

- Variable: is the name of an integer variable.
- BitNo: is the number of the bit in the integer. 0 always represents the less significant

bit.

Example:
//Variables 'Bool_0', 'Bool_1', 'Bool_2', 'Bool_3' are
//declared as BOOL
//Variable 'USINT_1' is declared as USINT
Bool_0 := USINT_1.0;
Bool_1 := USINT_1.1;
Bool_2 := USINT_1.2;
Bool_3 := USINT_1.3;

The variable can have one of the following data types:
- SINT, USINT, BYTE (8 bits from .0 to .7)
- INT, UINT, WORD (16 bits from .0 to .15)
- DINT, UDINT, DWORD (32 bits from .0 to 31)
- LINT (from 0 to 63)

16.3 Parenthesis

The parenthesis operator forces the evaluation order in a complex expression.

 Operator ()

Parenthesis are used in ST and IL language for changing the default evaluation order of
various operations within a complex expression.
For instance, the default evaluation of '2 * 3 + 4' expression in ST language gives a result
of 10 as '*' operator has highest priority. Changing the expression as '2 * (3 + 4)' gives a
result of 14. Parenthesis can be nested in a complex expression.

Below is the default evaluation order for ST language operations (first is highest
priority):

Precedence Operator Description
1 - NOT Unary operators
2 * / Multiply/Divide
3 + - Add/Subtract
4 < > <= >= = <> Comparisons
5 & AND Boolean And
6 OR Boolean Or
7 XOR Exclusive OR

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

302

Table 41: Operator Precedence

Example:

Q := (IN1 + (IN2 / IN 3)) * IN4;

16.4 Calling a function

A function calculates a result according to the current value of its inputs. Unlike a
function block, a function has no internal data and is not linked to declared instances. A
function has only one output: the result of the function. A function can be:
- A standard function (SHL, SIN...).
- A function written in 'C' language and embedded on the target.

ST Language To call a function block in ST, you have to enter its name, followed
by the input parameters written between parenthesis and
separated by comas. The function call may be inserted into any
complex expression. A function call can be used as an input
parameter of another function call. The following example
demonstrates a call to ODD and SEL functions:
(*
The following statement converts any odd
integer value into the nearest even integer:
The return value of the ODD function call is
being used as an input parameter for the SEL
function call
*)
iEvenVal := SEL (ODD(iValue), iValue,
iValue+1);

FBD Language
and
LD Language

To call a function block in FBD or LD languages, you just need to
insert the function in the diagram and to connect its inputs and
output.

IL Language To call a function block in IL language, you must load its first input
parameter before the call, and then use the function name as an
instruction, followed by the other input parameters, separated by
comas. The result of the function is then the current result. The
following Example demonstrates a call to ODD and SEL functions:
(* The following statement converts any odd
integer into 0: *)

Op1: LD iValue ODD SEL iValue, 0 ST iResult

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

303

Table 42: Function call syntax

16.5 Calling a function block

A function block groups an algorithm and a set of private data. It has inputs and outputs.
A function block can be:
- A standard function block (RS, TON...).
- A block written in 'C' language and embedded on the target.
- A User Defined Function Block (UDFB) written in ST, FBD, LD or IL.

To use a function block, you have to declare an instance of the block as a variable,
identified by a unique name. Each instance of a function block as its own set of private
data and can be called separately. A call to a function block instance processes the block
algorithm on the private data of the instance, using the specified input parameters.

ST Language - To call a function block in ST, you have to specify the name of
the instance, followed by the input parameters written between
parenthesis and separated by comas.

- To have access to an output parameter, use the name of the
instance followed by a dot '.' and the name of the wished
parameter.

- The following example demonstrates a call to an instance of
TON function block (MyTimer is declared as an instance of TON):

MyTimer (bTrig, t#2s);
TimerOutput := MyTimer.Q;
ElapsedTime := MyTimer.ET;

FBD Language
and
LD Language

To call a function block in FBD or LD languages, you just need to
insert the block in the diagram and to connect its inputs and
outputs. The name of the instance must be specified upon the
rectangle of the block.

IL Language To call a function block in IL language, you must use the CAL
instruction, and use a declared instance of the function block. The
instance name is the operand of the CAL instruction, followed by
the input parameters written between parenthesis and separated
by comas. Alternatively the CALC, CALCN or CALNC conditional
instructions can be used:
- CAL Calls the function block.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

304

- CALC Calls the function block if the current result is TRUE.
- CALNC Calls the function block if the current result is FALSE.
- CALCN same as CALNC.

The following Example demonstrates a call to an instance of TON
function block
(MyTimer is declared as an instance of TON):
Op1: CAL MyTimer (bTrig, t#2s)
LD MyTimer.Q
ST TimerOutput
LD MyTimer.ET
ST ElapsedTimer

Op2: LD bCond
CALC MyTimer (bTrig, t#2s) (* called only if
bCond is TRUE *)

Op3: LD bCond
CALNC MyTimer (bTrig, t#2s) (* called only
if bCond is FALSE *)

Table 43: Function block call syntax

16.6 Calling a sub-program

A sub-program is called by another program. Unlike function blocks, local variables of a
sub-program are not instantiated, and thus you do not need to declare instances. A call
to a sub-program processes the block algorithm using the specified input parameters.
Output parameters can then be accessed.

ST Language - To call a sub-program in ST, you have to specify its name,
followed by the input parameters written between parenthesis
and separated by comas.

- To have access to an output parameter, use the name of the
sub-program followed by a dot '.' and the name of the wished
parameter:

(* calls the sub-program *)
MySubProg (i1, i2);
Res1 := MySubProg.Q1;
Res2 := MySubProg.Q2;

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

305

- Alternatively, if a sub-program has one and only one output
parameter, it can be called as a function in ST language:
Res := MySubProg (i1, i2);

FBD Language
and
LD Language

To call a sub-program in FBD or LD languages, you just need to
insert the block in the diagram and to connect its inputs and
outputs.

IL Language To call a sub-program in IL language, you must use the CAL
instruction with the name of the sub-program, followed by the input
parameters written between parenthesis and separated by comas.
Alternatively the CALC, CALCN or CALNC conditional instructions can
be used:
- CAL Calls the sub-program.
- CALC Calls the sub-program if the current result is TRUE.
- CALNC Calls the sub-program if the current result is FALSE.
- CALCN same as CALNC.

