Win-GRAF Workbench

User Manual

(Version 1.0)

\C¥
ph

All products manufactured by ICP DAS are warranted against defective materials for a
period of one year from the date of delivery to the original purchaser.

WARNING

ICP DAS assumes no liability for damages consequent to the use of this product. ICP DAS
reserves the right to change this manual at any time without notice. The information
furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility
is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of
third parties resulting from its use.

COPYRIGHT
Copyright © 2021 by ICP DAS. All rights are reserved.

TRADEMARK

Names are used for identification only and may be registered trademarks of their
respective companies.

CONTACT US

If you have any questions, please feel free to contact us via email at:
service@icpdas.com

service.icpdas@gmail.com

Revision

Revision

Date

Description

Author

1.0

09.11.2021

Initial version

M. K.

Contents

1 PRODUCT OVERVIEW. ...ttt e et e e e et e e eeae e e eenreeeenteeeeaeeeeenneeeennneeeens 8
1.1 INTRODUCGTION.uuvtiieeieetieeieeeeeitreee e eeeitteeeeeeeetaeeeeeeesaareeeeeesaaeeeseesastsreeeeeestareseseesaeassaaeeeeaeeeeeeeeeens 8

2 WORKBENCH AND RUNTIME INSTALLATION 8
2.1 INSTALLING WIN-GRAF WORKBENCH.........cccettuttteeierireeeeeeeiitreeeeeeesitereeeeeesseeseseesiaressseessesssseeees 8
2.2 RUN WIN-GRAF WORKBENCH..........ccoitttttiteeiiitreeteeeesitreeeeeeeiireeeeeesiiseresesssssssseseesinresssesssesseeseens 9
2.3 WIN-GRAF RUNTIME PLATFORMS.....ettiiiiititiiteeiiitieeeeeeeeiereeeeeesateeeeeessaseesessssnsssseesssssseesseesseeesees 9

3 WORKBENCH 10
3.1 CUSTOMIZE TOOLBAR AND MENUS.....ccceiiiiuiriieeiiiitirieeeeeiiareeeeeesiisreeeeesesseesessenisnseseeessssressssssssees 12
3.2 MAIN WINDOW......ouiiiiiiiiiiieiee ettt eeeeeeaet e e e e eeateeeeeseeataeeeesseaaaeeessesaaseeeessasaeseessssssasseessansssssnnsnns 13
33 THE WORKSPACE WINDOW.....cuiiiiiiitiiiieiiiiieeeeeeeiiieeeeeesesieeeeessesssssessesssseesssssssssssesssnssaseessseeseees 14
34 PROGRAM EDITOR.......cooiiiiiiiteteeeeeeeeee ettt et ettt e e e e e e e eeeeeeeeeeseaeesesessaaeeeeereaaes 17
3.5 A N TN 2) 0 S 21 0] N0 XSO PP URR 20
3.6 OUTPUT WINDOW VIEW.......uutiiiiiiiiiiiiieeeieiieeeeeeeeittreeeeeeeitaeeeeeeesseeeeeeeestaseseseesissseeseessssessessseersees 22
3.6, 1 BUILA QUIDUL. ..ottt ettt ettt et a et st e et et e eseenseenseeaeenseeneeas 22

3.60.2 CFOSS REICFEICES............coveeeeeveieeiee ettt ettt seete e s 23

3.6.3 TASK STATUS OQUIDUL..........c.eeeee ettt ettt ettt et ettt e taesaseeteessaeenseeeenesaeaeenens 29

3.6.4 RUNIIIME MESSAZES. ..ottt ettt ettt ettt eae e e et e teenaenteenneas 30

3.60.5 COU STACK VICW. ..ot 30

3.6.60 CALE THEO VICW.eeeeeeeeeeeeeeee e e et 31

3.6.7 Digital SAmPIING TEACE...........c.ccoemiiiriiiiiiiiicietet ettt ettt 32

3.0.8 COAC CRECKCE ... e et 37

3.7 STATUS BAR ..ottt ettt ettt e et e e e e e e tae e e e e e et e e e e e eetareeeeeeneneeneeeaeeeeeeeeeas 40

4 SINGLE-TASKING 41
4.1 CREATE A PROJECTuiiiiiiiiiii ettt e et e e e eeatee e e e e eesaaae e e e seaaaeeeseeesasseeeeeensrereees 42
4.2 EDIT A PROGRAM.......ooiiiitiiiiiiieeeeee ettt e e e et e e e e e satae e e e e senaaaeeeesensaaseeeesennsaeeeeeenn 46
43 CREATE A PROGRAM......coiitiiiiie ittt eeee e e e et e e e e eaaae e e s sesaataeeeeeeaaaaaeaaaeeaneeaeees 50
4.4 TASK CONFIGURATION......cceiiiiiieiiiieiinieieteeeteteeeeeeeeeeeeeeeeeeeesesssasssssssssssssseesseeseeeseesesesesssnnnneesesees 52
4.1 TASK CYCLE Tttt ettt 54

4.4.2 Program EXECULION SEQUENCE...............c..cccueiueaieesiieeieeeee et st et et aeeseaeeteeseaeeseesnbeeensaraeeanes 57

4.5 BUILD/COMPILE APPLICATION........ccoiuuieeireeeeteeeeeteeeeeseeeesseeeensseseeseesenseseensseseensessseennssseeeeeeeeens 62
4.6 DOWNLOAD APPLICATION......ccutttieeeiettteeeeeeeitteeeeeeieaeeeseeeesssseeeesensareesseesisreseseesnssesesessessssssnnnsnns 64
4.7 | D) 2521 5161) 0. € RS 68

5 MULTI-TASKING 71
5.1 CREATE A PROJECTciiiiiiieieiee ettt e ettt e et e e e s senaaa e e e e senaaaeesseeaaseeeessnnsrnneees 72
52 CREATE AND EDIT A PROGRAMuuttitiiiiiiiiiiiiiiiiieee e eeeeeeeeee ettt e e e e e e e e e e e e e s e sessssnassassaennes 74
53 B N S S 0. TR 78
5.4 DATA SHARING BETWEEN TASKS......cooiiuriiiiiiiitriieeeeeeiteeeeeeeeaeeeeeeeeeareeeeeeesaveseeeeeesnseeeseesssssssnsnes 82
55 GET SYSTEM INFORMATION.......ccotutrteeeieiureeeeeeiitreeeeeeeitseeeeeeesissseeeeeesssseseseesissseeesssessseesseesseeeeees 84
5.6 BUILD/COMPILE APPLICATION.......cciiuuttiitieeeteeeeeeeeeeeeeeseteseensseesesseessnsesesnssesssssesssssssssssseeeeesses 85
5.7 DOWNLOAD APPLICATION.....cuvtiiiiiiiiutteeeeeeiiteeeeeeesiueeeeeeeessseeeseesisssseseessssessseessssssseeessssressssesrsees 86
5.8 DEBUGGING.uuutiiiiiiiteeee et eee e e e e e et e e e e eeataeeeeeseataeseeseastaseeessasaaseesssasssseeseeeeeeeseesseeseee 89

6 EDITING PROGRAMS 89
6.1 STRUCTURED TEXT (ST) AND INSTRUCTION LIST (IL) EDITOR.......coceririiiiieiiiciieceicricnien 90
0.1.1 ST/ IL LaANGUAZE SELECIION.cc.ovuiiuiiiiiiiiiieieict ettt e 93

ICP DAS Page 4 Win-GRAFWorkbench User Manual

Version 1.0

9

0.1.2 ST/ IL SYREAX COLOTING.......c..oouveiieiieiieiieeie ettt ettt ettt ese e sseensesna s 93

6.1.3 TOOIIPS i1 the ST/ IL EQILOT............ccoooveiieieiieiieei ettt ettt eeae e 99
6.1.4 Shortcuts for ST Qnd IL EQILOT.............c..cc.cccoecueviieeiieeeeieeieeie et se e sae e 99
6.2 FUNCTION BLOCK DIAGRAM (FDB) EDITOR........cooitiieiiiiieiieeitecieeieesie et eeeivaee s 100
0.2.1 USING the FBD [0OIDAT.............cocciiieiiiieieeet ettt 100
6.2.2 Drawing FBD CORNECHION [INES............c.cccuieeiiiiieiieeee ettt 109
6.2.3 Selecting FBD Variables and INSIANCES...................cooeririiiiiiiriiiiiiiiteteene et 112
6.2.4 VieWing FBD DIGGFAMIS............c.cccciaiiiiiieiiiiit ettt ettt ettt ettt 114
6.2.5 Moving or COpying FBD ODBJECES.............ccocceiieiieiieieeiieieeeeie et 115
06.2.6 Inserting FBD ObBJeCts ON @ LiNe@.................cccocooueiiiiiaiiaiesiieeee et 118
0.2.7 RESIZING FBD ODJECES.......ccooeeeeeii ettt ettt ettt sttt taeseaeebaesaseenssaaaeeas 119
6.3 LADDER DIAGRAM (LD) EDITOR.......ciiiiiiiiiiiieriieeiieste et esieeeteeieesveeieessbeenseesebaeessnsneassnnnes 121
0.3.1 USING the LD TOOIDAT.............cceeiiiieieeee ettt 121
0.3.2 MANAZING RUNGS........ceeioeiieeeeee ettt ettt e 122
0.3.3 COMEACES.eeeeie ettt ettt ettt ettt e b e st h e et ettt et e bt e e anbb e e e e enbbeeeennes 124
0.3.4 COILS.c.o oottt ettt bttt eae et e enees 125
0.3.5 POWEE RAILS........cooeiiiieieee ettt ettt ettt e 126
6.3.6 Calling a Function or FUNRCHON BIOCK.................cccccoooueiiiiiiiiiiiiieeee e 126
0.3.7 JUMPS = LADEIS..........oooieiiiieeeee ettt ettt et e e et e et e e ntae e e nar e e e e nnsbaeaeanes 128
0.3.8 USC Of ST EXPFESSIONS.cooeuvevieiieeiieeeeteeeeete ettt ettt se s se s eseasaesaeenaesneennes 129
0.3.9 Comments in LD DIGQFAMIS...............cccccueiiiiaiiiieat ettt ettt aee e 130
0.3.10 VieWing LD diGQFAMS.c.cccoeoueiiiieieee ettt ettt e e e e 131
6.3.11 Moving and Copying LD OBJECES............c.ccocuiiriiiiiininiiiiieeieteet ettt 132
6.4 CONVERTING A PROGRAM TO ANOTHER LANGUAGE........ccccoctiiiiiieiinieienreieeeere e 135
6.5 SOME TIPSttt ettt sttt 137
0.5.1 BOOKIAFEKS.........c.ooiiiiiiiiiiiieiieee ettt 137
0.5.2 HANAIING EXCEPIIONS........ccov ettt ettt se et e e esabe e saeenseestaesaseensssaeeens 139
VARIABLE MONITORING (DEBUGGING TOOLS) 145
7.1 MONITORING VARIABLE VALUES......c.tectritiiirirtinienientintententetetetetentensesteneeseesessessessessesaessenses 145
701 INTINE MORTIOFITG. ..ottt ettt e e e 145
7.1.2 Monitoring in the Variable EdIfOr................ccoccioveiiiaiiiiiieieee et 146
7.2 SPY LIST ...ttt ettt ettt et b ettt st et st e e saneenane 147
7.2.0 LOCAI SPYLISL.......oooieiiiiiaiieiiee ettt ettt ettt ae et e b e et esbeesaesbeesbeeseenbeeseenseens 148
7.2.2 TASK-SPYLISL........ooeoeiieeeee ettt ettt ettt ae e be e e be b et et e st ettt teeneeeennee s 148
7.2.3 MUITT-SPYLIST.....ocoeeeeeeeeee ettt ettt ettt et e et et eenbeetaeesbeenstessbeesaensseenneeas 150
7.3 SOFT OSCILLOSCOPE.......c.ciotiieieiteiieiteteiteiteie ettt sttt st e et eaeeae s sae b saesa s s ne e 152
7.4 CONTROL PANEL FOR DEBUGGING.......cectrutruiruintiniertentintententetesenteneestestesteuessessessessessessensensesene 158
7.4.1 Create CONIrOl PANEL................ccccueoiiiieieiee sttt 165
7.4.2 Exporting Control Panel t0 XSVIEWeTccccccccvciiiiiiiiiiiiiiiiiienieeeeneeeeeetet st 170
7.5 RECIPE CONTROL......outtiiiiiieiiiiieteeit ettt ettt ettt e st st sae e sae e e s e e e e e e aeeanesaeenneennnee 173
7.6 TEST SEQUENCES........ccotttttteeeeiiteeeeeeeeiiareeeeeesiseeeseeeeitreeseeeestssseeeeeestasseeseessreseeessesasseeseesssssnssnes 179
7.7 DEBUG MESSAGE (PRINTE).....cueiiiiiieiiieieieeieeetee ettt st esesaaesnsaesnnaeennneens 184
7.8 BREAKPOINTS - STEP BY STEP DEBUGGING.......cecteuiiiiiiiniiniierenientestesiesteteteneteneenne e eneeneens 187
7.8.1 Add @ Bre@KpPOINL.................c..ccoooueiiiiieiiiiiieieeie ettt ettt en 189
7o8.2 EXAMPLE. ..ottt ettt 191
7.9 WSMONITORING UTILITY ...ceeuteuieiiniiiiieiietenientestestestestesesseseeseennententeneeueesesseesessesaessessessensensensens 194
7.9.1 Create Monitoring APpliCAtion File.................ccccccccuciiiiiiiiiiiiniiniiinineeseeee st 196
7.9.2 Running MOonitoring APPIICALION.cc.ccoeiieiiiieieee ettt 202
ONLINE PROGRAM CHANGE 204
8.1 ONLINE CHANGES LIMITATIONS......ccuiiiiiiiiiiiiiieiiiiiiee sttt e 204
8.2 USING ONLINE CHANGE.......cctiiiiiiiiiriieiieiieit ettt sttt st see et esteneese st saeeneesbeesaeesane e 206
MODBUS NETWORKING 212
ICP DAS Page 5 Win-GRAFWorkbench User Manual

Version 1.0

10 MODBUS SLAVE 213

10.1 SLAVE DATA BLOCK CONFIGURATION.........uuvviieeeeiiureeeeeeeeitneeeeeeesiseeeeeessisseeeeeeeeseseeasaeeseseseeeeees 214
T0.1.1 SELECHING SIAVE........cceoeeeieeiieeeeee ettt et te ettt e st e beesateenbaesnssaeeeenssaeeens 214
10.1.2 Define SIAVe REGISIETc.occveeuiaiieieeiieeeeie ettt ettt ae e sae e era e eae e enees 215

10.2 SLAVE TYPE CONFIGURATION.......ceoouuttetieieteeeeeeiiiteeteeeeessaeeeeesessssesesessesseseeessesssssessssssssessssssees 226
10.2.1 Single DAtA BIOCK.............c.cccoooiiiiiiieee ettt 228
10.2.2 Multiple Data BIOCK...............c.cccooiiiiieiiee ettt 231

11 MODBUS MASTER 234

11.1 MODBUS RTU/ASCIL MASTER........ccoiuiieiiteieeeeee et eeeeeeeaeeeeeeeeeeneeeeenaeeseeaeeeeenseeeeeseennnnannneeeas 235

11.1.1 Configure Communication INEEIfACE.................cc.ccoceieieiiiiieiieieeie ettt 235
12 VARIABLES 246

12.1 CREATE VARIABLES........coituttiitiieiutteeeeeeiiteeeeeeeesaeeeeeeesstaseeeseesiaseseseeestesesessassssessssessssssssssssnsnns 247
12.1.1 Declare Variable in the Variable EditOr..................eeeeeeeeeeeee ettt 248
12.1.2 Declare Variable As TOXt..........ccco.eeeeeeeeeeee e 253
12.1.3 Declare Variable from the Program EditOr.................cccccoiouiveiiiioeiieieiieeeiee e 255

12.2 RETAIN VARIABLES.ciiiiiittittitttteteeeeeteeeeeeeee et eeeesessssesassssaassseeeeeeeeseesaeseeessesesessassanseessessrnnns 262
12.2.1 Programmatically Save/Load Retain Variables..................cccccocouvieveeiiaceaiianieiieieieeeeeenne, 263