Op1: CAL MySubProg (i1, i2)
LD MySubProg.Q1
ST Res1
LD MySubProg.Q2
ST Res2

Table 44: Sub-program call syntax

16.7 MOVEBLOCK - Move/Copy items of an array

The function copies a number of consecutive items starting at the index of the source
array to a position in destination array. Source and destination can be the same array. In
that case, the function avoids lost items when source and destination areas overlap.
Arrays of string are not supported by this function.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

306

Para Name Data Type Description

Input

Src ANY Array containing the source of the copy.
Can not be a string.

Dst ANY Array containing the destination of the copy.
Can not be a string

PosSrc DINT Index of the first character in SRC
PosDst DINT Index of the destination in DST
NB DINT Number of items to be copied

Output OK BOOL TRUE if successful

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
function is not available in IL Closed language.

The function copies a number (NB) of consecutive items starting at the PosSrc index in
Src array to PosDst position in Dst array. Src and Dst can be the same array. In
that case, the function avoids lost items when source and destination areas overlap.

This function checks array bounds and is always safe. The function returns TRUE if
successful. It returns FALSE if input positions and number do not fit the bounds of SRC
and DST arrays.

ST Language
OK := MOVEBLOCK (SRC, DST, PosSRS, PosDST,
NB);

FBD Language

LD Language In LD language, the operation is executed only if the input rung (EN)

is TRUE.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

307

IL Language Not supported.

16.8 CountOf - Count Items in an Array

Returns the number of items in an array.

Para Name Data Type Description
Input Arr ANY Declared array
Output Q DINT Total number of items in the array

The input must be an array and can have any data type. This function is particularly
useful to avoid writing directly the actual size of an array in a program, and thus keep
the program independent from the declaration.

ST Language
FOR i := 1 TO CountOf (MyArray) DO
 MyArray[i-1] := 0;
END_FOR;

FBD Language

LD Language In LD language, the operation is executed only if the input rung (EN)

is TRUE. The output rung (ENO) keeps the same value as the input
rung.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

308

IL Language Not supported.

Example:
Array Size
Arr1 [0..9] 10
Arr2 [0..4 , 0..9] 50

16.9 INC - Increment Numerical Variable

This function increases a numerical variable by one. For REAL data type the variable is
increased by 1.0 and for TIME data type the variable is increased by 1ms. All data types
are supported except BOOL and STRING: for these types, the output is the copy of IN.

Para Name Data Type Description

Input
@IN ANY Numerical variable (will increased after function call).

The '@' character indicates that the variable is a in
and output variable.

Output Q ANY Increased value.

When the function is called, the variable connected to the IN input is increased and
copied to output Q. The IN input must be directly connected to a variable, and cannot
be a constant or complex expression.
This function is particularly designed for ST language. It allows simplified writing as
assigning the result of the function is not mandatory.

ST Language
IN := 1;
Q := INC (IN);
(* now: IN = 2 ; Q = 2 *)

INC (IN); (* simplified call *)

FBD Language

LD Language In LD language, the operation is executed only if the input rung (EN)

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

309

is TRUE. The output rung (ENO) keeps the same value as the input
rung.

IL Language Not available.

16.10 DEC - Decrement Numerical Variable

This function decreases a numerical variable by one. For REAL data type the variable is
decreased by 1.0 and for TIME data type the variable is decreased by 1ms. All data types
are supported except BOOL and STRING: for these types, the output is the copy of IN.

Para Name Data Type Description

Input
@IN ANY Numerical variable (will decreased after function call).

The '@' character indicates that the variable is a in-
and output variable.

Output Q ANY Decreased value.

When the function is called, the variable connected to the IN input is first decreased
and then copied to output Q. The IN input must be directly connected to a variable, and
cannot be a constant or complex expression.
This function is particularly designed for ST language. It allows simplified writing as
assigning the result of the function is not mandatory.

ST Language
IN := 2;
Q := DEC (IN);
(* now: IN = 1 ; Q = 1 *)

DEC (IN); (* simplified call *)

FBD Language

LD Language In LD language, the operation is executed only if the input rung (EN)

is TRUE. The output rung (ENO) keeps the same value as the input

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

310

rung.

IL Language Not available.

16.11 Labels

Labels are used as a destination of a jump instruction in FDB, LD or IL language. Labels
and jumps cannot be used in structured ST language. A label must be represented by a
unique name, followed by a colon (':'). In FBD language, labels can be inserted anywhere
in the diagram, and are connected to nothing. In LD language, a label must identify a
rung, and is shown on the left side of the rung.

ST Language Not available.
FBD Language In this example the TON block will not be called if bEnable is

TRUE:

LD Language In this example the second rung will be skipped if IN1 is TRUE: rung.

IL Language
(* unused label - just for readability *)
Start: LD IN1

(* Jump to 'TheRest' if IN1 is TRUE *)
JMPC TheRest

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

311

LD IN2 (* these two instructions are not
executed *) ST Q2 (* if IN1 is
TRUE *)
TheRest: LD IN3 (* label used as the jump
destination *) ST Q3

16.12 Jumps

A jump to a label branches the execution of the program after the specified label. Labels
and jumps cannot be used in structured ST language. In FBD language, a jump is
represented by the >> symbol followed by the label name. The input of the >> symbol
must be connected to a valid boolean signal. The jump is performed only if the input is
TRUE. In LD language, the >> symbol, followed by the target label name, is used as a coil
at the end of a rung. The jump is performed only if the rung state is TRUE.

Attention
Backward jumps may lead to infinite loops that block the target cycle.

ST Language Not available.
FBD Language In this example the TON block will not be called if bEnable is

TRUE:

LD Language In this example the second rung will be skipped if IN1 is TRUE: rung.

IL Language Below is the meaning of possible jump instructions:
- JMP Jump always
- JMPC Jump if the current result is TRUE
- JMPNC Jump if the current result is FALSE

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

312

Start: LD IN1
 JMPC TheRest (* Jump to 'TheRest' if IN1 is TRUE *)
 LD IN2 (* these three instructions are not executed *)
 ST Q2 (* if IN1 is TRUE *)
 JMP TheEnd (* unconditional jump to 'TheEnd' *)
TheRest: LD IN3
ST Q3
TheEnd:

16.13 RETURN - Jump to the End of the POU

The RETURN statement jumps to the end of the POU and therefore provides early exit
from a function, function block or program. The program of the POU following the
RETURN statements will not be executed.

The RETURN instruction can be used inside a function and function block to exit it when
a condition has been met.
- When a RETURN statement is used inside a function, the function output variable has

to be set before the RETURN statement is executed otherwise the output value is
undefined.

- When a RETURN statement is used inside a function block, the output variables of
the function blocks has to be set before the statement is executed otherwise the
outputs may contain either the initialization values or the value set in the preceding
function block invocation.

When used within an action block of a SFC step, the RETURN statement jumps to the
end of the action block.

ST Language
IF NOT bEnable THEN
 RETURN;
END_IF;

The rest of the program will not be executed if bEnabled is FALSE.

FBD Language In FBD language, the return statement is represented by the
'<RETURN>' symbol. The input of the symbol must be connected to a
valid boolean signal. The jump is performed only if the input is TRUE.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

313

In this example the TON block will not be called if bIgnore is
TRUE:

LD Language In LD language, the '<RETURN>' symbol is used as a coil at the end
of a rung. The jump is performed only if the rung state is TRUE.

In this example the second rung will be skipped if IN1 is TRUE: rung.

IL Language Below is the meaning of possible instructions:
- RET Jump to the end always.
- RETC Jump to the end if the current result is TRUE.
- RETNC Jump to the end if the current result is FALSE.
- RETCN Same as RETNC.

Start: LD IN1
 RETC (* Jump to the end if IN1 is TRUE *)
 LD IN2 (* these instructions are not executed *)
 ST Q2 (* if IN1 is TRUE *)
 RET (* Jump to the end unconditionally *)
 LD IN3 (* these instructions are never executed *)
 ST Q3

16.14 IF - Statement

The IF statement is available in ST only. The IF statement specifies that a group of
statements following the IF line is to be executed only if the associated Boolean
expression evaluates to be true (TRUE). If the condition is false, then either no
statement is to be executed, or the statement group following the ELSE keyword (or the
ELSIF keyword if its associated Boolean condition is true) is to be executed.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

314

Both ELSIF and ELSE are optional in a IF statement. There can be several ELSIF
statements. You can use the ELSIF and ELSE keywords for multiple conditions in the
same IF statement. The ELSE statement works as a default option for your IF statement.
If all the IF and ELSIF boolean expressions are evaluated to FALSE, the statements after
the ELSE keyword will be executed.

Syntax
 IF <BOOL expression> THEN
 <statements>
 ELSIF <BOOL expression> THEN
 <statements>
 ELSE
 <statements>
 END_IF;

ST Language
(* simple condition *)
IF bCond THEN
 Q1 := IN1;
 Q2 := TRUE;
END_IF;

(* binary selection *)
IF bCond THEN
 Q1 := IN1;
 Q2 := TRUE;
ELSE
 Q1 := IN2;
 Q2 := FALSE;
END_IF;

(* enumerated conditions *)
IF bCond1 THEN
 Q1 := IN1;
ELSIF bCond2 THEN
 Q1 := IN2;
ELSIF bCond3 THEN
 Q1 := IN3;
ELSE
 Q1 := IN4;
END_IF;

The rest of the program will not be executed if bEnabled is FALSE.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

315

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.15 WHILE - Statement

The WHILE statement causes a group of statements between the DO and the
END_WHILE keyword to be executed repeatedly until the associated Boolean expression
is false. If the expression is initially false, then the group of statements is not executed at
all.

Syntax
 WHILE <BOOL expression> DO
 <statements>
 END_WHILE;

Attention
Loop instructions may lead to infinite loops that block the target cycle. Never test the
state of an input in 'While' loop as the input may not be refreshed before the next cycle.

ST Language
iMax := 10;
WHILE iPos < iMax DO
 MyArray[iPos]:= 0;
 iPos +:=1;
END_WHILE;

The group of statement will not execute if the condition
'iPos<iMax' is FALSE.

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.16 REPEAT - Statement

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

316

Similar to the WHILE statement the REPEAT statement causes a group of statements up
to the UNTIL keyword to be executed repeatedly (and at least once) until the associated
Boolean condition is true.
The difference between the WHILE and REPEAT statement:
- the REPEAT statement will execute at least once independent of the Boolean

condition
- the REPEAT statement will execute until the Boolean condition turns true
- the WHILE state the group of statement will only be executed if the Boolean

condition is true

Syntax
 REPEAT
 <statements>
 UNTIL <BOOL expression> END_REPEAT;

Attention
Loop instructions may lead to infinite loops that block the target cycle. Never test the
state of an input in this condition as the input will not be refreshed before the next
cycle.

ST Language
iPos := 0;
REPEAT
 MyArray[iPos] := 0;
 iNbCleared := iNbCleared + 1;
 iPos := iPos + 1;
UNTIL iPos = iMax END_REPEAT;

The group of statement will execute until the condition
'iPos=iMax' turns true.

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.17 FOR - Statement

The FOR loop is used to execute a group of statements between the DO and the
END_FOR keyword with a certain number of repetitions.
The FOR statement increments the control variable <variable> up or down from an

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

317

initial value <start_value> to a final value <end_value> in increments
determined by the step value <step> (this value defaults to 1).

Syntax
FOR <variable> := <start_value> TO <end_value> BY <step> DO
 <statements>
END_FOR;

- variable = DINT control variable.
- start_value = DINT expression: initial value for index.
- end_value = DINT expression: maximum allowed value for index.
- step = DINT expression: increasing step of index after each iteration (default is 1).

Remarks
- The BY <step> statement can be omitted. The default value for the step is 1.
- The <statements> are executed as long as the counter <variable> is not

greater than the <end_value>. This is checked before executing the
<statements> so that the <statements> are never executed if
<start_value> is greater than <end_value>. When <statements> are
executed, <index> is always increased by <step>.