13 DERIVED DATA TYPE 264

13.1 STRUCTURES.ceettttteeeeiiuteeeeeeeeieeeeeeeesaeeeeeeeseiaeeeeeeessaaresesseaaaseeseeasareesseesstesssessensasseeseseseeeeeees 265
13.1.1 DEfiNe @ SIUCHUFC.c.oooveeeeeiieiiecieeiieeie ettt ettt eb ettt sbe et e ets et enseeense s 265
13.1.2 Declare InStance Of @ STUCHUFE.c.ccccoceiieiiieee ettt 269

13.2 ENUMS e et e ettt e e e et e e e e s eeatae e e e e seaaaeeeeseaataeeeesaeaateeeeaaaesaeeranraes 271
13.2.1 Define a ENUMEIALE TYDC..........c.cccueuieieiieiee ettt 271
13.2.2 Declare an Enumerate Variable.............cccoc..eeeeeeeeeeeeeee e 274

13.3 BIT FIELD ...ttt ettt ettt e et e e e et e e e eetaa e e e e eeeatreeeeeensareeeeeeeeeeeas 275
13.3.1 Define a Bit Field TYPe............ccoccvecuiiiiiiiiiie ettt 276
13.3.2 Declare Bit Field VAVIADIE..................cc.ooo oo 278

13.4 FUNCTION AND FUNCTION BLOCKcccciiiiiiiiieiiiiieiee et eeeiteee e eeeaveeeeeeeeaveeseaassaasasasaasnnnes 279
13.4.1 Define FUNCIION BIOCK.ccoccooiiiiiiiiieet et 282
13.4.2 DEfiNe FUNCIION. ..ottt ettt ettt e et e et e e e e 291

14 BACKUP MANAGEMENT 294
14.1 SAVE PROJECT BACKUP TO LOCAL PC......oeeeeeeeeeeeeee e 294
14.2 SAVE PROJECT TO RUNTIME TARGET.......ccociiiiiuiiieeeeiiiireeeeeeeeieeeeeeeeeiaeeeeseeesaeeeeeeesesveseeesenssnsnns 295

15 TARGET RUNTIME CONFIGURATION 296

16 BASIC OPERATIONS 300

16.1 VARIABLE ASSIGNMENTc0iiiiiiiiteeeeeeiiteeeeeeieiteeeeeeestaeeeseeessreeseeesisesseeesnstssssessenissreessenssreeeens 301

16.2 ACCESS TO BITS OF AN INTEGER........cuuttiiiiiitiiiieeieiieeeeeeeesteeeeeeesaseeeesssssseeeesssssseseessssasseeesssnnns 302

16.3 PARENTHESIS. ...ceeetieutteeeeeeeettee e e e e eete et e e e ettt e e e e eeeaateeeeeseaaaaeseeseesaaseeessensaeeeessesasssesessnsssssssssnssnnnnnn 303

16.4 CALLING A FUNCTIONctttiiitiiieeeeeeeeeeeeeeeeeeesessaasaaseeeeseeeeeeeeeeeesaeeesesesessssssssssssssssresssseeeeeeeesessarnns 303

16.5 (OF:N D 51\ (€N 2161 (@4 5 () [23 510 1) RPN 304

16.6 CALLING A SUB-PROGRAM.cceotturieeeeeitureeeeeesieeeeeeeetisseseeeeesseeseeeestsseeeseessssseseesisssesseensssees 306

16.7 MOVEBLOCK - MOVE/COPY ITEMS OF AN ARRAYcuveeiiurieeereeeeieeeeeeeeeeineeeeeeeeeeennnnneeeeeens 307

16.8 COUNTOF - COUNT ITEMS IN AN ARRAYcoeiuuriiieeeiiieeeeeeieniteeeeeeeeisreeeeeesssseeseessnssasssssssssssnannns 308

16.9 INC - INCREMENT NUMERICAL VARIABLE........cuuvtieiiiiitieieeeeeiireeeeeeeeieeeeeeeesiaeeeeeeeeeeessessssssnnnns 309

16.10 DEC - DECREMENT NUMERICAL VARIABLE........ccceituuttiitiiitieieeeieiaeeeeeeeesaeeesesssinneeeeeseeeseesenees 310

Y B T 07N 23 2) 5Tt 311

LO.12 JUMPS...eeiie ettt ettt et et e e e ettt e e s e et e e e e eseaat et e eeseantateeeeesnaateeesenarateeeesanaaeeessennanaaes 312

16.13 RETURN - JUMP TO THE END OF THE POU........cccoiiiiiieeeeeeeeeeeeee e 313

L16.14 IF = STATEMENTccoiitutiieeieittrieeeeeseteeeeeeeeiaeeeeeeeetareeeeeesaseeeeeesasteeeeeeeessssseeeeestrreeeeenssreeeeeennares 315

ICP DAS Page 6 Win-GRAFWorkbench User Manual

Version 1.0

16.15 WHILE = STATEMENTcciitutttieeeiitteeeeeeeiteeeeeeeeateeeeeeesiareeeeeeeesseseeeseesssssseseesisreseeeeaeeeaaeaseeaeeees 316

16.16 REPEAT - STATEMENT......ocoiiiiiiiitiieeeeiireeeeeeeeitteeeeeeeeaaeeeeeesitaeeeeeeeeetseeeeeeeessseseeeesisseesessssrernnes 317
16.17 FOR = STATEMENToiiiiiiiieiieeeeeteeeeeeeeateeeeeeeeteeeeeeeesaeeeeseesaaseseseasaresessesstaseeesaeeeeeeeeeaseeeeeees 318
16.18 CASE = STATEMENTcoiiiiiiiitiieeeeittreeeeeeetteeeeeeeetereeeesesaeeeeeeesiareeeeeessaseseeseasseseesssessnseesssesnees 319
16.19 EXIT = STATEMENToiiiiiiutetieeieiteeeeeeeeeieteeeeeeseteeeeessesssaeeessessaseesssssssasesessessaseesssassaseeseeessesssnes 320
16.20 W AIT - STATEMENTciiiiuttiieeieieeeeeeeeetteeeeeeeeaeeeeeeestateeeseeseataeeeeesasasesesssssaseesssassseseessnsrennnes 321
TO.21 ON = STATEMENTuuuieteieieieeeeeeeeeeeeeeeeeeeeeesesessssaaaasaasseerteeeteeeeasessessssessssssssssassnnsssessssnnneeeees 322
17 STANDARD FUNCTION/FUNCTION BLOCKS LIBRARY 324
17.1 BOOLEAN OPERATIONS......ccceiiittetieeeeeitreeeeeeeiitreeeeeesiseeseeesessesseeeestnresesenssssseseesissessessssssseeeeens 324
17.2 ARITHMETIC OPERATIONS......uuviieieeiiureeeeeeiiteeeeeeeeitreeeeeeesiareeeseesissseeeeeesisseseseessrssesessessreeeseneeens 327
17.2.1 Set Number Of INDUL PAFAIELETS................c..cc.coveeeeereieeireeiesieeieeieese et ese s sse e sseeaseae s enes 332
17.3 COMPARISON OPERATIONS.....uuvviiiiiiiiieeeeeeeiitereeeeeeiareeeeeessreseeeeeesssesessessssesseessssssesesssssssssssssnes 333
17.3.1 LSS TRAN (< LT)..oooeveiiiiiieeee ettt ettt ettt e e sbaesaae e s ntbeaeeenasaeeeenens 333
17.3.2 GPeater TRAN (3 GT)..ccooeceeeeiieeiieeeeee ettt ettt b et e be e s taeeasteeeensbaaaenaes 334
17.3.3 Less Than or EQUAL (K= LE)........c.cccooioiiiiiie ettt 334
17.3.4 Greater Than or EQUAL (<= LE)........ccccoooi oottt 335
17.3.5 EQUAL (5 EQ).coonieieeie ettt ettt ettt et et 336
17.3.6 NOt EGUAL (S NE)......ccoiiiiieeieeeeee ettt sttt be e e nee e e 336
17.3.7 Det@iled COMPATISON..........cc.oeeeeeieiiieeeeeiieeiieeieeettesteeteesaeesteesibeasaesaaeeseessaesnseessseesnsssaeens 337
17.4 DATA TYPE CONVERSION FUNCTIONS.....outtiiiiiiiiiiieeieiiteeeeeeecieeeeeeeeesteeeeeeeesaaeeeeeeeessssssssssnnnsnns 338
17.5 J 23 0] 3 25Ny U 6] PR 340
L7.5.1 EXAMPLES. ..ottt ettt ettt sttt sttt et e s bt et e bt e e eb et ebe et eaee bt eaeeentees 343
ICP DAS Page 7 Win-GRAFWorkbench User Manual

Version 1.0

1 Product Overview

1.1 Introduction

Win-GRAF Workbench is the Soft PLC development environment provided by ICPDAS.
Win-GRAF supports the five programming languages as defined by the IEC 61 131-3
standard. The workbench allows multitasking programming with priority settings, PLC
application program download to the target runtime and online debugging by displaying
runtime parameter values directly in the source code of the programming editor. HMI
software provided by ICPDAS such as elLogger and Indusoft has been integrated into to
the workbench. All standard Modbus protocols (TCP, RTU, ASCII) are supported. In
addition real-time EtherCAT and PLCopen defined motion control is supported when
using the runtime together with the EtherCAT master cards ECAT-M801/e-M901 of
ICPDAS.

This manual describes the key features of the Win-GRAF workbench. Basic knowledge
of the Soft PLC concept and its programming language is a prerequisite.

2 Workbench and Runtime Installation

2.1 Installing Win-GRAF Workbench

The Workbench has to be installed on a Windows PC. Before installation make sure that
your PC meets the following requirements:

- Operation system: Windows 7, Windows 8, Windows 10 (32-bits or 64-bits)

- RAM: 1 GB minimum (Recommended: 2 GB or more)

- Available hard-disk space: 200 MB minimum

Installation Steps:
» Download the workbench installation file from the ICPDAS website.
- Website: https://www.icpdas.com/
- Enter the keyword 'Win-GRAF' into the search box and select 'Win-GRAF
workbench' from the drop list.
» Double-click the 'Win-GRAF_Workbench_xx.xx_Setup.exe' setup execution file
and follow the execution steps.

ICP DAS Page 8 Win-GRAFWorkbench User Manual
Version 1.0

2.2 Run Win-GRAF Workbench

After the installation process has successfully been completed the workbench is ready to
be started by clicking the 'Win-GRAF Workbench xx.xx' in the start menu. Before running
the Win-GRAF workbench make sure the USB license key is plugged into your PC
otherwise the workbench will run in demo mode. A PLC program which has been
compiled by the demo workbench version will only run for about fifteen minutes before
it will be terminate by the runtime. If the workbench has been started before the USB
dongle key has been inserted then it needs to be restarted in order to run the fully
licensed version.

2.3 Win-GRAF Runtime Platforms

ICPDAS provide a variety of Soft PLC hardware platforms:

Dual PAC Redundant System: RPAC-2658M
Win-GRAF Based ViewPAC: VP-x238-CE7, VP-x208-CE7
Win-GRAF Based PAC: WP-9x28-CE7, WP-8x28-CE7, WP-5238-CE7
EtherCAT Motion Controller: EMP-9xx8-xx
EtherCAT motion control on a standard Windows PC:
] Runtime has to be installed on a the PC and a the EtherCAT master card has to
be plugged into the PCle slot.
] EtherCAT master card: ECAT-M801-xx

ICP DAS Page 9 Win-GRAFWorkbench User Manual
Version 1.0

3 Workbench

The Win-GRAF Workbench is used for configuration, programming, and debugging. The
workbench supports all standard soft PLC programming languages such as Structure
Text, Function Blocks, Ladder, Instruction List and Sequential Function Charts. The
workbench supports cold restart, hot restart and on-line changes. Multitasking
programming with task priority and cycle time setting is possible. Tools are provided for
event based communication between different Win-GRAF runtimes. The event are time
based.

HMI communication interfaces for Indusoft and eLogger (ICPDAS developedHMI) are
part of the workbench tools. Programming interfaces for c++, c#, LabVIEW enables data
exchange between runtime and third party software.

The workbench include standard Modbus TCP/IP, RTU and ACSII protocols. Real-time
EtherCAT communication and PLCopen defined motion function blocks are supported by
the ECAT-801 PCle card and EMP-9xx8-xx series. Separated manuals are provided for
PLCopen, EtherCAT and OPC UA server.

Programming, download and debugging of application programs is done remotely via
Ethernet TCP/IP.

The Win-GRAF workbench is a licensed software tool which requires a USB dongle on
your Windows PC.

The main user interface (Ul) of the Win-GRAF workbench is shown below (Figure 1).

W Win-GRAF 9.3.0 - DEMO.WSL

= |5 |-

File Edit View Insert Project Tools
| MiE & %he XX o
Workspace

4 [E Main task
4 Programs

Programs

) MyProg (“My first progran)
B MyTask

% Fieldbus Configurations tPerio DINT 3
g Binding Configuration bFast BOOL ,/
€ Profiles Blink1 blink
#H vos 1 bOut BOOL |
() Variables 4 PRI »
4 3 Taske [«]
4 [Programs 5 @ g
) MyTaske S {Used) =
) MyTest d Advanced @
4 Fieldbus Configurations L Adthmetic
Binding Configuration D Arays
© Profiles . Booleans
i yos s Clock J
.3 ;:{{?'abl% BREREYY ot Defne ENUM

& Fieldbus Configurations

¥ Binding Configuration »[Location | Status [Type: |
€ Frafiles bd
108 @
(el Variables
4 [F Taskd
. Sml‘lilﬂms] - Build Cross references Calltree Runtime Call stack Digital sampling trace Prommpt

Window Help
| @ | Fepdemo &Y F S| @'adaA
\Users\Public\Documents) RAF Workbench\Win-GRAF Wb 9.3\Samples\FBDdemd: PControl [L%
5= Donte program if bCommand is FALSE 0¥ Name [Typs [Di_ [Atlrib

[l PControl (*the main program™)jgg
4 @ Global variables
bCommand BOOL

¢ RETURN >

FBDdemo - 127.0.0.1:1100

cady

| Default | Variables: Froject=5, Group=0 OffLine_127.0.0.1:1100 115x22 | 0,0

Figure 1: Win-GRAF workbench Ul

The interface consists of the following parts:

Step 1: Workspace window:
This window list the following items:
= Tasks supported by the runtime in a tree. For each task several programs
can be added,
= Access to the Fieldbus selection and configuration interface. The user
interfaces for the HMI and shared memory are found in the fieldbus
section
= Access to the I/O configuration interfaces
= Access to the variable editor window
= Access to user defined PLC libraries and data types
= Event driven data exchange between two PLC runtime configured and a
communication interface with a HMI created.
Step 2: Program editor window:
Here PLC programs and modules are created and edited. The program has to
be edited in one of the five IEC61131 defined languages.
Step 3: Variable editor window:
PLC variables has to be declared in the editor. Global and local defined
variables and function block instances are displayed in the list. For each
variable the name, data type, dimension, scope, attribute, etc. has to be
entered.
Step 4: Block window:
= Library: List all the standard IEC function and function blocks. In addition
function for Ethernet and Modbus communication are available. Special
function blocks for ICPDAS device are part of the library, e.g. PLCopen
defined functions.
ICP DAS Page 11 Win-GRAFWorkbench User Manual

Version 1.0

= Spylist: Enables a quick dynamic view on variables during debugging.
Hint: In the Global Spylist, via the column headers, you can search for
defined contents or sort the list entries ascending or descending.
= ENUM: List of user defined enumerated data types.
= Graphics: Lists of all available kinds of graphic objects.
Step 5: Output window:
Shows the compiler messages and if connected to the runtime all the messages
generated by the runtime and the state of each task.
Step 6: Status bar:
At the bottom of the workspace is a bar, where you get additional information.
The content depends on the selected area.

3.1 Customize Toolbar and Menus

Via the configuration dialog (Figure 2) the visible toolbar and the menus commands are
selected.

Wfa Customize [Full] ﬁ

Configuration
Toolbar Menusl Feature Set
Available: Used:
4 File & >3 Editthe current selection - Separator
Sewve Project List As —Separator—
B3 Sawe ProjectList To Zip = B S=vethe active document
B Sawe Project List To Zip And Mail B¥ Check syntax ve
& Lock/Unlock Project —Separator— Farm
i Mew Project List & Print document
B3 Open Project List —Separator—
Ej Close Project List X Cutthe selection and put it on the Clipboard
B Add New Project [f1 Copythe selection and putit an the Clighoard
B Add Existing Project From Disk 2 Insert Cliphoard contents
Bl Add Existing Praject Fram Zip X Delete the selection L
B Save project as 3 Reset Contents I
7l Save projectto zip file —Separator—
B Save projectto zip and send it by mail i Insertvariable
0 Change project description —Separator—
H Remowve Project ¥ Undo the lastaction
By Duplicate Project ™ Redo the previoushy undone action
Create new folder —Separator—
{1 Create new program Active Project
G Create new list W Open startup project /0s
&8 Create new recipe iz Openfieldbus configuration of startup project
& Create new graphics %4 Open binding configuration of startup project
il Insertnew Soft Scope € Open startup project profiles
2bt Ingert New String Table (ol Open startup projectvariables
I B8 Insert New Signals —Separator— I
=9 Insert New Screen 52 Build all projects -
I 0K] I Cancel]
ICP DAS Page 12 Win-GRAFWorkbench User Manual

Version 1.0

Figure 2: Toolbar and menu configuration window

The configuration dialog is opened by double clicking the 'Full' section of the status bar
(Figure 3)

File View Tools Window Help

| WE = YO XX 2S5 H1EMEe F S| F'=A
Workspace

Double click the
"Full" section of

the status bar

Ready

. — - -

Figure 3: Open the toolbar and menu configuration dialog

3.2 Main Window

In the 'Main window' several documents can be opened at the same time. Use the tab
control at the bottom of the area to display a document.

[% X
i 15 -
a 16 //uivarl := flgvarl; (...)

Then 20 i

— 21 divarl.0 := flgVarl;

= 22 divarl.l := flgVar2; E
= 23 divarl.2 := flgvar3; N
b1l 24 divarl.3 := flgVard;

o 25 divarl.4 := flgvVar5s;

- 26 Click on the tab to

= 27 display a document

= 28 B IF flghActive = TRUE THEN

= 29 | uivarl := uivarl +1; -
|

£ 4 b M | MainTask - Progl MainTask - Proge bainTask - Prog3 MainTask - ProgLD

Figure 4: A separate tab is being created for each open document

Use the %X button in the title bar to close the active document.

The variable editor and document windows in the middle area can be maximized by
clicking the B ¥ button or double-click in their title bar.

ICP DAS Page 13 Win-GRAFWorkbench User Manual
Version 1.0

When several documents are open in the middle area, you can lock one of them at the
top or on the left of the area. For that, right click on the corresponding tab and select
'‘Lock’. The same menu enables you at any time to unlock the document or lock another
one:

kK <« » | MainTask-Progl MainTask - Frog? tainTask - Frog3 tainTask - FrogLD
Build Lock (Top)
Lock (Left)

Select Open Document in Workspace

B3 Open in Separate Window

Close
0 Close All
Close Others

Figure 5: Lock the tab position of a document

3.3 The Workspace Window

The tasks name and it associated programs, fieldbus configuration, Spylist and global
variables are shown in the workspace window in the left-hand window of the
Workbench. The content of the items listed in the workspace are shown in the main
window by double clicking the item. Figure 6 shows the general task items for single
and multitask items.

ICP DAS Page 14 Win-GRAFWorkbench User Manual
Version 1.0

Workspace
4 [Z] Main task
4 Programs
Progl
[Progz
[@ Prog3
[ProgLD
#s Fieldbus Configurations
%1% Binding Configuration
i vos
i Variables
4[5 Taske
Frograms
=& Fieldbus Configurations
#1§ Binding Configuration
i vos
Lui Variables
4 [3] Task3
Frograms
=& Fieldbus Configurations
%1% Binding Configuration
i vos
Lei Wariables
4 5] Taskd
Programs
#s Fieldbus Configurations
%1% Binding Configuration

Workspace
4 3 myProject
I Exception programs
4 Programs
hdain
P Watch (for debugging)
B Soft Scope

BH Initial wvalues

%i% Binding Configuration
£ Profiles

§q Global defines

(=1 Variahles

b E Types
1 yos (Al Projects)
(ol Wariables
b 3 Library
(Al Frojects)

Figure 6: Workspace window with the task: multitask (left) and single task (right)

New items is added to the workspace window by right clicking the task name and
selecting 'Insert new items..."' from the popup menu.

ICP DAS

Page 15

Win-GRAFWorkbench User Manual
Version 1.0

Workspace |
y @
P Program
“E Progi Al QOnline
B Proge "= Simulate
“B Prog3
) ProgLD Insert New Folder
Fisldbus Confl 3 Insert New Program...
3 Binding Config

o =1 Insert HMI Device...
5

{2 Variahles Shortcuts 5
4 I3 Taske Insert New tem..

Programs
% Fieldbus Confi
3 Binding Config) Project Description...
i yos & Lock Project
(af Variahles
4 [3} Task3

Programs & Cucle...
% Fieldbus Confi

= Drint Project...

@ Compare Project with...

[Tasks...
Binding Config
i os [E Call Tree
{2} Wariahles Target System Configuration...
4 B Teskd Libraries...

[

Set as Starfup Project

Update Tasks with Library

Settings...

v | Alphanumeric Sorting

Win Insert New Item

. W - ..

Categories:

Programs
Watch
Resources
Embedded HMI
Shortcuts
Others

Available Ttems:

E Program

[# sFc program

[E) Free Form SFC Program
[FeD program

[LD program

ST program

[#) sFC UDFa
[] Free Form SFC UDFB @
[@ FBD UDFB

[Lp uDFe

E sT uprs

[@ FBD Sub-Program
[LD Sub-Program
E ST Sub-Program
&a Spylist

B Recipe

£ Graphics

B soft Scope

EP Test sequence
ze StringTable

= signals

[=4 Embedded HMI
[=1 Screen

[=3 Screen Mask

»

m

-

MNext

Cancel]

Figure 7: Adding new items to the workspace window

For each task the following items are available:

Programs

Recipe

Signals

Soft Scope

Spy

String Tables

Fieldbus Configurations
Binding Configurations
Profiles

Global defines
Variables

Types

The project workspace is stored in a file with the format "W5L'. It basically stores the list

of task folders and some configuration data. The workbench creates for each task a

separated folder for storing the program source code, Fieldbus configuration, 10

S

ettings, etc.

ICP DAS

Page 16

Win-GRAFWorkbench User Manual
Version 1.0

B A Text = Name

g | Testl I MainTask
= b Library | Taskd
-} MainTask I Library
B). Task? . Task2
B). Task3 | Task3
B~} Task4 I Testl_Global
------ | Testl_Global | Testl.arc

| Testl.wsl

Figure 8: Project folder

Hint: It is possible, to copy items from task to another task within the workspace. This
can be done by either selecting the copy command from the menu bar entries, using the
shortcuts CTRL+C and CTRL+V or via drag & drop.

3.4 Program Editor

The programming environment provide editors for the following Soft PLC languages:
* Sequential Function Chart (SFC)

* Function Block Diagram (FBD)

* Ladder Diagram (LD)

* Structure Text (ST) and Instruction List (IL)

ICP DAS Page 17 Win-GRAFWorkbench User Manual
Version 1.0

pinTask WEMEe L B=FA
| B X
o 24 divarl.3 := flgVar4; - |7 Name | Type
i1 25 divarl.4 := flgvar5; flgLoad BOOL =
fen 26 IsLoaded BOOL
— 21 _ figActive BOOL =
§ pommmeeemmnn | G o
w30 -m I vz ONT ~
g i 4 |1| [
= 33 © IF uivarl > 1000 THEN " = Advansed i
= 34 | uivarl := 0; -1 Arithmetic il
= 35 - END IF; B Arrays =

36 3 Boaleans B

37 Inst ACTIVERTSWITCH. bOK B Clock

3? b Comparisons

i;‘ 3 Conversions

) I Counters

4l - Files i

o |E| s Fublic

Figure 9: Program editor for Structure Text

Variables, function blocks and definitions can be added to the editor via drag and drop
as shown in the following examples:
* Drag a variable from the variable list to the program to insert it.

24 divarl.3 := flgVar4; ~ ¥ Hame | Type

25 divarl.4 := flgVarb; figVar2 BOOL

26 dfVal LREAL

- . ~ fvall REAL

28 B IF gRctive I T - strName STRING(255)

28 | ' BB R iVar UDINT

30 - END IE; =

11 - Drag & Drop I

o 4 m

Figure 10: Drag variable from the variable editor to the program editor
* Drag a definition to the program to insert its name.

24 divarl.3 := flgVar4; ~ I¥| Name | Type

25 divarl.4 := flgvVars: figvar2 BOOL

26 dfVal LREAL

=/ . fvall REAL

28 B IF flgActive = TRUE THEN <[P

28 | uivarl := E , —

L

30 - END IF; E [Define . | Description

31 }-,,_§\|_ Local Defines

32 ‘\\ b _DEFINE_1

33 E IF uivarl > 1000 Drag & Drop MY_DEFINE_2

34 | uivarl := 0; tv_DEFINE_3

I b Publicvariables [RGLY, ENUM
ICP DAS Page 18 Win-GRAFWorkbench User Manual

Version 1.0

Figure 11: Drag the definition name from the 'Define’ list to the program editor

Drag a block in the program to insert it.

Drag & Drop

i’
&
I+

-

277

m b
Figure 12: Drag function from the 'Blocks’ list to the program editor

Drag a function block to the variable list to declare an instance.

Y| Name 4 |Type
4 [Prog1 ‘i
figActive BOOL ‘ = ‘
flgLoad BOOL B

flgSave BOOL

Inst MBMASTERRTU MBMasterRTU

Inst MC_MOVEABSOLUTE MC_MoveASplute ~
< | 1 | P

HYSTERACC P*accumulated hysteresys®) A\ -
INTEGRAL (*Integral signal®)

LIFO *'Lastin / First out" stack™

LIt_ALRM “Alarm on limits™) Py
MBMASTERRTU (*WMODBUS Master BT |f' |
MBMASTERTCF *MODBELUS Master TCF)
T+ MBSLAVEIDENT (*Set MODBUS Sls
MBSLAVELASTRED
MBESLAVERTU *MODBUS Slave RTU (serial®) -

Drag & Drop

Define

ahles

4« » | Blocks Fublic v EMUN
Figure 13: Drag function block from the 'Blocks’ list to the variable editor

Drag a variable from the program or from the variable list to the spy list.

ICP DAS Page 19

& ("Boolean AND*) =
+ (*Addition™)
BHAGS (absoluo v |
T+ COUNTOF *Number...

1t DEC (*Decrease®)

Public

Win-GRAFWorkbench User Manual

Version 1.0

[]
-1 & Ln

divarl.4 := flgVars; | Name ['alue | Type

flySawe BOOL
- mmm=m===—a_] figload BOOL
28 B IF flgActive.==TRUE THEN ~A v UDINT
- " -
29 | := MY DEFINE 2;
30 - END IF;
31 Drag & Drop
32
33 B IF uivarl > 1000 THEN
34 | uivarl := 0; - 4| 1] | p

m :
Figure 14:Drag variable from the program editor to the 'SpyList'

3.5 Variable Editor

Variables are declared in the top/right area of the Workbench main window. The
variable editor is a grid tool that enables you to declare all variables of the application.

Variables in the editor are sorted by groups:

* Global variables.

* 'Retain' non volatile global variables.

* 1/0 variables (each I/O device is a group).

* variables local to a program (including in and out parameters in case of a UDFB).

Each group is marked with a gray header in the variable list. The arrow icons EHE on the
left side of each group header can be used to expand or collapse the group:

| Name & |Type | Dirn., |Public |Attib. | Initvalue

4 (@ Global variables

AxisRef lib:AXIS_REF [0..5] O

CardNo UINT O UINT#1
IsAxisAssigned BOOL] False

OpMode BOOL O FALSE
PowerEnable BOOL]

SerialNo lib:EM_CARD_SERIAL_NO O

i RETAIN variables
[ffff

4 [Init

AbsPos LREAL LREAL#0
AccDecTime UINT UINT#999
AxesGroup lib:AXES_GROUP_REF

AxisArray UINT [0.9] UINT#1, UINT#2 UINT.
AxisPosition LREAL

AxisStop BOOL [0..2] FALSE
AxisVelocity LREAL LREAL#1000

bFlag BOOL FALSE

Bool1 BOOL

Bool2 BOOL FALSE

BufferMode MC_BUFFER_MODE mecBuffered
CycleTime EM_CYCLE_TIME CYCLE_TIME_1MS
dfHomeAcceleration LREAL LREAL#100

ICP DAS Page 20 Win-GRAFWorkbench User Manual

Version 1.0

Figure 15: Variable editor

Double-click the header line enables you to sort, show or hide columns, and to apply a
filter for each column. Filter is described as a text string that may contain '?' and "*' wild
chars.

Each variable is described with:

a name

a data type and a dimension

an attribute
an initial value

a tag and a description text

OEM defined properties
a user group
The user group enables logical sorting of variables in the grid.

Columns of the variable editor can be rearranged or be set visible/invisible by double
clicking the Y symbol in the editor or selecting the 'View\Columns...' command from the
dropdown menu (Figure 16).

Arrange columns

X
Columns... | visible |width | Filter oK
Mame 100
Type 131
Dir. 54
Fublic 73
Adtrib. 75 tove Up
Syb. 82
Initvalue g6 hEEElo]
User Group 110
Descrigtian B00
Yalue O 7
Fraperties OO 100

Figure 16: Variable editor column setting

The Output window contains the following tabs:

3.6 Output Window View

Build

Cross references

ICP DAS

Page 21

Win-GRAFWorkbench User Manual
Version 1.0

* Calltree

* Runtime

* (Call stack

* Breakpoints

* Digital sampling trace

* Prompt (not supported)
* HMI (not supported)

* Code Checker

Build

< * | Build ® =) Call tree

Call stack Breakpaints Dig

Figure 17: Output window

3.6.1 Build Output

ampling trace Frampt HMI Code Checker

The compiler reports messages in the build output window. If compiling errors occur,
just double-click on a error line in the output window to open the position in the

program code where the error occurred.

i 1 | uvar | 1= uVar +1;
it 2 diVar1Wsg REGPERGET('RegDintl', -1
. ~
!TFHEN 3 . ".\
— 4 uivarl := ulﬂ?a£l +1;
j 2 \‘
= 6 [IF flgSave = trus Then
i1 71 IsSaved := F_‘SAVERETAIN(Save Pat
a | flgSave := fa_l‘}se;
=5 9 . END IF; i
L - - [}
= 10]
= < [u] / ;
< <« » ¥ MainTask - Progl iny - Global defines MainTa
Build ,f
Pragl Double click error to
|Prog1: {17 uar: Unknown identifier jump to the errorin
Pragl: (1): = MNew statement expectad the source code
Frogl: (2): divarl: Unknown identifier

Call tree Buntime

Figure 18: Compiling error messages in the output window

ICP DAS Page 22

Win-GRAFWorkbench User Manual
Version 1.0

3.6.2 Cross References

The Cross reference view allows the user to select and display one of the following

information:

* Find or replace names, variables, etc.

* List unused items: It list declared variables and function blocks instance which has
been declared but are not being used by the program

* List multiple variable assignments

Cross references
Searching for unused “ariables, UDFBs, Structures, Libraries' in 'SingleAxistowve, Library'
4 1B ChiUsersymartin\DocumentsiWinGRAF 10.08PC_ECATME00_(2021)eLoggentotionSingleAxistovelWin-GRARSIngleAxisMove - CopyiLibrany
4 FE Types
structhdasterinit
4 B ChUsers\martin\DocumentsiWin GRAF 10.04PC_ECATMEN0_(2021)eLoggerMotion\Singledx stove\Win-GRARSIingleAxisMove - Copy\SingleAxistowve
4 B Libraries
'ChJsers\mantiniDocuments\WinGRAF 10.08PC_ECATIME00_(2021)\eLoggeriMotionySinglexistovelWin-GRARSInglelxishove - CopyiLibran: Used
4 [af Variables
<vary: difxisOhy
Lvarr: | (AxisConfig

A Cross references JelRiEr Logi

Figure 19: Cross reference (Example: list all unused variables)

Call stack Breakpoints Digital sampling trace Prompt HMI G

The Cross Reference tools enables the search for a specific variables in the application. It
can also be used as a powerful navigation tool for editing changes in the application
programs.