ST Language
iArrayDim := 10;

(* resets all items of the array to 0 *)
FOR iPos := 0 TO (iArrayDim - 1) DO
 MyArray[iPos] := 0;
END_FOR;

(* set all items with odd index to 1 *)
FOR iPos := 1 TO 9 BY 2 DO
 MyArray[ipos] := 1;
END_FOR;

FBD Language Not available.
LD Language Not available.
IL Language Not available.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

318

16.18 CASE - Statement

The CASE statement executes a block of statements based on a selector value. With the
CASE instructions one can combine several conditioned instructions with the same
selector variable in one construct.

Syntax
 CASE <DINT selector> OF
 <label>:
 <statements>
 <label>:
 <statements>;
 <label>:
 <statements>;
 <label> , <label>:
 <statements>;
 <label> .. <label>:
 <statements>;
 ELSE
 <statements>
 END_CASE;

Remarks
- All enumerated values correspond to the evaluation of the DINT expression and are

possible cases in the execution of the statements.
- The statements specified after the ELSE keyword are executed if the expression

takes a value that is not enumerated in the switch.
- For each case, you must specify either

 a value, or
 a list of possible values separated by comas (',') or
 a range of values specified by a 'min .. max' interval. You must enter space

characters before and after the '..' separator.

ST Language This example checks the first prime numbers:

CASE iNumber OF
0 :
 Alarm := TRUE;
 AlarmText := '0 gives no result';
1 .. 3, 5 :

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

319

 bPrime := TRUE;
4, 6 :
 bPrime := FALSE;
ELSE
 Alarm := TRUE;
 AlarmText := 'I don't know after 6 !';
END_CASE;

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.19 EXIT - Statement

The EXIT statement is used to terminate the current loop before it has completed.
- A FOR Loop is stopped before the loop variable reaches its target value.
- A WHILE Loop is stopped before the condition becomes false.
- A REPEAT Loop is stopped before the condition becomes true.

The execution continues after the END_WHILE, END_REPEAT or END_FOR keyword or
the loop where the EXIT is. When the EXIT statement is located within nested loops, it
only exits the loop in which the EXIT is located, and control is passed to the next
statement of the outer loop. EXIT quits only one loop and cannot be used to exit at the
same time several levels of nested loops.

ST Language
(*This program searches for the first non null
item of an array:*)
iFound = -1; (* means: not found *)
FOR iPos := 0 TO (iArrayDim - 1) DO
 IF iPos <> 0 THEN
 iFound := iPos;
 EXIT;
 END_IF;
END_FOR;

For Index:= 0 To 10 Do
 If Item[Index] != 0 Then

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

320

 Exit;
 End_If;
End_For;

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.20 WAIT- Statement

The WAIT statement checks the attached Boolean expression and does the following:
- If the expression is TRUE, the program continues normally.
- If the expression is FALSE, then the execution of the program is suspended up to the

next PLC cycle. The boolean expression will be checked again during next cycles until
it becomes TRUE. The execution of other programs is not affected.

The WAIT_TIME statement suspends the execution of the program for the specified
duration. The execution of other programs is not affected.

These instructions are available in ST language only and has no correspondence in other
languages. These instructions cannot be called in a User Defined Function Block (UDFB).
The use of WAIT or WAIT_TIME in a UDFB provokes a compile error.

WAIT and WAIT_TIME instructions can be called in a sub-program. However, this may
lead to some unsafe situation if the same sub program is called from various programs.
Re-entrance is not supported by WAIT and WAIT_TIME instructions. Avoiding this
situation is the responsibility of the programmer. The compiler outputs some warning
messages if a sub-program containing a WAIT or WAIT_TIME instruction is called from
more than one program.

These instructions should not be called from ST parts of SFC programs. This makes no
sense as SFC is already a state machine. The use of WAIT or WAIT_TME in SFC or in a
sub-program called from SFC provokes a compile error.

These instructions are not available when the code is compiled through a 'C' compiler.
Using 'C' code generation with a program containing a WAIT or WAIT_TIME instruction
provokes an error during post-compiling.

These statement are extensions to the standard and are not IEC61131-3 compliant.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

321

ST Language
(* use of WAIT with different kinds of BOOL
expressions *)
WAIT BoolVariable;
WAIT (diLevel > 100) AND NOT bAlarm;

WAIT SubProgCall ();

(* use of WAIT_TIME with different kinds of
TIME expressions *)
WAIT_TIME t#2s;
WAIT_TIME TimeVariable;

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.21 ON - Statement

Statements within the ON structure are executed only when the boolean expression
rises from FALSE to TRUE. The ON instruction avoids systematic use of the R_TRIG
function block or other 'last state' flags.

The ON syntax is available in any program, sub-program or UDFB. It is available in both
T5 p-code or native code compilation modes.

This statement is an extension to the standard and is not IEC61131-3 compliant.

Syntax
 ON <BOOL expression> DO
 <statements>
 END_DO

ST Language

(* This example counts the rising edges of
variable bIN *)

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

322

ON bIN DO
 diCount := diCount + 1;
END_DO;

FBD Language Not available.
LD Language Not available.
IL Language Not available.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

323

17 Standard Function/Function Blocks
Library

Get more information about the standard function/function blocks library by entering
the function name in the search box of the workbench (Figure 175).

Figure 175: Workbench help search

17.1 Boolean Operations

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

324

Operator Block Diagram Description
AND Performs a boolean AND operation.

Performs a logical AND of all inputs.

ST Language

Q := IN1 AND IN2;
Q := IN1 & IN2 & IN3;

OR Performs a logical OR of all inputs.

ST Language
Q := IN1 OR IN2;
Q := IN1 OR IN2 OR IN3;

XOR Performs an exclusive OR of all inputs.

ST Language
Q := IN1 XOR IN2;
Q := IN1 XOR IN2 XOR IN3;

NOT Performs a boolean negation of the input.

ST Language
Q := NOT IN;
Q := NOT (IN1 OR IN2);

S Force a boolean output to TRUE
Only supported by LD Language.

R Force a boolean output to FALSE.
Only supported by LD Language.

QOR Count the number of TRUE inputs.

Table 45: Operators for managing booleans

Function Block Diagram Description
RS Reset dominant bistable

The output is unchanged when both inputs are
FALSE. When both inputs are TRUE, the output is
forced to FALSE (reset dominant).

ST Language
MyRS is declared as an instance of RS function
block:
MyRS (SET, RESET1);
Q1 := MyRS.Q1;

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

325

Function Block Diagram Description
SR Set dominant bistable.

The output is unchanged when both inputs are
FALSE. When both inputs are TRUE, the output is
forced to TRUE (set dominant).

ST Language
MySR is declared as an instance of SR function
block:
MySR (SET1, RESET);
Q1 := MySR.Q1;

R_TRIG Rising pulse detection.

ST Language
MyTrigger is declared as an instance of R_TRIG
function block:
MyTrigger (CLK);
Q := MyTrigger.Q;

F_TRIG Falling pulse detection.

ST Language
MyTrigger is declared as an instance of F_TRIG
function block:
MyTrigger (CLK);
Q := MyTrigger.Q;

SEMA Semaphore

ST Language
MySema is a declared instance of SEMA function
block:
MySema (CLAIM, RELEASE);
BUSY := MySema.BUSY;

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

326

Function Block Diagram Description
FLIPFLOP Flipflop^bistable

- The output is systematically reset to FALSE if
RST is TRUE.

- The output changes on each rising edge of the
IN input, if RST is FALSE

ST Language
MyFlipFlop is declared as an instance of FLIPFLOP
function block:
MyFlipFlop (IN, RST);
Q := MyFlipFlop.Q;

Table 46: Blocks for managing boolean signals

17.2 Arithmetic operations

Operator Block Diagram Description

+

Performs an addition of all inputs.
- All inputs and the output must have the same type.
- In FBD language, the block may have up to 16 inputs. (Set

number of inputs: Double click the function block and enter the number
of inputs in the scroll box (see description below))

- In LD language, the input rung (EN) enables the operation,
and the output rung keeps the same value as the input rung.

The addition can be used with strings. The result is the
concatenation of the input strings.

ST Language:
Q := IN1 + IN2;

(* MyString is equal to 'Hello' *)
MyString := 'He' + 'll ' + 'o';

-

Performs a subtraction of inputs
- All inputs and the output must have the same type.
- In LD language, the input rung (EN) enables the operation,

and the output rung keeps the same value as the input rung.

ST Language:
Q := IN1 - IN2;

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

327

Operator Block Diagram Description

*

Performs a multiplication of all inputs.
- All inputs and the output must have the same type.
- In FBD language, the block may have up to 16 inputs. (Set

number of inputs: Double click the function block and enter the number
of inputs in the scroll box (see description below))

- In LD language, the input rung (EN) enables the operation,
and the output rung keeps the same value as the input rung.

ST Language:
Q := IN1 * IN2;

/

Performs a division of inputs.
- All inputs and the output must have the same type.
- In LD language, the input rung (EN) enables the operation,

and the output rung keeps the same value as the input rung.

ST Language:
Q := IN1 / IN2;

-

Integer negation (unary operator)
- Performs an integer negation of the input.
- In FBD and LD language, the block NEG can be used.
- In LD language, the operation is executed only if the input

rung (EN) is TRUE. The output rung (ENO) keeps the same
value as the input rung.

- In ST language, '-' can be followed by a complex boolean
expression between parenthesis.

Truth table (examples):

IN Q
0 0
1 -1
-123 123

ST Language:
Q := -IN;
Q := - (IN1 + IN2);

Table 47: Standard arithmetic operators

Operator Block Diagram Description
MIN

Get the minimum of two values.
In/
Output

Data type

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

328

Operator Block Diagram Description
IN1 ANY
IN2 ANY
Q ANY

ST Language:
Q := MIN (IN1, IN2);

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung keeps the state of the input rung.
- The comparison is executed only if EN is TRUE.
- ENO has the same value as EN.

MAX

Get the maximum of two values
In/
Output

Data type

IN1 ANY
IN2 ANY
Q ANY

ST Language:
Q := MAX (IN1, IN2);

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung keeps the state of the input rung.
- The comparison is executed only if EN is TRUE.
- ENO has the same value as EN.

LIMIT Bounds an integer to low and high limits
- IMIN if IN < IMIN;
- IMAX if IN > IMAX;
- IN otherwise

In/
Output

Data type

IMIN DINT
IN DINT
IMAX DINT

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

329

Operator Block Diagram Description
Q ADINT

ST Language:
Q := LIMIT (IMIN, IN, IMAX);

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung keeps the state of the input rung.
- The comparison is executed only if EN is TRUE.
- ENO has the same value as EN.

MOD Calculation of modulo.
- The result of the function is -1 if the argument BASE is less

than or equal to 0.

In/
Output

Data type Description

IN1 DINT/REAL/
LREAL

Input value.

BASE DINT/REAL/
LREAL

Base of the
modulo.

Q DINT/REAL/
LREAL

Modulo: rest of
the integer
division (IN /
BASE).

ST Language:
Q := MOD (IN, BASE);

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung keeps the state of the input rung.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

330

Operator Block Diagram Description
- The comparison is executed only if EN is TRUE.
- ENO has the same value as EN.

ODD

Test if an integer is odd
In/
Output

Data type Description

IN1 DINT Input value.
Q BOOL TRUE if IN is odd.

FALSE if IN is even.

ST Language:
Q := ODD (IN);

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the function.
- The function is executed only if EN is TRUE

SetWithin Force a value when inside an interval
- The output is forced to VAL when the IN value is within

the [MIN .. MAX] interval.
- It is set to IN when outside the interval.

In/
Output

Data
type

Description

IN ANY Input value.
MIN ANY Low limit of the interval.
MAX ANY High limit of the interval.
VAL ANY Value to apply when

inside the interval.
Q ANY Result.

Truth table:
IN Q
IN < MIN IN
IN > MAX IN
MIN < IN < MAX VAL

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

331

Operator Block Diagram Description

Table 48: Standard functions for performing arithmetic operations

17.2.1 Set Number of Input Parameters

For certain functions in the library the workbench allows user to set number of function
input parameter of the block diagram:

Step 1: Drag and drop the block diagram from the 'Block' library to the program editor

Step 2: Double click the block diagram and set the number of inputs (example: 8
inputs). Confirm the setting by clicking OK.