The Cross Reference tools can be used via:
* the menu bar entries 'Edit/Find..."
* the Cross references context menu in the Output window (Figure 20).

1 Findin Files.. Ctrl+Shift+F
Replace in Files...
® List Unused Items...

List Multiple Variable Assignments

Find Variables...

Library Elements

List Public Variables

Find..
M, Find Next

Hide

Figure 20: Cross reference commands in a popup menu

ICP DAS Page 23 Win-GRAFWorkbench User Manual
Version 1.0

3.6.2.1 Search Text

The find commands allows you to search for a text (name, variable, function, block, etc.)
in all the programs of the project and list the search result in the Cross reference output
window (Figure 21). By double clicking one of the items in the search list the program
will be open at the position where the text occurred.

Cross references >
4 3 CAlsersymadin\Documents\WinGRAF 9.4 Test Testl\MainTask
a POLs
4 [Prog
Progl: i2): diviar] .= BEGPARGET('RegDint1' -1
Erogl: {(19): Mghar = divar] .0;
Frogl: (213 div'ar! .0 = flgarl
Frogl: (22): divvar] .1 = flgvar?;
Progl: (23): divar] .2 .= flgvard;
Progl: (24} divvarl .3 = flgard;
Frogl: (257 divvarl .4 = flgvark;

LI Cross references Call tree Runtirme Call stack Tasks Digital sampling trace

Figure 21: List of found names

Use the 'Edit / Find / Find in Files...' menu command or right click the Cross reference
output and select the 'Find in Files...'command from the popup menu to search for a
text in all programs. Enter the search text in the popup window (Figure 22).

ICP DAS Page 24 Win-GRAFWorkbench User Manual
Version 1.0

\ila Find/Replace in Files et]

Replace with: i

[] Match whole word only

[] Match case

| In project(s):

MainTask
Task?

Task3 I
Taskq
Library

Ll
Figure 22: Find in all files

3.6.2.2 Find / Replace Text

The 'Edit / Replace in files...' command enables you to replace a text in all the programs
of the application.

Page 25 Win-GRAFWorkbench User Manual

ICP DAS
Version 1.0

W Find/Replace

7 eS|

Figure 23: Replace text window

Procedure for replacing text:

Find what: divarl 1 - Find Next
Replace with: divar_ - Replace
o,
Look in: Froject 'MainT ask' (3) ;_l\ Replace All
p—_
4) Find in Files l
[] Match whole word only
[Match case 5 \ Replace in Files l
4 3 ChlsersymartiniDocuments\WWinGRAF 9 A Testi Testl\MainTa...
4 FOUs
4 Frog1 I
Frogl: (2} divarl .= BEGEARGET('RegDintl’ -1
Progl: (181 Migvar = divarl .0;
Progl: (213 diviar .0 = flgvar:
Progl: (22): diviarl 1 = flgvars;
Progl: (23} diviar .2 = flgar3;
Progl: (24 divarl 3 = flgard:
Progl: (25): diviar] 4 = flgars;
4 Frogd
Progd: (1) divarl = div'arl +1;
4 (o] Wariables
<wary: div'arl (Prog4): declaration
- E

Enter the text which needs to be replaced in the 'Find what' editor

button to display all the location at which the text

occurs. It scans all the programs in the task and list where the specified text

Click 'Replace in Files' button. A window pops up which allows you to select in

which programs of the task to replace the text (Figure 24). Click 'OK’ to replace

Step 1:
Step 2: Enter the new text in the 'Replace with' editor
Step 3: Select the task where to replace the text
Step 4: Optional: Click 'Find in Files'
occurs.
Step 5:
the text.
ICP DAS Page 26

Win-GRAFWorkbench User Manual
Version 1.0

.
Replace in files

Find what ditar] g
Replace with: divar_

g

o Cancel
Feplace infiles:

| []FProgl I

[¥]Prog4

k —

Figure 24: Select the programs where to find or replace a text

3.6.2.3 List Unused Variables

Use the 'Edit / Find / List Unused Variables' command or right click the output window
and select 'List Unused items..." to display the list of declared variables and function
block instances that are not used in the programs of the task. This command is
particularly useful for removing unused variables from a project.

MainTask - Progl ibrary - Global defines hainTask - Prog3

Cross references »
4 (o] Wariahles -
<var>: dival
<varr: divvar] (Prog4d)
<var>: fv'all
<vary: Ing (Progd)
<var>: Ind (Progd)
<var>: Ind (Progd)
<var>: Inb (Progd)
cvarr: Inst MBMASTERRTU (Progl)
cvary: Inst WMC MOWVEABSOLUTE (Progl)

Luary var] (Prond
4k Cross references

111

Runtire Call stack

Tasks Digital sampling trace

Figure 25: List of unused variables and instances

ICP DAS Page 27 Win-GRAFWorkbench User Manual
Version 1.0

3.6.2.4 List OEM Library Elements

Use the 'Edit / Find / OEM Library Elements' command to list the I/O devices, functions

and function blocks written in 'C' that are used in your application.

Cross references »
[FB] MC_RESET
[FB]MC_GRFSTOR

[FE] MC_GRPREADACTWEL

[FE]

[FE]

»

FB] MC_ADDAXISTOGROUP

FE] MC_WRITEPARAMETER:
[FE] MC_POWER

[T] AXIS_REF

[TY] EM_ECATSLAVE_AXIS_PAIR
[T] EM_CARD_SERIAL_NO

[TY] AXES_GROUP_REF

11

1]

+ | Cross references gaecl Rl Funtime Callstack Tasks Digital sampling trace

Figure 26: OEM function blocks and enumerates used by the application

3.6.2.5 List Multiple Variable Assignments

This output list all the variables which are assigned a value multiple times in the
program. This function allows the user to check whether variable assignments are

correct. Use the 'Edit / Find / List Multiple Variable Assignments' command to scan all

programs in a task for more than one variable assignment

Cross references »
4 POUs -
4 Frogl
Frogl: (4): assign
Progl: (29) assign
Progl: (34) assign
4 [0 Prog3
Progd: (22,291 assign
Progd: (22,321 assign
Progd: (24.52): assign
Prog3: (25,641 assign

[] Broel O
4 b Cross references

111

sampling trace

Figure 27: List of multiple variable assignment

ICP DAS Page 28 Win-GRAFWorkbench User Manual
Version 1.0

Example:
The variable ‘viVar1'in the program (Figure 28) is assigned a value in line 29 and 34.
Therefore Cross reference view will list both line number.

268 B IF flghctive = TRUE THEN
25 | uivarl := MY DEFINE 2;
30 - END IF;

31

32

33 B IF uivarl > 1000 THEN

34 | uivarl := 0;

35 - END IF;

Figure 28: Multiple variable assignment

3.6.3 Task Status Output

The task output shows the status and the mode of all the tasks when the workbench is
online. The status of a task can be changed by selecting the task in the output window
and clicking on one of the command buttons in the output toolbar.

Tasks

& MainTask EUN nenm Pl o §F

o/ | ocation | Status | Type RUN
kdainTask C]!"Cle time I:I'T'IS}:
AainTask Jycle tiT
Taske lele Allowed = 0
Task3 Idle Maximum =0
Taskd Idle Overflow =0

Funtime Call stack Digital sampling trace Prampt Hil Code Che
| sooMyFB | | RUM (192.168.2.14:1100) | Al

Figure 29: Task status

List of breakpoints are shown in the task output window and whether the program is in
step by step execution mode (Figure 30). Breakpoints can be directly removed via the
task output window by first selecting the break point in the output and clicking =®.
Clicking the ™ command removes all the breakpoints.

ICP DAS Page 29 Win-GRAFWorkbench User Manual
Version 1.0

Tasks X
.® MainTask ZTEFFING PitaE r MBS

| Location | Status [Type |STEPPING
4 MainTask - MyFunction: (3): STEPPING Ci‘;‘;'te_t'g‘e (ms):

MYFUNCTION: (3): Active Breakpoint Allowed = 0
MAFUNCTION: (1): Active BEreakpoint Maximum = 0

Task? Idle Overflow =0

Taskd ldle Local application:

Taskd Idle V17 - 26/05/2020 -

G-OR-50

Call tree Runtirme Call st

Figure 30: Task with breakpoints

: W Digital sampling trace Prompt HMI Code CH

3.6.4 Runtime Messages

The Log window displays all runtime messages sent by the connected Soft PLC platform

or by the simulator when testing the application. Messages are stored even if the Log
window is not open.

Example:

The PRINTF function can be used to print messages from the runtime to the workbench
runtime output:

sess | HL P
1 - [N
2 (PRINTE (' B =]
3
- 4 PRINTF ('Current position: x=%1d, y=%1ld, z=%1ld, u=%1ld', Pos[0], Pos[l], Pos[2],Pos[3] }:
= &
b1
Ty -
== K[| 5
Runtime é ™
B[4 [Time | Project '8me | Event description
[1 2020/05/21 11:36:12.816 MAINTASK Searched home finished: [MAINTASK]
= 2 2020/05/21 11:36:12 816 MAINTASK Current position: x=20053, w=8561. z=78624, u=62354 [MAINTASK]
J
.
4| |
Build ences Call tree Digital sampling trace Prompt Code Checker
| Default | | RN (192.168.2.50:1100) | A | 0,0 oxo | o0 |

Figure 31: PRINTF messages shown in the workbench runtime output

3.6.5 Call Stack View

During step by step debugging, the Call stack window shows the current call stacks.

ICP DAS Page 30 Win-GRAFWorkbench User Manual
Version 1.0

When the workbench is in debugging mode, the Call stack view shows at which
breakpoint the program has stopped. This function is only available if the application

program is build in debug mode.

Call stack »
i | Instance

»

4
BreakFaintDemo: (4): F
MyFunction: (1):

4 Chilsersimartin\DocumentsyWWinGRAF 9. 4\FirstProg\BreakPoints_1\Task?
Mo debug infos available

4 Chilsersimartin\DocumentsyWWinGRAF 9. 4\FirstProgiBreakPoints_14Task3
Mo debug infos available

4 Chilsersimartin\DocumentsyWWinGRAF 9. 4\FirstProg\BreakPoints_14Task4

Mo debug infos available

1

Digital sampling trace Frompt HMI

Call tree Runtirme

Figure 32: Call stack view

3.6.6 Call Tree View

The Call Tree shows graphically the interdependency of the different programs in the
project. It for example shows which program is being called by other programs. Table 1
list the different commands provided for the Call Tree.

Call tree b 4
B [(an) =
<
- | BreakPointDemo [mi——»— MyFunction]
BreakPointDemo m MyFunction
F @ 3
Runtime gital sampling trace Prompt HI Code Checker

Figure 33: Call tree view

Icon | Command Description

[E Call Tree Shows the Call Tree entries.

c Refresh Refreshes the Call Tree view.

Backward Jumps to the last Call Tree entry.

Forward Jumps to the next Call Tree entry.

ICP DAS Page 31 Win-GRAFWorkbench User Manual

Version 1.0

Table 1: Call tree view commands

3.6.7 Digital Sampling Trace

The runtime system includes a digital sampling trace recorder. The recorder is used to
register periodically the state of up to 8 Boolean variables. Samples can be registered
either on each cycle or according to a configurable period. The digital sampling trace is a
useful tool for tracking Boolean events in the runtime application.

The sampling trace can be configured and watched from the Output window. The
sampling trace is available only during simulation or on line debugging.

Init/boarl
= Init/boar2
s INitABOM T3
Init/bo ard
Init/bo ars
Init/bo arb
Init/bo ar?

31 34 37 40 43 46 49
17:52:48:613
10/7/2020

7

I

i Digital sampling trace,
Figure 34: Output of eight Boolean variables per cycle

Attention

* The digital sampling trace is a unique resource of the runtime system. The settings of
the recorder are the same for all recorded variables.

* The recording is limited to 900 samples of up to 8 BOOL variables.

* The recording of the sampling trace is time consuming and may slow down the
performances of the runtime system.

Operations
Use the following commands for the Digital Sampling Trace operation:

Icon = Command Description

> Start sampling Start recording.

u Stop sampling Stops recording.

ICP DAS Page 32 Win-GRAFWorkbench User Manual

Version 1.0

= Setup sampling Define the variables and the settings of the sampling trace.

Autoscroll Set or reset the auto-scroll mode.

Table 2: Digital sampling trace commands

3.6.7.1Samples and Sampling Period Settings

Before starting a recording, you need to setup the parameters for the recorder in the
Setup Sampling dialog (Figure 65). This includes the list of spied variables, a period
(either a time or on each cycle), plus start and stop conditions. All variables must have
the BOOL data type.

Note: The sampling period value indicate that the runtime wait at least the defined time
interval before recording the next state. The status recording is not synchronized to the
time interval which means the status is not recorded at the set time interval.

' =)

Samples | Start Conditions | Stop Conditions

Varnables

l Insert variable]

IniyboVarl l o]
InittboVar2

InittboVar3
InittboVard
InittboVarb
InitfboVarb
InittboVar?

Sampling period

(@ Each cycle

(@I ms

Set || Cancel || Help

e 4

Figure 35: Digital trace Boolean variable and sampling period

Parameters A Command Description
Sampling Insert variable Opens the dialog for variable selection. Select the desired
Variables variable an click on OK.

The variable name will be shown in the Insert variable text
field and in the Delete variable text field. Otherwise an error
message occurs.

ICP DAS Page 33 Win-GRAFWorkbench User Manual
Version 1.0

Parameters = Command Description
Delete variable | Removes the selected variable from the Delete variable text
field.
Sampling Each cycle Sampling is done each cycle.
Period
Time in ms Sampling is done in the selected time interval.
Default: 0

Table 3: Sample variable and period configuration interface

3.6.7.2 Start condition

The Start Condition tab of the settings box (Figure 36) enables you to define which

condition will start the recording. The following choices are available:

¢ Later: you will have to manually start the recorder using the Start command.

* Now: tracing starts immediately after the 'Set' has been clicked.

* On: A Boolean variable triggers the start of digital trace recording. Click on the "..’
button to select the triggering variable. You can select the trigger condition: the rising
or falling edge of the Boolean variable and the trigger delay.

The delay is expressed as a number of samples omitted after the start condition.

' F ™y
- Start Conditions | Stop Conditions
Start
'_ Later
@ Now
(@Yo
Edge
(@) Rising edge
Falling edge
Delay
0 : Samples
Set] ’ Cancel] ’ Help
e 4
Figure 36: Digital trace start condition
ICP DAS Page 34 Win-GRAFWorkbench User Manual

Version 1.0

3.6.7.3 Stop condition

The Stop Condition tab of the settings box (Figure 37) enables you to define which
condition will stop the recording. The following choices are available:
* Never: you will have to manually stop the recorder using the Stop command.
* When the buffer is full.
* On therising or falling edge of a BOOL variable, possibly with a delay.
The delay is expressed as a number of samples passed after the stop condition, before
the recording actually stops. X

-

| Samples | StartConditions| Stop Conditions |

Stop

() Never

(@ When buffer full
-._'__-On:

Edge
(@) Rising edge

Falling edge

Delay

0 Samples

Set] | Cancel ‘ l Help

.

Figure 37: Digital trace stop conditions

Remarks

* The recorder cannot be restarted after points have been registered, even if stopped.
To restart the recording, you first have to re-validate the settings.

* The sampling trace must be configured or started when the Workbench is used either
for simulation or on line debugging.

* Use the File / Save As and Edit / Copy commands for exchanging recorded data with
other applications such as spreadsheets.

Setting procedure:

Step 1: Download the program to the runtime and set the workbench in online mode.
Al

Step 2: Select the task and open the configuration window.

ICP DAS Page 35 Win-GRAFWorkbench User Manual
Version 1.0

1. Right click the output window select the task to monitor
2. Click the = command to open trace configuration window.
» Start Sampling

= Setup Sampling... @

-= Autoscroll

[Copy

K Save As.
» Delete
X

Reset Contents

Find..
[]

45 Hide

« | CA\Monitor_Variables\MainTask
CA\Monitor_Variables\Task2
Ch\Monitor_Variables\Task3
CA\Moaonitor_Variables\Taskd
CA\Monitor_Variables\Library

3. Optional: Select the 'Reset Contents' command from the popup menu to
clear the output window content.

Step 3: Set the digital sampling trace conditions.