Step 3: The '+' block diagram shows 8 inputs now. Assign variable to the new inputs

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

332

17.3 Comparison Operations

Below are the standard operators and blocks that perform comparisons:

Operator Meaning
< less than
> greater than
<= less or equal
>= greater or equal
= is equal
<> is not equal
CMP detailed comparison

Table 49: Standard comparison operators

17.3.1 Less Than (< LT)

Operator Block Diagram Description
<

Test if first input is less than second input.

In/
Output

Data
type

Description

IN1 ANY First input.
IN2 ANY Second input.
Q BOOL TRUE if IN1 < IN2.

- Both inputs must have the same type.
- Comparisons can be used with strings. In that case, the

lexical order is used for comparing the input strings. For
instance, 'ABC' is less than 'ZX' ; 'ABCD' is greater than 'ABC'.

ST Language:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

333

Operator Block Diagram Description
Q := IN1 < IN2;

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:

17.3.2 Greater Than (> GT)

Operator Block Diagram Description

>

Test if first input is greater than second input.

In/
Output

Data
type

Description

IN1 ANY First input.
IN2 ANY Second input.
Q BOOL TRUE if IN1 > IN2.

- Both inputs must have the same type.
- Comparisons can be used with strings. In that case, the

lexical order is used for comparing the input strings. For
instance, 'ABC' is less than 'ZX' ; 'ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 > IN2;

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:

17.3.3 Less Than or Equal (<= LE)

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

334

Operator Block Diagram Description

<=

Test if first input is less than or equal to second input.

In/
Output

Data
type

Description

IN1 ANY First input.
IN2 ANY Second input.
Q BOOL TRUE if IN1<= IN2.

- Both inputs must have the same type.
- Comparisons can be used with strings. In that case, the

lexical order is used for comparing the input strings. For
instance, 'ABC' is less than 'ZX' ; 'ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 <= IN2;

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:

17.3.4 Greater Than or Equal (<= LE)

Operator Block Diagram Description
>= Test if first input is greater than or equal to second input.

In/
Output

Data
type

Description

IN1 ANY First input.
IN2 ANY Second input.
Q BOOL TRUE if IN1<= IN2.

- Both inputs must have the same type.
- Comparisons can be used with strings. In that case, the

lexical order is used for comparing the input strings. For
instance, 'ABC' is less than 'ZX' ; 'ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 <= IN2;

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

335

Operator Block Diagram Description

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:

17.3.5 Equal (= EQ)

Operator Block Diagram Description

=

Test if first input is equal to second input.

In/
Output

Data
type

Description

IN1 ANY First input.
IN2 ANY Second input.
Q BOOL TRUE if IN1= IN2.

- Both inputs must have the same type.
- Comparisons can be used with strings. In that case, the

lexical order is used for comparing the input strings. For
instance, 'ABC' is less than 'ZX' ; 'ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 = IN2;

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:

17.3.6 Not Equal (<> NE)

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

336

Operator Block Diagram Description

<>

Test if first input is not equal to second input.

In/
Output

Data
type

Description

IN1 ANY First input.
IN2 ANY Second input.
Q BOOL TRUE if IN1<> IN2.

- Both inputs must have the same type.
- Comparisons can be used with strings. In that case, the

lexical order is used for comparing the input strings. For
instance, 'ABC' is less than 'ZX' ; 'ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 <> IN2;

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:

17.3.7 Detailed Comparison

Operator Block Diagram Description
CMP Function Block - Comparison with detailed outputs for integer

inputs.

In/
Output

Data
type

Description

IN1 DINT First input.
IN2 DINT Second input.
LT BOOL TRUE if IN1 < IN2.
EQ BOOL TRUE if IN1= IN2.
GT BOOL TRUE if IN1> IN2.

ST Language:
MyCMP (IN1, IN2);

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

337

Operator Block Diagram Description
bLT := MyCmp.LT;
bEQ := MyCmp.EQ;
bGT := MyCmp.GT;

17.4 Data Type Conversion Functions

For arithmetic, mathematic and comparison operations all the operands need to be of
the same data type. Use the typecasting functions (Table 50) to convert a data type.

In Win-GRAF all data type conversion has to be done explicitly as it does not support
implicit conversion of data. That means the compiler will not automatically convert a
'smaller' data type to a 'larger' data type (e.g. from INT to DINT; or from BYTE to WORD)
and it will generate an error if it encounters an expressions or assignments with a
mismatch of data types.

Function Block Diagram Description
ANY_TO_BOOL Converts the input variable into boolean

value.

ANY_TO_SINT Converts the input into a short integer (8 bit)
value.

ANY_TO_INT Converts the input into a 16 bit integer
value.

ANY_TO_DINT Convert to Long Integer (32-bit – Default)

ANY_TO_LINT Convert to Long Integer (64-bit)

ANY_TO_REAL Convert to real value (floating point)
- For BOOL input data types, the output is

0.0 or 1.0.
- For DINT input data type, the output is

the same number.
- For TIME input data types, the result is

the number of milliseconds.
- For STRING inputs, the output is the

number represented by the string, or 0.0

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

338

Function Block Diagram Description
if the string does not represent a valid
number.

ANY_TO_LREAL Converts the input into double precision real
value.
- For BOOL input data types, the output is

0.0 or 1.0.
- For DINT input data type, the output is

the same number.
- For TIME input data types, the result is

the number of milliseconds.
- For STRING inputs, the output is the

number represented by the string, or 0.0
if the string does not represent a valid
number.

ANY_TO_TIME Convert the input to Timer value
- For BOOL input data types, the output is

t#0ms or t#1ms.
- For DINT or REAL input data type, the

output is the time represented by the
input number as a number of
milliseconds.

- For STRING inputs, the output is the time
represented by the string, or t#0ms if the
string does not represent a valid time.

ANY_TO_STRING converts to character string
- For BOOL input data types, the output is

1 or 0 for TRUE and FALSE respectively.
- For DINT, REAL or TIME input data types,

the output is the string representation of
the input number.

- This is a number of milliseconds for TIME
inputs.

NUM_TO_STRING Convert Number to String.
- Can set the decimal digital number after

converting
- This function converts any numerical

value to a string. Unlike the
ANY_TO_STRING function, it allows you
to specify a wished length and a number
of digits after the decimal points.

- If WIDTH is 0, the string is formatted with
the necessary length.

- If WIDTH is greater than 0, the string is
completed with heading blank characters
in order to match the value of WIDTH.

- If WIDTH is lower than 0, the string is

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

339

Function Block Diagram Description
completed with trailing blank characters
in order to match the absolute value of
WIDTH.

- If DIGITS is lower or equal to 0, then
neither decimal part nor point are added.

- If DIGITS is greater than 0, the
corresponding number of decimal digits
are added. '0' digits are added if
necessary

- If the value is too long for the specified
width, then the string is filled with '*'
characters.

Examples
Q := NUM_TO_STRING(123.4, 8, 2);
 (* Q is ' 123.40' *)
Q := NUM_TO_STRING(123.4, -8, 2);
 (* Q is '123.40 ' *)
Q :=NUM_TO_STRING(1.333333, 0,2);
 (* Q is '1.33' *)
Q := NUM_TO_STRING(1234, 3, 0);
 (* Q is '***' *)

ATOH Convert hexadecimal string to integer.
Converts integer to string using hexadecimal
basis.

HTOA Convert integer to hexadecimal string
Converts string to integer using hexadecimal
basis.

Table 50: Typecasting function

Example:
In the following floating point calculation the DINT variable is first explicit converted to a
REAL type before the calculation is being done:
REAL_Val_1 := ANY_TO_REAL (DINT_Val_1) * 3.5 + 4.8 ;

17.5 Bit Operation

The tables below list the standard functions for executing bit operations on 8 bit to 32
bit variables.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

340

Function Block Diagram Description Diagram
SHL Shift bits of a operand to the left.

SHR Shift bits of a operand to the right.

ROL Rotate bits of a operand to the left.

ROR Rotate bits of a operand to the right.

Table 51: Bitshift operators

Function Block Diagram Description
MBSHIFT Multibyte shift / rotate

Table 52: Byte shift operator

Bitmask operators are used for bitwise operations, particularly in a bit field. Using a
mask, multiple bits in a byte, word, integer etc. can be set either on, off or inverted from
on to off (or vice versa) (Table 53).

Function Block Diagram Description
AND_MASK Performs a bit to bit AND between two integer

values

OR_MASK Performs a bit to bit OR between two integer
values.

XOR_MASK Performs a bit to bit exclusive OR between two
integer values.

NOT_MASK

Performs a bit to bit negation of an integer value.

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

341

Table 53: Bitmask operator

Function Block Diagram Description
LOBYTE Get the lowest byte of a word.

Get the less significant byte of a word.

HIBYTE Get the highest byte of a word.
Get the most significant byte of a word

LOWORD Get the lowest word of a double word.
Get the less significant word of a double word.

HIWORD

Get the highest word of a double word.
Get the most significant word of a double word.

MAKEWORD Pack bytes to a word.
Builds a word as the concatenation of two bytes.

MAKEDWORD Pack words to a double word.
Builds a double word as the concatenation of two
words.

PACK8 Pack bits in a byte.
Builds a byte with bits.

UNPACK8 Extract bits of a byte.
Structure Text example:
MyUnpack (IN);
Q0 := MyUnpack.Q0;
Q1 := MyUnpack.Q1;
Q2 := MyUnpack.Q2;
Q3 := MyUnpack.Q3;
Q4 := MyUnpack.Q4;
Q5 := MyUnpack.Q5;
Q6 := MyUnpack.Q6;
Q7 := MyUnpack.Q7;

SWAB Swap the bytes of a integer
Supported data types are INT, UINT, WORD, DINT,
UDINT and DWORD.

Table 54: Pack/unpack 8, 16 and 32 bit registers

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

342

A single bit in a 8 bit to 32 bit integer can be directly turn on or off. It is also possible to
directly check whether a certain bit in a particular bit field has been set (Table 55).

Function Block Diagram Description
SETBIT Set a bit in an integer register.

TESTBIT Test a bit of an integer register. Indicates whether
a bit at a certain position in an integer value is set
or not.

Table 55: Bit access in 8 bit to 32 bit integers

17.5.1 Examples

17.5.1.1 Extract Bits from a Byte

This section shows how to extract single bits from a BYTE, USINT and INT data type by
using the UNPACK8 function:

- Unpack one BYTE (or USINT, range: 0 to 255) to 8 Booleans by using the 'UNPACK8'
function.

In Structure Text each bit of a integer data type can be individually addressed by
adding '.' and then the bit number:
Bool_0 := USINT_1.0;
Bool_1 := USINT_1.1;

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

343

Bool_2 := USINT_1.2;
Bool_3 := USINT_1.3;
Bool_4 := USINT_1.4;
Bool_5 := USINT_1.5;
Bool_6 := USINT_1.6;
Bool_7 := USINT_1.7;

- To unpack one SINT to 8 Booleans, the data type first has to be converted into a BYTE
type by calling the 'ANY_TO_BYTE ()' function:

17.5.1.2 Pack Bits in a Byte

The 'PACK8' function extract single bits from a BYTE, USINT and INT data type:

- Use the 'PACK8' function to pack 8 Booleans into one BYTE (or USINT, range: 0 to
255):

Ladder:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

344

Structure Text:
Method 1:
USINT_1 := PACK8 (Bool_0, I Bool_1, Bool_2, Bool_3,
Bool_4, Bool_5, Bool_6, Bool_7);

Method 2:
USINT_1.0 := Bool_0;
USINT_1.1 := Bool_1;
USINT_1.2 := Bool_2;
USINT_1.3 := Bool_3;
USINT_1.4 := Bool_4;
USINT_1.5 := Bool_5;
USINT_1.6 := Bool_6;
USINT_1.7 := Bool_7;

- Pack 8 Booleans into one SINT type: The 'PACK8' function can only pack Booleans into a
USINT type, it is therefore necessary to convert the 'PACK8' output into a SINT type by
calling the 'ANY_TO_SINT' function:

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

345

ICP DAS Page Win-GRAFWorkbench User Manual
Version 1.0

346

	1 Product Overview
	1.1 Introduction

	2 Workbench and Runtime Installation
	2.1 Installing Win-GRAF Workbench
	2.2 Run Win-GRAF Workbench
	2.3 Win-GRAF Runtime Platforms