Select the Booleans variable to trace.

Set the sampling period.

Set the start conditions.

Set the stop conditions.

Press the 'Set' button to validate the settings.

ukhwnNE

ICP DAS Page 36 Win-GRAFWorkbench User Manual
Version 1.0

. . X
Samples | Start Conditions | Stop Cond\tions|
Variables
InitfboVarl Delete variable
InitfboVar2
InitfboVar3
Init/boVard
InitfboVars
InitfboVarb
InitfboVar7
Sampling period
(@) Each cycle @
i _ (0 = ms
I Set] ’ Cancel] [Help l

Step 4: Start sampling by pressing the ® button in the output window.

3.6.8 Code Checker

The Code Checker tool performs a scan of the project declarations and programs, in
order to check conformity to a set of rules, motivated by integrity, safety and portability
of the code. It is run from the '‘Code Checker' tab of the Output window.

MainTask - 192.168.2.14:1100 X

Tasks
Figure 38: Code Checker output window

Code Checke‘

Runtime Call stack, Digital sampling trace Frompt HMI

Use the ‘Settings' button E¥ to open the configuration window (Figure 39) and
select/configure the rules to be checked for violations.

ICP DAS Page 37 Win-GRAFWorkbench User Manual
Version 1.0

=

Cade checker

E
W
I
W
E
F
W
I

E
E
W
W

F

F

[=-E3 1- Naming
1.1- 10 channels (%...) must have an alias. Only aliases should be used in programs
1.2- 10 channels (%...) aliases should not reflect the hardware location

1.3- Names must respect a minimum and a maximum length (6..15)

1.4- Mames used during debug should not remain in the project
1.5- All given names must be conform to IEC standard

1.6- Mames reserved for keywords should not be used

1.7- POU information should be filled

1.8- The case of variable names must be respected

- Comments

2.1- All declared objects must have a comment

2.2- Comments must respect a minimum length (7..4095)

2.3- The percentage of comments should be sufficient (20..100)
2.4- Comments should not contain special characters

- Languages

3.1- 1L language should not be used for main programs
3.2- LD language should not be used for main programs
3.3- FBD language should not be used for main programs
3.4- 5T language should not be used for main programs
3.5- SFC language should not be used for main programs
3.6- 1L language should not be used for UDFBs

3.7- LD language should not be used for UDFBs

3.8- FBD language should not be used for UDFBs

3.9- 5T language should not be used for UDFBs

3.10- SFC language should not be used for UDFBs

3.11- I language should not be used for sub-programs

Export I [Import] [Default

o

e

Figure 39: Checker rule configuration window

The configuration rules have to be set for each task separately. First select the task from
the drop box in the toolbar before setting the checker rules (Figure 40).

|H@|E|%rﬂ EX§| | |MainTask

~HEME LB A

| Workspace

Library
MainTask
Task2
Task3
Task4

Figure 40: Task selection

Use the 'Scan’ button & to start analysis. The project must be compiled without errors
before being checked.

ICP DAS

Page 38

Win-GRAFWorkbench User Manual
Version 1.0

MainTask - 192.168.2.14:1100 x
1 Code checker
= Rules checked (47)
b Rules not checked (10)
b “iolations (741)
B hetrics
[7 Fatal error(s)
[573 Erraris)
O 6&'Warningis)

Digital sampling trace %l Code Checke‘

Figure 41: Checker scan result

Double-click a violation report line (Figure 42) in the output to navigate to the
corresponding location of the source code.
MainTask - 192.168.2.14:1100
O Code checker
By v Fules checked (47)
b Rules not checked (10)

[m] » X

F “ialations (741)
b [T 1.3- Mames mustrespect a minimum and a maximum length (59)
4 [H]
=
] (nit: W] 1.7- POU infarmation should be filled
(]
=

4 [E] 2.1- All declared ohjects must hawve a comment (146)
[E] <¢var>: AbsPos (Init): [E] 2.1- All daclared ohjects must have a comment
[E] <¢var>: AccDecTime (nit); [E] 2.1- All declared ohjects must have a comment
[E] <wary: AxesGroup (Inif): [E] 2.1- All declared objects must hawe a comment Ll

Digital sampling trace Ml G Nl Code Checker

Figure 42: Violation report

Use commands of the contextual popup menu to copy or export the report.

Note: an option is available in the 'Compiler’ section of the 'Project Settings' box to
systematically run the Code Checker after any successful build.

Checker rules configuration

* Use the 'Configure' button to select and configure rules to be checked. This is also
available from the main tab of the 'Project Settings' box. Rules are shown in a tree
including check boxes. Unchecked rules will be skipped during scan. Double-click on a
rule to configure it.

* You can select for each rule a severity level: ‘Not checked' or 'Info' or 'Warning' or
'Error' or 'Fatal’. You can also enter for each rule a text reference that will be

ICP DAS Page 39 Win-GRAFWorkbench User Manual
Version 1.0

displayed in reports.

For rules referring to metrics (e.g. name length) you can enter a minimum and
maximum value.

For rules concerning variables, you can specify a filter based on the 'User’s group'
column of the variable editor: either check only in some user's groups, or check
except in some user's groups. Please enter one user's group name per line

For rule 1.4, you have to enter in the 'Data’ box the list of forbidden names. Please
enter one name per line.

In addition the rules configuration box enables you to export or import the
configuration as XML file.

3.7 Status Bar

The status bar informs about:

Ready ‘ 1 i Full I 2 i Lemel_1 (2020_06_08) ‘ 3 i

o 5 0 G

DffLine 192.168.2.14:1100 A2 | In 2,Che ax1 Ln 2, Cha
10 11
100% diViar

Figure 43: Workbench status bar

Workbench startup status: Indicates whether the workbench has finished starting,
creating or loading a new or existing project

Toolbar and menu configuration: Double click this section of the status bar to
configure the commands display for the toolbar and menu.

Target system configuration: Shows the runtime configuration being used for the
current program. Double click this section to select a different configuration setting.
The runtime configuration of the target system can be uploaded by right clicking the
task name in the workspace window and selecting 'Target System Configuration...'
from the popup menu.

Empty

Communication settings of the target runtime (TCP/IP and port number). In offline
mode, the communication parameters are displayed in the status bar. To change
them, use the Tools / Communication Parameters menu command or double-click
on the parameters in the status bar.

Workbench editing mode: program editing mode (I £ |) or online mode (_#)). In
online mode the source code of the program can not be changed, it is necessary to

ICP DAS Page 40 Win-GRAFWorkbench User Manual
Version 1.0

first switch in editing mode before any source code modification is allowed

7. Position of the text cursor in the program editor

8. Selection size in document: The number of lines and text characters marked in the
program editor.

Example:

22x1 ;22 x 1indicates that 22 character in the program editor has been
marked:

1 SubvVar(:= Subvar(+5;

2 SubVarl := SubVarl +5%;

3 SubVar2 := SubVar2 +5;

- SubVar3 := SubVar3 +9;

9. Mouse coordinates in document: Position of the mouse cursor in the program
editor.
10. Zoom: The size of the text and blocks of the program editor can be zoomed by

doubled clicking the zoom section in the status bar.
W Zoom lﬁj

Zoom at

1400 % ~) Custom:
1200 % w00 (2
1150 %
(@100 %

75 %

50 %

25 %
I Fit Zoom I
To selection

To document

o [concel |

11. Quick Search: Simply click on the edit box, enter the text you want to search and
press ENTER key.

4 Single-Tasking

Depending on the target hardware platform the Win-GRAF runtime supports either
single-tasking or multi-tasking application. A single-task project is allowed to run on a
multi-tasking runtime but not vice versa. The workbench environment and procedure
for creating a single- or multi-tasking application differs. This chapter will focus on
describing the single tasking procedure.

ICP DAS Page 41 Win-GRAFWorkbench User Manual
Version 1.0

4.1 Create a Project

The basic steps for creating a single-tasking PLC project using Win-GRAF workbench:

ICP DAS

Start the Win-GRAF workbench has been started. The 'Workspace'is empty and the
'Start Page' list the available manuals, demo project and the recent opened project
(Figure 44). In addition two green command boxes are listed for directly creating a

single- or multi-task project

Wi Win-GRAF 10.0

= | [E] S|

File View Tools Window Help

I WE = XD e XX G & WNe

B

Workspace Start Page

Demo Projects

DEMO 4_SingleAxisMove_FBD
1_CoffeeMachine 5_8SingleAxisMove_LD

2_InitializeEcatMaster 6_AddAxisToGroup_ST
3_SingleAxisAssign

WEB Site FAQ Download Contact us

Cross references

=l Cross references gelyiEE]

Logic Service

Ready Custom No project

Welcome to Win-GRAF Workbench

Tutorial Recent
Win-GRAF_User_Manual _en.pdf

[B

Call stack Breakpoints Digital sampling trace Prompt HMI

£ lo,0 0x0 0,0 0%

Code Checkel

Figure 44: Workbench with empty workspace

To open the project wizard for single-task project click either the green command
button in the 'Start Page' or go to 'File\Add New Project...'

File| View Tools Window Help

g New Project List... = |

Open Project List L4

| g Add MNew Project.. |
Add Existing Project »

Print Setup...

¢ Exit

Page 42

Win-GRAFWorkbench User Manual
Version 1.0

Click the 'Project’, select the destination folder and enter the project name. Click
'‘Next'.

Note: For the project several folders and files are being generated. For easier
maintains it is therefore suggested to create a new folder for the project or use an
empty destination folder.

Project wizard &J

—

= (Y

I 9200 Impart
L Library
% Automation script

I Create a new project o

| MNew project
Destination folder : CAllsersymanin\Documents\PlcProject - Browse. ..

Name: My FirstProject @
I Comment:
@ INext l l Cancel ‘ | Help ‘

Set the programming language of the first program (POU), compiling option, enter
the IP address of the remote device and leave the protocol to ‘Logic Service'. All
settings still can be modified after the project has been created. Although the
wizard allows you to select only one programming language for the first program,
additional programs for different programming language can be added later on.
Click 'Next' to continue the configuration.

ICP DAS Page 43 Win-GRAFWorkbench User Manual

Version 1.0

-

Compiling options
(@) Debug
(") Release
Communication options

Settings: 192.168.2.51:1100

Settings ﬁ
Programs
ez
Language: FBD: Function Block Diagram () VI
S

Protocol: Logic Service

Other

[¥] Edit initial values with the Recipe editor

[#] Use the General Purpose Library

Finish

| [

ﬁ

Select the additional components to use. If you are unsure which components to

add to the project at the current stage then leave the field unchecked. They can be
manually added at any time during the project development. Do not change the
'‘Binding' setting. Confirm the setting by clicking 'Finish'. A new project with the
current setting will be generated

ICP DAS

Page 44

Win-GRAFWorkbench User Manual
Version 1.0

.

1/0s and networking w

1/0s and fieldbuses

[|eLogger HMI

| |1CP DAS Remote 10
| | InduSoft HMI
| |MODBUS Master

| |MODBUS Slave

| |OPC UA Server (ICPDAS)

| |PAC IO (ICPDAS)

| |shared Memory (Embedded Systems)

Binding over Ethernet

Use binding for realtime data exchange

Port: 9000

O,

= Mext [Finish J[Cancel]

* Figure 45 shows the 'Workspace' setting of a new single-tasking project. Double
click the '"Main' item to open the main programming editor.
Wi Win-GRAF 10.0 - MyFirstProject l = |[=] ﬂ
File Edit View Insert Project Tools Window Help
[EE = dHeaX= o920 @& #HEMS OF § 5 "=A
Workspace
4 2 MyFirstProject
3 Exception programs
4 Frograms
ain
4 YWatch (for debugging)
B Soft Scope
B Initial values
%1} Binding Configuration
£ Prafiles
§g Global defines
{uf Variahles
b E Types
(Al Projects)
< | Workspace _ _
Ready | custom | Default | offLine 192.168.2.51:1
Figure 45: Single-tasking project
ICP DAS Page 45 Win-GRAFWorkbench User Manual

Version 1.0

4.2 Edit a Program

The main focus of this section is to give a brief introduction to the user interface of the
workbench and show how to use the tools provided by the workbench to edit the logic
for a PLC program. The Win-GRAF workbench supports all the five PLC programming
languages defined by IEC61131. For each programming language a separated editor is
provided. More information about each editors toolkit is given in chapter 6.

Basic procedure to declare variables and edit a function using the FBD programming

editor:

Step 1:

ICP DAS

Double click the name of the '"Main' program in the workspace to open the
program editor:

File Edit View Insert Project Tools Window Help

| B = ¥ e XX |5 =M O F §o| B A
Workspace
4 3 MyFirstProject
I Exception programs
P Frograms
o) [XE
P Watch (for debugging)
¥ Soft Scope

EH Initial values
¥} Binding Configuration
2 Profiles
§g Global defines
a] Wariables
b E Types
(Al Frojects)

Note: Double click the program name and not the icon.

The PLC logic can now be edited using the FBD language. In the following steps

demonstrats how to add a function block to the editor and declare its in- and
output variables.

Page 46 Win-GRAFWorkbench User Manual
Version 1.0

Wla Win-GRAF 10.0 - MyFirstProject ==y X

File Edit View Insert Project Tools Window Help
| W = ¥ 0 o X | & & ME O F S| & "=

Workspace Main B X
4 @ MyFirstProject - ~ |¥| Name [Type | Di..
Exception programs = [Main

4 Pragrams E @ Global variables
&) Main o il RETAIN variables
4 YWatch (for debugging)
B Soft Scope
B Initial values
%1} Binding Configuration =
€ Profiles (g

<« | P

b (Al
§g Global defines Jabs r {Project) El
{uf Variahles Y 4 Advanced
b E Types L b Arithmetic
(Al Projects) 4 Arrays
k3
I i 4 Booleans)
{0 « [» < » | Blocks
K ¢ » ¥ | Main
Build X

+ * | Workspace i Cross references Calltree Logic Service Call g

Ready | custom | Default | offline 192.168.2.51:1

L S

Step 2: Add the 'AND' function block:
All the supported function block are listed in the 'Blocks' tab of the Info
window on the right. If the Info window is not visible then go to 'View/Infos
Tab2' in the menu bar to display the window.
The function blocks are listed according to different categories. The '(All)'
category list all the supported function blocks
Click the '(All)' tree node to display all function blocks.

s
iZ & (*Boolean AND™) =
i * (“Multiply™)

iL + (“Addition™)

i - (*Subtraction®)

iz (*Divide™)

2 1 (*copy (1 gain)*)
iZ < (*Less than™)

iZ «=(*Less or equal®)
i

<> (*Is not equal®)

Click the '&(*Boolean AND*)' function block and drag it onto the editor area.

ICP DAS Page 47 Win-GRAFWorkbench User Manual
Version 1.0

Step 3:

ICP DAS

File Edit View Insert Project Tools Window Help

EA Initial values
% Binding Configuration | =
© Profiles T

8q Global defines ™
fal Variahles »
PR Typ.es 5
(Al Projects) I+

Ready | Custom

ferences Calltree

| Default \

WS Yo =X=] 920 5H #HEMe o F S 6"
Workspace Main * [HL B4
4 |B MyFirstProject o « [¥[Narre [Tvpe [Di... [Aftrib.
3 Exception pragrams | o " =] [Main
4 Programs =" o &) Global variables
) Main & é‘j I kil RETAIN variables
a4 Watch (for debuggi. 3 A o
¥ Soft Scope -

S

[
[»

[FR SRy

=] Call stack Breakpoints

‘ OffLine 192.168.2.51:1100

~ & (*Boolean AND®)
* (*Multiply*)

+ (“Addition®)

% - (*Subtraction*)

<} (*Divide®)

Define EMUN

The 'AND' function block has got two input and one output variable. The '???’
at the inputs and output indicate that no variable has been assigned yet.

The size of the function block can be changed by clicking once on the block

and pressing the '+' or -' key on the keyboard.

Moving the mouse pointer over the function displays the in- and output data

type required:

&

T

& (*Boolean AND¥)
I
IM:BOOL
IM:BOOL
ouT
BCOOL

Assigning variables to the function block:

- Double click on the grey input field with the question marks.
- Enter the name of the variable

- Click 'OK’

Page 48

Win-GRAFWorkbench User Manual

Version 1.0

Main *
w &
= Er '?Jg:? E 1 e
B E}"/////////////////ﬂ’/////////////////aﬁ ﬂ
) 1
= Inputl ok =
@ “arizhles: (all)
i
lab:
» |Variahles: (all -
- [Local variablas anly
I [IHide FB instances
e EEE————
|
{H
_|

As the variable has not been declared in the project before a windows pops up
which allows you to select the data type, initial value, etc..

- The function block input data type is BOOL, therefore select BOOL

The initial value is set to FALSE

Click 'Yes' to add the variable to the project

r'Mn Inputl &Jw
This symbaol does nat exist. Possible actions:
Fename wvariable
(@ Declare new variahle
MNarme: Inputl
Type: BGOL A
Where: Matn -
Description:
Init value: FALSE
User Group: -
Tag:
Advanced: [(TRead Only [inouT Dim.: 0 =
[]External [] 5yh.
W [Fewer l [Yes l [o l [Cancel l l Help l IJ

Repeat the above procedure to add the variable 'Input2' to the second
function block input and a 'Output' variable to the output. All the newly

ICP DAS Page 49 Win-GRAFWorkbench User Manual
Version 1.0

declared variables are listed in the variables view, on the right of the screen.

i ~ 7| Name [Type i
4 [Main

T
o & Input1 BOOL
Input2 BOOL
B Input1 1 Output
Input2 1 :D" Output BOOL
: @ Global variables

i RETAIN variables

4.3 Create a Program

A task can handle several programs (POU) written in different languages. The number of
programs in an application is limited to 32767.

By default the single-tasking contain two exception programs which will be called once
during the PLC startup ('pStartup') and shutdown ('pShutDown') . Their purpose is to do
some system initialization and cleanup. The user can edit the code inside these
exception programs. If not required they can be disabled deleting their global definition.
The 'Global defines' editor has to be opened via the '§' command in the toolbar.

(HE & %0 e XX o | % &M e O F[§] B A
Workspace Global defines
4 |2 MyFirstProject // Exception programs
4 Exception programs
%2 pOrBadindex #OnStartup pStartup
%5 L OnDivZero : owWn pShL.ltdown
“E) pShutDown ¥ 0 pOnDivZero
) pStart #0nBadhrrayIndex pOnBadIndex
polanup
“ Programs // add your definitions here
[bdain

Figure 46: Exception programs

We will show how to add a new program to a task:

Step 1: Insert a new program. Right the program folder and select ‘Insert New

ICP DAS Page 50 Win-GRAFWorkbench User Manual
Version 1.0

Program...' from the popup menu.

File Edit View Insert Project Tools Window Help
| W = %D e X= | AR =
Workspace
4 3 MyFirstProject
b

Exception programs

Rename... F2

[T kain

4 Watch (for debuggi.. Insert New Folder
B Soft Scope
EH |nitial values
¥4 Binding Caonfiguration

[11 Insert New Program.. |
Shortcuts g

£ Profiles Insert New Item...
§g Global defines -«
lof Yariahles =
BB Types 4 Cut Cirl+X
(Al Projects) [Copy Ctrl+C

=

Step 2: Make the following entries:

- Enter a name for the program

- Give a short program description (optional)

- Select one of the five IEC61131 programming languages (SFC, FBD, LD, ST,
IL) for the program. Remember that more than one program can be added
to the task. Each program can be programmed in a different language.

For this tutorial the 'FBD-Function Block Diagram (CFC)' is selected. Add the

program to the workspace by clicking 'OK".

ICP DAS Page 51 Win-GRAFWorkbench User Manual
Version 1.0

Properties |Advanced | Descriptjon|

Program
MName: MyProg
Description: My first program

Programming language

SFC - Sequential Function Chart - Grid editor

SFC - Sequential Function Chart - Free form editor
LD - Ladder Diagram

ST - Structured Text

IL - Instruction List (deprecated)
PACKML - PACKML State Machine

Execution style

(@) Main program

(") Sub-program

(7) UDFB (User Defined Function Black)
Child SFC program

Child of [v

| ok || cancel || Hep

Programs must have unique names. The name cannot be a reserved keyword
of the programming languages and cannot have the same name as a standard
or 'C' function or function block. A variable should not have the same name as
a declared data type. The name of a program should begin by a letter or an
underscore (') mark, followed by letters, digits or underscore marks. It is not
allowed to put two consecutive underscores within a name. Naming is case
insensitive. Two names with different cases are considered as the same.

4.4 Task Configuration

A task of a PLC application can control several IEC 61131 programs (Figure 47). The user
is allowed to add several IEC programs to a task whereby each program has to be
written in one of the five programming language defined by IEC61131 (ST, LD, FB, IL,
SFC). Each programs of a task can be written in a different language. Programs are

ICP DAS

Page 52 Win-GRAFWorkbench User Manual

Version 1.0

executed according to the order defined by the user. The number of programs in an
application is limited to 32767.

l

Program Program Program
(LD) (FB) (SFC)

Figure 47: PLC task-program architecture

Workspace
4 2 MyFirstProject
I Exception programs

[5) Awis
AxisY
Hbdl
(@ Main
[Status
Figure 48: Task with several programs

The function of a PLC task is to control the processing of each of its IEC programs (Figure
48). In the workbench the IEC programs are listed in the workspace tree below the task.
A task is defined by a name, a priority and by a type determining which condition will
trigger the start of the task. You can define this condition to be either cyclic or
freewheeling.

For each task, you can specify a series of program POUs that will be started by the task.
The execution order and period of each program can be set.

The combination of priority and condition will determine in which chronological order
the tasks will be executed.

For each task, you can configure a time control (watchdog). The possible settings
depend on the specific controller platform.

ICP DAS Page 53 Win-GRAFWorkbench User Manual
Version 1.0

4.4.1 Task Cycle Time

The Win-GRAF runtime supports two type of tasks: cyclic and freewheeling. PLC cycle
time is defined as the time it takes to run the code logic from start to finish.

Programs are executed sequentially within the target cycle, according to the following
model (Figure 49):

Begin of cyclel

|

Wait for the cycle time
to elapse

End of cycle

Figure 49: Task cycle execution

4.4.1.1 Cyclic Task
A Cyclic task is assigned a fixed cycle time which causes the runtime to trigger the task
execution at a set fixed time interval. The next cycle is triggered, once the cycle time has

ICP DAS Page 54 Win-GRAFWorkbench User Manual
Version 1.0

elapsed.

Figure 50 shows the interface for setting the cycle time interval. The 'Cycle timing' is the
period of time, after which the task should be restarted. You can choose the desired
time unit in the selection box behind the edit field: milliseconds [ms] or microseconds

[us].

MainTask -

1 As fast as possible E
@ Triggered Cancel ‘

Cycle timing: 100 |ms v|

Figure 50: Cyclic task time setting

Note:

If the execution of one cycle takes longer than the defined cycle time, the next cycle
starts as soon as the previous cycle is finished without executing other lower priority
tasks. This will affect the execution of all tasks and cause the runtime to generate a
system watchdog exception and write a warning message to the output window.
The runtime for Windows is not real time, therefore it is suggested to not set the
time interval below 100 milliseconds. The Windows OS timer accuracy is in the
range of about 100 milliseconds.

There are a few methods to decrease the PLC's response time if cycle time of a task has
to be reduced. Reducing cycle time of a task

A faster CPU will execute code faster and reduce the overall cycle time.

Another method for reducing cycle time is optimizing the code itself. Moving pieces
of code that do not have to run every cycle into a program with a higher cycle time,
but may not have much effect on the maximum cycle time.

Prevent execution peaks loading. Execution peaks occur when all programs of a task
run in the same cycle. By distributing the program execution over several cycles
these peaks can be prevented (see Figure 53)

Set cyclic task time:

1.

Open the 'Project setting' dialog by selecting 'Project\Settings..." in the menu bar.
Select the 'Option' item and double click the 'Cycling time' value to open the 'Cycle
time' configuration window.

Enable the 'Triggered' option and set the 'Cyclic timing' value. The 'Cyclic timing' is
the fixed time interval at which the task execution will be triggered.

ICP DAS Page 55 Win-GRAFWorkbench User Manual

Version 1.0

-

Project settings &J

[
Runtime
Compiling
Test
Advanced
(Al

C:\Users\martin\Documents\PlcProject\MyFirstProject

[Name |'value |
Communication parameters 192.168.2.51:1100
% Sebine ©)

B Caompiling Debug

Cycle time:

704

®

IH
&3

(71 As fast as possible

@ Triggered Cancel
Cycle timing: 100 ms -

Duration of the PLC scan. Value 0 means as fast as possible (never
wiait).

4.4.1.2 Freewheeling Task

A Freewheeling task does not have a fixed duration. In Freewheeling mode, each task
begins when the previous cycle has been completed. The cycle time is not triggered at a

fixed time interval.

-

MainTask

(@) As fast as possible

() Triggered
Cyele timing:

8]

1"

Cancel

e
Figure 51: Freewheeling Task setting

Note:

- Make sure the freewheeling task has the lowest priority setting otherwise other

ICP DAS

Page 56 Win-GRAFWorkbench User Manual
Version 1.0

tasks will be prevented from execution.

- Set all the freewheeling tasks to the same priority level otherwise the freewheeling
task with the lower priority will have not time slot to execute.

4.4.2 Program Execution Sequence

A task may consists of several programs. The workbench allows you to set the execution
order, the period and phase of each program.

For example Figure 52 shows an application where the main task consists of five
programs.

Workspace MW T
) @ & Compare Project with...
I Exception programs El Cucle..
4 Frograms
& ProgT Tasks...
Prag?2 B Call Tree
B Prog3 Target System Configuration...
[9 Prog4 Libraries...
Prags
) Weich (or debugging) Update Tasks with Library
B Soit Scope Settings...
B Initial values B

Figure 52: Main task with several programs (left); context menu (right)

Use the Cycle dialog (Figure 53) to define the execution properties of the various

programs. Open the Cycle dialog by right clicking the task name and selecting 'Cycle...’
from the popup menu (Figure 52).

ICP DAS Page 57 Win-GRAFWorkbench User Manual

Version 1.0

HEl v =+ 3 ®

- Awverage: 1

Statistics: (unit = program)
- Maximurn: 4 at cycle 255
-Minimurn: 1 at cycle 2

Name

Calculated on 1000 cycles I I I I I I I
EEEEN [
Ll

| Enabled | Period | Phase

[Progl
Prog?
[® Prog3
[#) Prog4
Progh

P Frograms (5)
pStartup
pShutDown

P Sub-FPrograms (2]
pOnBadindex
pOnDivZero

OO

10
2hbh

B EEEE
Lo Mmoo = O

E &

Figure 53: Cycle window for program execution property setting

The Cycle dialog shows the list of the main programs, as they will be executed in

runtime cycles.

Program Description

Execution

Property

Program The programs will be executed in the sequence they appear in the

execution table of Cycle dialog from top to bottom. The order of execution is

order determines by the vertical ordering and therefore the program
execution order of Figure 53is:
1. 'Progl’
2. 'Prog2'
3. 'Prog3’
4. 'Prog4’
5. 'Prog5’

Period The 'Period' defines after how many cycles the program is executed
again. It defines how many cycles are set between two executions of
the same program. You can define various sampling periods for the

ICP DAS Page 58 Win-GRAFWorkbench User Manual

Version 1.0

Program
Execution
Property

Phase

Program
enable/
disable

Graph

ICP DAS

Description

programs of a task. By default the value is ‘1’ which means the
program is executed in each task cycle. Valid range is 1 to 255. Giving a
slower period (=high 'Period' value) to some of the programs in a task
is an easy way to give a higher priority to some other programs.

Example:
* Period =1 --> program is executed every cycle
* Period =2 --> program is executed every second cycle
* Period = 10 --> program is executed every tenth task cycle

The 'Phase' defines the cycle where the program is executed the first
time. Itis an offset which enables you to dispatch slows programs
among few cycles.

The goal is to prevent slow program to be triggered all in the same
cycle and thereby causing peak loads. The 'Phase’ setting allows you to
reduce execution peak loads by postponing slow program execution.
Slow programs are programs with a higher 'Period' value setting.

By default the value is '0' which means the program is executed with
the first task cycle. Valid range is 1 to 255.

Example:
* A Program with Period=2 and Phase=1 is executed each even
cycle
* A Program with Period=2 and Phase=0 is executed each odd
cycle
'Enabled’ indicates whether the program should be built/compiled for
the application

The Cycle window shows two graphs:
1. Top graph:
It shows how many programs are executed in each cycle. It
allows you to determine whether execution peaks loadings occur.
2. Bottom graph:
The squares indicates when a program execution will be
triggered in a task.

Hint:
More cycles will be shown if the Cycle dialog size is increased by
dragging the right edge to the left.

Page 59 Win-GRAFWorkbench User Manual
Version 1.0

Program Description

Execution
Property

Statistics: (unit = program)
- Maximurm: 4 at cycle 3

-Minimurn: 1 at cycle 2

(_ZAIVBIrag?i: 1 1000 |
alculated on oycles II. .I.I
Marme | Enabled | Period |Phase | | | | | | | | | |
F Fragrams (&)
B Prog1 1 0 EEEEEEEEN
[Prog2 2 1 [| [| [| [|
@ Prag3 10 3 [|
[Pragd 8 0 [| [|
&) Progs 5 3 [| [
Table 4: Program execution properties
Icon | Command Description
cH Move down Move the selected program one line down
H Move up Move the selected program one line up
Ed Program enable Include the program to the application. Program will be included in
the built/compiling process
=3 Program disable Exclude the program from the application. Program will not be
included in the built/compiling process. A red cross will be shown
in the workspace window next to the program name
* Increment Increment the period and phase value by one of selected program
+ Decrement Decrement the period and phase value by one of selected program
< Default setting Set the default values for selected program
© Help Open help documentation

Table 5: Cycle window commands

You can:

use the Move buttons

cycle.

use the Select buttons &

H to change the program execution order within the task

=< to specify if the program must be called in the cycle.

Unselected programs are ignored at compiling time, and are shown with a red cross
icon in the workspace (Figure 54).
use the Increase/Decrease buttons * ¥ when the Period or Phase column is
selected to change the scheduling of a program. This enables you to define 'slow'
programs that are not called on every cycle. See the Program advanced properties

for further details.

ICP DAS

Page 60 Win-GRAFWorkbench User Manual

Version 1.0

HEl =+ 3 ®

Statistics: (unit = program)
-Maximurm: 3 at cycle 3
-Minimurn: 1 at cycle 2
- Awverage: 1
Calculated on 1000 cycles

Workspace
Il =l MyFirstProject

' Exception programs

= =
Name | Enabled | Period | Phase 8 pOnBadindex
4 Programs (4) 8 pOnDivdero
pStatup O ®x pShutDown
pShutDown || X pStartup
[7 Prag? P Prograrns
Prag? [® Prog!
| [7 Prag3 O Prog2
[Prag4 X Prog3
Pragh [Progd
Progh

Figure 54: Unselect a program for the compiling process

Example:
The following table (Table 6) shows for a task which executes five program the period
and phase settings. After the data has been set in the Cycle dialog (Figure 55) the top
bar chart in the Cycle dialog shows the number of programs to be executed in each cycle
and the bottom graph shows at which cycle the execution of each individual program
will be triggered.