	3 Workbench
	3.1 Customize Toolbar and Menus
	3.2 Main Window
	3.3 The Workspace Window
	3.4 Program Editor
	3.5 Variable Editor
	3.6 Output Window View
	3.6.1 Build Output
	3.6.2 Cross References
	3.6.3 Task Status Output
	3.6.4 Runtime Messages
	3.6.5 Call Stack View
	3.6.6 Call Tree View
	3.6.7 Digital Sampling Trace
	3.6.8 Code Checker

	3.7 Status Bar

	4 Single-Tasking
	4.1 Create a Project
	4.2 Edit a Program
	4.3 Create a Program
	4.4 Task Configuration
	4.4.1 Task Cycle Time
	4.4.2 Program Execution Sequence

	4.5 Build/Compile Application
	4.6 Download Application
	4.7 Debugging

	5 Multi-Tasking
	5.1 Create a Project
	5.2 Create and Edit a Program
	5.3 Task Setting
	5.4 Data Sharing between Tasks
	5.5 Get System Information
	5.6 Build/Compile Application
	5.7 Download Application
	5.8 Debugging

	6 Editing Programs
	6.1 Structured Text (ST) and Instruction List (IL) Editor
	6.1.1 ST / IL Language Selection
	6.1.2 ST / IL Syntax Coloring
	6.1.3 Tooltips in the ST / IL Editor
	6.1.4 Shortcuts for ST and IL Editor

	6.2 Function Block Diagram (FDB) Editor
	6.2.1 Using the FBD toolbar
	6.2.2 Drawing FBD connection lines
	6.2.3 Selecting FBD Variables and Instances
	6.2.4 Viewing FBD Diagrams
	6.2.5 Moving or Copying FBD Objects
	6.2.6 Inserting FBD Objects on a Line
	6.2.7 Resizing FBD objects

	6.3 Ladder Diagram (LD) Editor
	6.3.1 Using the LD Toolbar
	6.3.2 Managing Rungs
	6.3.3 Contacts
	6.3.4 Coils
	6.3.5 Power Rails
	6.3.6 Calling a Function or Function Block
	6.3.7 Jumps - Labels
	6.3.8 Use of ST Expressions
	6.3.9 Comments in LD Diagrams
	6.3.10 Viewing LD diagrams
	6.3.11 Moving and Copying LD Objects

	6.4 Converting a Program to Another Language
	6.5 Some Tips
	6.5.1 Bookmarks
	6.5.2 Handling Exceptions

	7 Variable Monitoring (Debugging Tools)
	7.1 Monitoring Variable Values
	7.1.1 Inline Monitoring
	7.1.2 Monitoring in the Variable Editor

	7.2 SpyList
	7.2.1 Local SpyList
	7.2.2 Task-SpyList
	7.2.3 Multi-SpyList

	7.3 Soft Oscilloscope
	7.4 Control Panel for Debugging
	7.4.1 Create Control Panel
	7.4.2 Exporting Control Panel to X5Viewer

	7.5 Recipe Control
	7.6 Test Sequences
	7.7 Debug Message (PRINTF)
	7.8 Breakpoints - Step by Step Debugging
	7.8.1 Add a Breakpoint
	7.8.2 Example

	7.9 W5Monitoring Utility
	7.9.1 Create Monitoring Application File
	7.9.2 Running Monitoring Application

	8 Online Program Change
	8.1 Online Changes Limitations
	8.2 Using Online Change

	9 Modbus Networking
	10 Modbus Slave
	10.1 Slave Data Block Configuration
	10.1.1 Selecting Slave
	10.1.2 Define Slave Register

	10.2 Slave Type Configuration
	10.2.1 Single Data Block
	10.2.2 Multiple Data Block

	11 Modbus Master
	11.1 Modbus RTU/ASCII Master
	11.1.1 Configure Communication Interface

	12 Variables
	12.1 Create Variables
	12.1.1 Declare Variable in the Variable Editor
	12.1.2 Declare Variable as Text
	12.1.3 Declare Variable from the Program Editor

	12.2 Retain Variables
	12.2.1 Programmatically Save/Load Retain Variables

	13 Derived Data Type
	13.1 Structures
	13.1.1 Define a Structure
	13.1.2 Declare Instance of a Structure

	13.2 Enums
	13.2.1 Define a Enumerate Type
	13.2.2 Declare an Enumerate Variable

	13.3 Bit Field
	13.3.1 Define a Bit Field Type
	13.3.2 Declare Bit Field Variable

	13.4 Function and Function Block
	13.4.1 Define Function Block
	13.4.2 Define Function

	14 Backup Management
	14.1 Save Project Backup to Local PC
	14.2 Save Project to Runtime Target

	15 Target Runtime Configuration
	16 Basic Operations
	16.1 Variable assignment
	16.2 Access to bits of an integer
	16.3 Parenthesis
	16.4 Calling a function
	16.5 Calling a function block
	16.6 Calling a sub-program
	16.7 MOVEBLOCK - Move/Copy items of an array
	16.8 CountOf - Count Items in an Array
	16.9 INC - Increment Numerical Variable
	16.10 DEC - Decrement Numerical Variable
	16.11 Labels
	16.12 Jumps
	16.13 RETURN - Jump to the End of the POU
	16.14 IF - Statement
	16.15 WHILE - Statement
	16.16 REPEAT - Statement
	16.17 FOR - Statement
	16.18 CASE - Statement
	16.19 EXIT - Statement
	16.20 WAIT- Statement
	16.21 ON - Statement

	17 Standard Function/Function Blocks Library
	17.1 Boolean Operations
	17.2 Arithmetic operations
	17.2.1 Set Number of Input Parameters

	17.3 Comparison Operations
	17.3.1 Less Than (< LT)
	17.3.2 Greater Than (> GT)
	17.3.3 Less Than or Equal (<= LE)
	17.3.4 Greater Than or Equal (<= LE)
	17.3.5 Equal (= EQ)
	17.3.6 Not Equal (<> NE)
	17.3.7 Detailed Comparison

	17.4 Data Type Conversion Functions
	17.5 Bit Operation
	17.5.1 Examples