Period Phase Description
1 0 - Period =1: Program 'Prog1'is executed every cycle.
Therefore the phase has to be set to zero.
- Phase = 0: 'Prog1'starts to executed in the first cycle
2 1 - Period = 2: Program 'Prog2'is executed every second cycle.
The phase can be set either to zero or to one.
- Phase = 1: 'Prog2'starts to executed in the second cycle
10 5 - Period = 10: Program 'Prog3'is executed every tenth task cycle.
Valid phase range 0 to 9.
- Phase = 5: 'Prog3’ starts to executed in the fifth cycle
8 0 - Period = 8: Program 'Prog4' is executed every eight task cycle.
Valid phase range O to 7.
- Phase = 0: 'Prog4' starts to executed in the first cycle
5 3 - Period =5: Program 'Prog5' is executed every tenth task cycle.
Valid phase range 0 to 4.
- Phase = 3: 'Prog5' starts to executed in the fifth cycle

Table 6: Example - period and phase settings

ICP DAS

Page 61 Win-GRAFWorkbench User Manual

Version 1.0

Cycle

HE v+ ¥ e

Statistics: {unit = pragrarm)
- Maximum: 3 at cycle 3

- Minirmum: 1 at cycle 2

-Average: 1
Calculated on 1000 cycles II. . .I I.I. . IIII.I. I .III.II . .III

Name

4 Programs (5)
Progl
[Prog2
[Prog3
Prog4
[Progs

m
=3
o
=
@
=9
o
g
o
a
]
=
m
o
@

AEREE
|

[] |
|

[] |
[] |
|

[] |
|

[] |
|
] |
|
(1]
|

[] |
|

[] |
|

[] |
|
] |
[] |
|

[] |
|

[] |
|
] |
[] |
|

[] |

Figure 55: Example - Cycle dialog

4.5 Build/Compile Application
The workbench supports two types of code generation: 'Release' and 'Debug' mode.

Application compiled in 'Debug' mode supports cycle by cycle execution, breakpoints
and step by step debugging. Breakpoints can be placed anywhere in the source code of
the application. The debugger also shows the call stack of the UDFBs and sub-programs
when in step by step execution.

An application compiled in 'Debug' mode includes additional information for stepping.
This leads to bigger code size and less performances. It is recommended to compile your
application in 'Release' mode before delivering the final product to the customer.

Build application procedure:

Step 1: Determine whether to generate 'Release' or 'Debug' code.
Open the 'Project settings' window by clicking the 'Project\Settings..."'
command in the menu bar.
Select either 'Release’ or 'Debug' by double clicking the 'Compiling' line in the
'Option' category.

ICP DAS Page 62 Win-GRAFWorkbench User Manual
Version 1.0

Project settings Li—hj
C:\Users\martin\Documents\PlcProject\MyFirstProject
M | Nare [\alue |
Esnmt;ir:iig # Communication parameters 192.168.2.51:1100
Test W Cycle time: 100 ms
Advanced & Compiling &
(Al [il- Store complex variables in & separate segment Mo
= OnLine change INACTIWE
O Version W1 -2021111217:04
3 Libraries Edit...
3 Extern ohjects Edit...
L Code Checker rules Edit...
+ “ersion cantral Mo
I DEBUG mode enables breakpoints and step by step debugging. I
This option is time consuming.

Step 2: Build the project:
- Inthe tool bar click the 'Build All projects' button or
- 'Project/Build All projects' in the menu bar or
- Press 'F7'
B "= & A

At the end of the build process the workbench indicates whether the build
was successful or an error occurred:

Build

<0 BOOLSINT, OINT: 0 DIMT/REAL; 0 LINT/LREAL; 0 TIME; 0 STRING; - CRC = 65732383 »
On Line Change is disabled

< FPOUsz -0 programs, 0 sub-programs, 0 UDFEs >

Relocating code...
< Code CRC=69e23bb3 - File CRC=bdf24573 - Size=1448 »

Mo error detected

ICP DAS Page 63 Win-GRAFWorkbench User Manual
Version 1.0

4.6 Download Application

After the PLC application has been successfully compiled the application has to be
downloaded to the runtime in order to be executed. The Win-GRAF workbench
exchanges data with the runtime via TCP/IP communication.

1. The PLC application is
written and compiled in
the Win-GRAF workbench

< projectist >

2. Download compiled gt
application

71192.168.2.50:1101 - Tack2
1192.168.2.50:1102 - Taskd
1103 - Taskd

== rerym) ree h

llls Win-GRAF Runtime Utility [= | E -
Fie Runtime Help.
" 02

4 b ¥ /Stas'Configuration

Task# |Name | Thwead Status| TaskStaws | Cycle Time [ms]| Real Cycle Time [ms] | Max Cycle Time [ms]| Exe Cycles| O
Taskl: MainTask RUNNING RUNNING 0 0001000 0114000 1880613
Task 2 -

ask 3:

3. The Win-GRAF runtime
executes the application

i
Mk RUNTIME STATUS: RUNNING RUNTIME LICENSE: VALID

Figure 56: Edit and download PLC program

In order to establish a TCP/IP communication the workbench needs to know the IP
address and the socket port number of the target runtime. Consult the user manual of

the target device to determine how to set and get the communication configuration
data.

Procedure for downloading the compiled application:

Step 1: Set the communication parameters between workbench and runtime:
1. Workbench: Set the IP address and socket port number of the target
runtime.

ICP DAS Page 64 Win-GRAFWorkbench User Manual
Version 1.0

- Select 'Tools/Communication Settings...' from the menu or double
click the 'Offline' section in the status bar at the bottom of the
window.

- Edit IP address and port number of the target runtime. Both
parameters has to be separated by a colon. Only Ethernet TCP/IP
communication is being supported.

- Click 'OK’

Communication Settings

o
TE5 Runtime -

182 168.250:1100 D

Cancel

Browse

2.50:1100

A"

Help

The current communication setting is being displayed at the bottom of
the screen. The setting can be directly modified by double clicking the IP
address in the status bar.

Cross references ™ Callree Runtime Call stack Tasks

| OffLine 192.168.2.50:1100

Step 2: Runtime:

2. Make sure that the runtime on the target device has been started.
Reference the device user manual regarding the runtime startup
procedure setting.

3. Ensure that no IP collision exist on the network to prevent
communication errors.

Step 3: Download the built plc application to the runtime:
- Click the download button E&in the toolbar or select 'Project\Download All
Projects...".

ICP DAS Page 65 Win-GRAFWorkbench User Manual
Version 1.0

Step 4:

Step 5:

ICP DAS

- Click 'Load' to start the download process

Load ﬁr
[< project list > '] D

[#]192.168.2.51:1100 - MyFirstProject

Password ‘ [Load l | Cancel

Wait until the download has finished.

ATTENTION:
The runtime stops running the current application before application files are
downloaded.

Note:

- After the download process has completed the application does not
automatically restarted. This has to be done by the user. The user can
decide between a cold or warm start. During a cold restart the PLC
program begins again with the initial values while during a warm restart
the program uses retentive data.

- Some libraries, e.g. PLCopen library, do not support warm start. Therefore
make sure that all functions used in the source code support warm start
before activating this start type.

Create a online connection between workbench and the runtime by

- clicking the 'On Line' button on the toolbar Alor

- enter 'Ctrl+F5".

Start the PLC application in 'Cold start' mode:
Click the 'Start' B4 button in the toolbar and select the 'Cold start' option of
the 'Start mode' popup window and 'Start' the PLC application.

Page 66 Win-GRAFWorkbench User Manual
Version 1.0

Function are available to directly manipulate a task:
- Stop a task and set the it again into idle mode

-

Start mode

(@) Cold start- Don'tload RETAIN variakles
Cold start- Load RETAIMN variables

Hat restart

[T] startin Cycle Stepping mode

Start

Cancel

Possible workbench online status:

Button

Description

Al RUN manm

Pitae w9 @

Download was successful and
application runs correctly

 Commuionsmr |

* Runtime has not started
* Incorrect communication
parameters

2

A Mo application

* Application has not been
downloaded or started yet.
Output window shows more
information about the cause

- Pause a task for one cycle

- Online change the cycle time for each task

Button Description

ke Start or stop task

= Download program change
2 Online change

n Pause (cycle to cycle)

L) Change cycle time

Table 7: Task commands

Variable monitoring are supported for all tasks. Next to each variable in the PLC
program code the current value of the application in the runtime will be shown (Figure

57).

ICP DAS

Page 67

Win-GRAFWorkbench User Manual
Version 1.0

x| | | 5| #l & ME O F §o| B "= ARUN sesc g ud B

seee [Main]

Input1 = FALSE :E} Output = FALSE

Figure 57: Workbench in online mode

4.7 Debugging

The workbench allows the user to directly change the variable values while the PLC
application is running. The workbench has to be connected to the runtime to display the
current variable value. This chapter describes how to monitor the PLC program and
manipulate the variables via the workbench.

The following procedure describes how to directly modify a PLC variable via the
workbench. It is assumed that the PLC application has already been download and is
running.

Step 1: Establish a TCP/IP connection between the workbench and runtime:
Click the 'Online' button: | & " &[#]
After a connection has been established all the current values of each
variables are displayed next to the variable names. These variable values are
updates in each task cycle if the runtime is idling.

Step 2: Variable values can be directly changed via the workbench:
- Double click the 'Input1' variable next to the function block and click the

TRUE button of the popup window

ICP DAS Page 68 Win-GRAFWorkbench User Manual
Version 1.0

I A
=} il
— & |E|
o, muiZFALSE Oulput = FALSE
R Input2 = FAl 1nput1 - &
_ [TRUE Jl(1)]
{IFF
. [FALSE 03]
- Lock
|_
1k Unlock
|
-(:H T ——— i
<] b

The input variable changes now from FALSE to TRUE:

m

Output = FALSE
Input2 = FALSE

< (] b

All PLC data type can be manipulated in the described way. This allows direct
testing of the PLC program.

The Spylist allows the user to add a number of variables to a monitoring list and thereby
have a quick overview of all the relevant data. A variable is added to the Spylist by
dragging it from the program editor and dropping it over the Spylist view. The Spylist
shows the current variable value.

ICP DAS Page 69 Win-GRAFWorkbench User Manual
Version 1.0

Output = FALSE

Input2 = FALSE

im

7| Name |value |Type | Di...

4 [MyProg (*My first program®)
Input1 TRUE BOOL
Input2 BOOL
Qutput BOOL

@ Global variables
B RETAIN variables

| Hame | "alue | Type
Inputl TRUE BOOL
Input2 BOOL
Output FALSE BOOL

Define

Figure 58: Drag and drop variable to the Spylist

To change a variable value double click a value in the Spylist and enter a new value in

the in the popup window.

[Name [value [Type [Di |F
4 [MyProg (*My first program™)
Input1 TRUE BOOL
Input2 BOOL
Output BOOL

@ Global variables
i RETAIN variables

m Froperties
Mame [/alue | Type
Inputl TRUE BOOL
Input2 BOOL
Output BOOL

Figure 59: Change variable value via Spylist

ICP DAS Page 70

C =
-
B
- Output = FALSE
l— Input2 = FALSE
Ik
m
4
? Input2 @
1F - -,
| | TRLE) I&B}
Y Step 2:
T FALSE 0
i Modify the [e
(i value —
= Unlock
ESE 1l

Step 1:
Double click

<

1
i W Fublicwariahles

Define

Win-GRAFWorkbench User Manual
Version 1.0

o ~ [¥[Mame [Value |Type [Di. |F
4 [MyProg (*My first program™)
Input1 TRUE BOOL
”””””’”’”’”’”’””””””””””””. Input2 TRUE BOOL
Output TRUE BOOL
. @ Global variables
I RETAIN variables
i
lab:
2
L | Name ["alue | Type
T Inputl TRLE BOOL
| Input2 TRLE BOOL
{0 Output TRLE BOOL
_|
o
o - < | 1] 5
Ty 4 m 3 mw Publicvariables Define

5 Multi-Tasking

The Win-GRAF runtime supports multitasking programming. The advantage of a multi-
tasking projects is that different operation and action within an application can be
subdivided according their execution priority and be assigned and executed by a PLC
task with the required priority level. The prioritization of the different operation allows a
efficient execution of the application. For example a task responsible for controlling the
trajectory a servo motor has greater priority than a task which updates the HMI or OPC
UA client with the current motion control status such as current position, velocity, etc..
Too many task on the other hand slows down the system due to the switching time
between task. It is therefore important to find the right number of task to achieve the
optimal performance of the system.

The number of task supported by the Win-GRAF varies across the ICPDAS hardware
platforms. Refer to the user manual to determine the supported task number.

The user interface for the single- and multitasking environment provided by the
workbench differs. For example '"Workspace' and 'Output' window displays different
items for the different environment. Single tasking program can be edited in a
multitasking environment but some single tasking functions (e.g. redundancy) are not
supported.

Is important to note that
= a multi-tasking application can only run on a target platform which supports multi-

ICP DAS Page 71 Win-GRAFWorkbench User Manual
Version 1.0

tasking functionality.

a single-tasking application can run on a multi-tasking platform

the multi-tasking environment does not support redundancy. Use the single-tasking
workbench environment to implement redundancy functions if the target system
support redundancy.

the multi-tasking environment allows you to implement a single-tasking application
without redundancy support

5.1 Create a Project

Create a multitasking project procedure:
Step 1: Open the project list to set the destination folder and name of the project and

select the number of tasks. This can be done in two ways:
1. Viathe 'Start Page' by clicking the green 'Create Multitask Project

command button.
Start Page

Welcome to Win-GRAF Workbench

Tutorial
Win-GRAF_User_Manual_en.pdf

2. By executing the 'File / New project list' menu command

ICP DAS Page 72 Win-GRAFWorkbench User Manual

Version 1.0

File | View Tools Window

i | New Project List.. ="
Open Project List »

g Add New Project...
Add Existing Project »

Print Setup...

[+ Exit

Step 2: Enter the destination folder, project name and select the type of runtime. The
runtime type basically determines the number of tasks used for the
application. Confirm the setting with 'OK".

(Create a new project list {ﬁw
Destination folder: C:\Users'mmlls\Documents\WinGRAF 9.4\FirstProg = E
Name: MyFirstApp
Type: Multitask project list: Win 4 tasks vl

l 0K] l Cancel]

A workspace with the selected number of tasks and a shared library is created:

ICP DAS Page 73 Win-GRAFWorkbench User Manual
Version 1.0

File Edit View Insert Project Tools Window Help

TR E =¥ 0 =X X[S8 & mainTask WHEMEe | @A =tmA
Workspace
PR 1ain task
Frograms

% Fieldbus Configurations
%13 Binding Configuration
i os
o] Wariables
Bl Task?
Bl Taski
Bl Task4
= Library
Blocks
§q Global defines
b E Types
(Al Frojects)

b T v v

Runtirme Call

Ready | Full | Default | | DfFLine| i

* Each 'task' appears as a separate programming environment, including POUs,
variables, 1/0 and Fieldbus configurations.

* You cannot remove or add tasks from the 'Workspace' after a project has been
created. Only the 'Main task' will start automatically once the application starts
executing. Within in the main task you have to programmable set the priority
'SYSCFGTASK(TaskNo)' and start the execution 'SYSSTARTTASK(TaskNo)' of the other
tasks. Therefore if you do not want to use some tasks listed in the 'Workspace' just
do not execute it by not calling 'SYSSTARTTASK(TaskNo)' in any of the active tasks
and it will remain inactive.

* You can add a program to each task and implement the execution logic.

5.2 Create and Edit a Program

This chapter describes how to proceed to implement a PLC program using the multi-
tasking environment.

Step 1: Insert a new program to implement the PLC logic. Right click the program
folder of the main task and select 'Insert New Program...' from the popup
menu.

ICP DAS Page 74 Win-GRAFWorkbench User Manual
Version 1.0

File Edit View Insert Project Tools Window Help

| B = %[2 X x| | | MainTask
Workspace

4 [E] Main task

% Fieldbus Configurations Rename..

Binding Configuration
b E E Insert New Folder

> Profiles
M yos =111 Insert New Program...
(o1 Wariables @ Shortcuts »

4 [3 Taske Insert New Item...
Frograms
Fieldbus Configurations ¥ Delete

[Yul .

Step 2: Make the following entries:

- Enter a name for the program

- Give a short program description (optional)

- Select one of the five IEC61131 programming languages (SFC, FBD, LD, ST,
IL) for the program. Remember that more than one program can be added
to the task. Each program can be programmed in a different language.

For this tutorial the 'FBD-Function Block Diagram (CFC)' is selected. Add the

program to the workspace by clicking 'OK".

ICP DAS Page 75 Win-GRAFWorkbench User Manual
Version 1.0

Step 3:

ICP DAS

H o
New progra ;J

Properties |Advanced | Descriptjon|

Program
MName: MyProg
Description: My first program

Programming language

SFC - Sequential Function Chart - Grid editor

SFC - Sequential Function Chart - Free form editor
LD - Ladder Diagram

ST - Structured Text

IL - Instruction List (deprecated)
PACKML - PACKML State Machine

Execution style

(@) Main program

(") Sub-program

(7) UDFB (User Defined Function Black)
Child SFC program

Child of [v

| ok || cancel || Hep

Programs must have unique names. The name cannot be a reserved keyword
of the programming languages and cannot have the same name as a function
or function block. A variable should not have the same name as a declared
data type. The name of a program should begin either by a letter or an
underscore ('_'), followed by letters, digits or underscores. It is not allowed to
put two consecutive underscores within a name. Naming is case insensitive.

Two names with different cases are considered as the same.

Double click the added program in the workspace to open the program editor:

Page 76 Win-GRAFWorkbench User Manual

Version 1.0

Step 4:

ICP DAS

File Edit View Insert Prgject Tools
|WE = ¥ H o XX ol

| MainTask

Workspace
Fl @ Main task
P Frograms
[byPrag [y first progranm®)
#s Fieldhus Configurations
%13 Binding Configuration
£ Profiles
M yos
(el Wariahles
4 [F Task?
Programs

Window Help

& WM e o @

Note:
Double click on the program
name and not on the icon

The PLC logic can now be edited using the FBD language. In the following steps
it is demonstrated how to add a function block to the editor and declare its in-
and output variables.

File Edit View Insert Project Tools Window Help

% Fieldbus Configurations
%13 Binding Configuration

| W B = %D o X X | MainTask MEWE L@ "=5A
Workspace |
4 [Main task N = « |7 Name [Type | Di
4 |5 Programs I = = O MyProg (*My first pro
) MiyProg My first progra = @ Global variables
Fieldbus Configurations o lE RETAIN variables
%1% Binding Configuration
M yos =1 <« [;
(el Wariahles I 4 b Variables‘w
F @TaskE = I> (A”) "
Frograrms o, I Advanced (=
Fieldbus Configurations — N lak: I Arithmetic
%1% Binding Configuration > [Arrays
i yos L b Booleans
(el Wariables I
4 [F Task3
Frograms

| OffLine 12] o

Ready

| Full

| Default |

Add programming logic to the program. The procedure for declaring variable
and adding function blocks to the editor is the same as described in chapter
4.2 for single-tasking programming environment. This example only
implements a 'AND' function as shown in chapter 4.2.

Win-GRAFWorkbench User Manual
Version 1.0

Page 77

0 B MEERS [Tvpe i
o 4 [Main
= & Input1 BOOL
Input2 BOOL
= Input1 — Qutput
—= . iy Output BOOL

@ Global variables
i RETAIN variables

5.3 Task Setting

The cycle of each task has to be directly set via the workbench by right clicking the task
name and selection 'Task...' from the pop-up menu. Double click the period column next
to the task to enter the cycle time. If only one task is being used then the 'Run as fast as
possible' option can be used (Figure 60). Chapter 4.4 provides more information
regarding the task and program execution settings.

rTasks I [i_hy

| Task | Period |
MainTask 100 ms
_ lasks 200 rr

MainTask

() Run as fast as possible K

1y’

@ Triggered Cancel i
Cycle timing: 100 ms -

|

Figure 60: Task cycle time configuration

In a multi-tasking environment the 'Main task' is the first task to be started when the
PLC program starts to execute. The other tasks has to be started from the 'Main task' or
from a task which is already running by calling the SYSSTARTTASK () function.
Additional functions are provided for configuring and terminating each task within the
PLC program (Figure 61).

ICP DAS Page 78 Win-GRAFWorkbench User Manual
Version 1.0

Strings

Tasks

TF SYSCFGTASK (*set current task settings®)
T+ SvSSTARTTASK (“start atask®)

TF SYSSTOFTASKE (*stop atask®)

TCP-F

Text buffers

Fublicwanahkles Define
Figure 61: Task dedicated functions

m_|

1

EMLIKA

The task library provides the function for configuring and controlling a task:
* To start another task:

SYSSTARTTASK (Task (*DINT*), Warm (*BOOL*)

)

This function should only be called once for starting a task.

* To stop a running task:
SYSSTOPTASK (Task (*DINT*))

A task can be stopped by any running task.
* Configure a running task:

SYSCFGTASK (Prio (*DINT*), Opts (*STRING¥*)

)

This function should only be called after a task has been started. It can only be
called by a program owned by the task to be configured. It sets the task priority
inside a running task. The 'Prio' and 'Opts' variable definition depends on the target
platform.

For Windows PC:

- Prio

ICP DAS

Windows supports the following priority classes:

Priority Classes

Description

IDLE_PRIORITY_CLASS

BELOW_NORMAL_PRIORITY_CLASS

NORMAL_PRIORITY_CLASS

ABOVE_NORMAL_PRIORITY_CLASS

HIGH_PRIORITY_CLASS

REALTIME_PRIORITY_CLASS

Default setting of the Win-GRAF runtime

By default the priority class of the Win-GRAF runtime (PC) is set to
REALTIME_PRIORITY_CLASS. This setting is fixed and can not be changed.

Thread Priority Level Prio Description
THREAD_PRIORITY_IDLE -15
THREAD_PRIORITY_LOWEST -2
THREAD_PRIORITY_BELOW_NORMAL -1
THREAD_PRIORITY_NORMAL 0

Page 79

Win-GRAFWorkbench User Manual
Version 1.0

THREAD_PRIORITY_ABOVE_NORMAL 1
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_TIME_CRITICAL 15

All tasks are created using THREAD_PRIORITY_TIME_CRITICAL. The
SYSCFGTASK internally calls the SetThreadPriority() Windows API to adjust
its priority relative to other threads in the process. To keep the priority setting
simple it is suggested to just select between THREAD_PRIORITY_NORMAL for
the normal task and THREAD_PRIORITY_TIME_CRITICAL for the high priority
task.

- Opts:
This parameter is not supported by the Win-GRAF runtime for Windows.
Therefore just enter an empty string (').

Each task is identified by a number from 1 to N (1 is the main task). Predefined aliases
are configured in the shared library:

| W= = X[=2 X=X | | MainTask HEWME L B =mAa
Workspace
4 = Library #define TASKLl 1
Blocks #define TASKZ2 2

#define TRSK3 3

§: P Global defines .
. #define TASK4

EE Tvpes
{All Projects)
Figure 62: Task definitions

[1=9

You cannot remove or add tasks. The number of available tasks is defined by the
runtime system. If a task is unused, it means that it is simply not started by the main
task.

Example of creating a multitasking project:
This example uses a startup exception program for starting the other task in the '"Main
task'. Task can be started and terminated from any program within the main task.

Step 1: First add program(s) to the tasks which will be used for the PLC application. It
is necessary to always add at least one program to the Main task, otherwise
the PLC application will not run. The other task can remain empty if they are
not used. In this example a program is added to all four tasks.

ICP DAS Page 80 Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

ICP DAS

Workspace
4 [Z] Main task
F Programs
«
Fieldbus Configurations
%8 Binding Configuration
e Prafiles
W os
Lol Wariahles
4 [F Taskz
V' Frograms &
Fieldbus Configurations
¥4 Binding Configuration
e Prafiles
W os

(o1 Wariahles

4[5 Task3
F Programs
a
#s Fieldbus Canfigurations
%1% Binding Configuration
£ Prafiles
i vos
(ui Variables
4[5 Tasks
4 Programs
[Brere Je—
#s Fieldbus Configurations
#1§ Binding Configuration
£ Profiles
i os

(ot Variables

Add a Startup exception program to the 'Main task":

1. Create an exception program in the Main task and assign it a name
('pStartup'). The exception program is created like a normal program and
can have any name and can be programmed in any language except SFC.

2. Addtheline #OnStartup ProgramName to the define editor of the
startup exception program. In this example the startup program name is
'‘pStartup', therefore the line '#OnStartup pStartup'hasto be

added.
3. Callthe function SYSSTARTTASK () to start the execution of the specified
task.
Workspace
4 [Z] Main task - #0nStartup pStartup @
4 Frograms @ it
B pStarup *Startup except... f e
[T1_Prog1 i=
% Fieldbus Configurations E
%1% Binding Caonfiguration h:1
£ Prafiles
i os D
{2} Wariables s= 4 I
b5 Taske __ 1 @
b B Tasks = 2
b [Taskd 3 /Y :MPCRTP._‘_\"_:'! .
b W@ Library é_l j :: Call the SEIJS Sta:’_c':‘ask(] for
(Al Projects) E o each function only once .
3 OK := SysStartTask (TRSKZ, FLLSE);
7 OK := SysStartTask (TASK3, FLLSE);
g OK := SysStartTask (TASK4, FRALSE);
Page 81 Win-GRAFWorkbench User Manual

Version 1.0

Step 3:

Set the priority of each task

The task priority can only be set by a program which is controlled by the task
itself. For example: In order to set the priority of the 'Task2' it is necessary to
call the SYSCFGTASK(Prio, Opts) in one of the 'Task2' program ('T2_Progl')
once. It is possible to change the task priority again if required. The task starts
with the default priority and continuous to run at this priority if not set
otherwise.

The workbench displays the running task in the output window:
Tasks

& MainTask EUN nm fgre e g §
fo/ | ocation | Status | Type
kainTask
Tasks RLUMN
Task3 RLUMN
Taskd RLUMN

Build

It is possible to manually start and stop task using the tools shown in the
'Tasks' tab of the output window.

5.4 Data Sharing between Tasks

Global and retain variables can be shared among tasks by declaring it as a public
variable. Enable the check box in the public column next to the declared variable in the
variable editor. The shared variable can both be read and modified by all task (Figure

63).
" Mame | Tvpe | [Public | Adtrib. |
4 (@ Global variables
gTask1Var0 UDINT R
gTask1Vvar1 UDINT
gTask1Var2 UDINT ‘
gTask1Var3 UDINT
gTask1Vard UDINT

Figure 63: Public variable with read and write access

If the variable should only to be modified by the task in which it was declared then
select the 'Read Only' attribute. This attribute setting allows only the owner task to
change the variable and restricts the other tasks to read access only (Figure 64).

ICP DAS

Page 82 Win-GRAFWorkbench User Manual
Version 1.0

[Name [Type || Public Adtrib. |
4 (@) Global variables
gTask1Var(Q UDINT Read Only
glask1Var1 UDINT Read Only /
gTask1Var2 UDINT Read Only
glask1Var3 UDINT Read Only
gTask1Var4 UDINT Read Only

Figure 64: Public variable with read access

Shared variables together with the owner task are listed in the 'Public Variables' tab of

the Info window.

Figure 65: List of shared variables from all task

Name & [Value | Crwner Al |
gTasklVarl MainTask
gTasklvan MainTask
gTasklVar? MainTask
gTasklVar3 MainTask
gTasklard MainTask
g TaskWarl Task?
gTaskVarl Task?
gTaskVar? Task?
gTaskVard Task?
gTaskVard Task?
Blocks Spylist EEEITITRYUELIEEY Define EMNUM

Variables published by other tasks are also available from the variable selection box.

Shared variables from other tasks are indicated by a dark cyan three dot icon:

@ “ariables: (all
------ O dwCounter

------ O flgTask

------ By gTasklvarl
------ By gTasklvarl
------ By gTasklvar?
------ By gTasklvard

----- gTaskvar?
----- § gTaskvard
----- 4 gTaskvard

S

1

‘/

Wariables: (all)

[| Local variables onky
[Hide FB instances

.

Figure 66:Shared variables from other

ICP DAS

Page 83

Win-GRAFWorkbench User Manual
Version 1.0

The amount of memory available for shared variables is limited to 65536 bytes for the
Win-GRAF runtime. At the end of each build process the workbench shows the number
of bytes used for the public variables by the PLC program:

Build

Relocating code...

< Code CRC=76354106 - File CRC=eb16befc - Size=1360 »
<1 FOUs -1 programs. 0 sub-programs, 0 UDFEs >

Mo errar detected

r'd

Mermary used for public variables = 40/ 1024 (bytes)

0ss references

Figure 67: Size of public variables in byte

Call tree Runtire

5.5 Get System Information

The 'GetSYSINFO()' function provides additional information about the current state of
the runtime and its task. Not all types are supported by every platform. Table 8 list the
type of available system information and Figure 68 shows its implementation in

structured text diagram.

Info Parameter

Description

_SYSINFO_TRIGGER_MICROS

Programmed cycle time in micro-seconds.

_SYSINFO_TRIGGER_MS

Programmed cycle time in milliseconds.

_SYSINFO_CYCLETIME_MICROS

Duration of the previous cycle in micro-seconds.

_SYSINFO_CYCLETIME_MS

Duration of the previous cycle in milliseconds.

_SYSINFO_CYCLEMAX_MICROS

Maximum detected cycle time in micro-seconds.

_SYSINFO_CYCLEMAX_MS

Maximum detected cycle time in milliseconds.

_SYSINFO_CYCLESTAMP_MS

Time stamp of the current cycle in milliseconds (platform
dependent).

_SYSINFO_CYCLEOVERFLOWS

Number of detected cycle time overflows.

_SYSINFO_CYCLECOUNT

Counter of cycles.

_SYSINFO_APPVERSION

Version number of the application.

_SYSINFO_APPSTAMP

Compiling date stamp of the application.

_SYSINFO_CODECRC

CRC of the application code.

_SYSINFO_DATACRC

CRC of the application symbols.

_SYSINFO_FREEHEAP

Available space in memory heap (bytes)

_SYSINFO_DBSIZE

Space used in RAM (bytes)

_SYSINFO_ELAPSED

Seconds elapsed since startup

_SYSINFO_CHANGE_CYCLE

Indicates a cycle just after an On Line Change

ICP DAS

Win-GRAFWorkbench User Manual
Version 1.0

Page 84

_SYSINFO_WARMSTART Non zero if RETAIN variables were loaded at the last start
_SYSINFO_NBLOCKED Number of locked variables
_SYSINFO_NBBREAKPOINTS Number of installed breakpoints
_SYSINFO_BIGENDIAN Non zero if the runtime processor is big endian
_SYSINFO_DEMOAPP Non zero if the application was compiled in DEMO mode
_SYSINFO_SIMUL Returns 0 in case of a normal runtime.

Returns 1 in case of a simulator.

Table 8: System information

//Programmed cycle time of this Task [milliseconds]:
diTriggerTj_me = GETSYSINFOC (_SYSINFO_TRIGGER_MS};

//Duration of the previous cycle [microseconds]:
diPrevacleTj_me_us = GETSYSINEC (_SYSINFO_CYCLETI]!'IE_MICROS],'

//Duration of the previous cycle [milliseconds]:
diPrevacleTj_me_ms = GETSYSINFC (_SYSINFO_CYCLETIME‘._MS];

//Maximum detected cycle time by executing this Task [microseconds]:
diManycleTj_me_us 1= GETSYSINFOC (_SYSINFO_CYCLEMAX_MICROS],'

//Maximum detected cycle time by executing this Task [milliseconds]:

diManycleije_ms = GETSYSINFC (_SYSINFO_CYCLEMAX_MS};

//IMPORTENT! !

s —-Checks whether the time needed to execute the code of this TASK
s exceeds the set cycle time

//Number of detected cycle time overflows.:

diCycleOverflows := GETSYSINFO (_SYSINFO_CYCLEOVERFLOWS];

//Counter of cycles. The number of cycles executed for this Task:
diCycleCount := GETSYSINFQC (_SYSINFO_CYCLECOUNT);

Figure 68: Reading system information in a FBD language

5.6 Build/Compile Application

The workbench build procedure of the multi-tasking application is nearly identical to the
single-tasking application as described in chapter 4.5. The only difference is that it is
necessary to configure each task separately whether it should be compiled in release or
debug mode.

In the 'Project settings' the task to be set has to be selected from the drop list before

configuring the compiling mode (Figure 69).

ICP DAS Page 85 Win-GRAFWorkbench User Manual
Version 1.0

-

Project settings —— {i—hj
- C:\Users\r \MainTask

M | Nare [\alue |
Esnmt;ir:iig W Cycle time: 10ms
Test B Compiling
Advanced [il. Store complexvariables in a separate segment ves
(Al = On Line change INACTIVE
by ersion W34 -2021M111715:29
3 Libraries Edit...
3 Extern ohjects Edit...
L Code Checker rules Edit...
+ “ersion control [§[a]

DEBUG maode enables breakpoints and step by step debugging.
This option is time consuming.

Cancel

ik

Figure 69: Compiling mode setting

5.7 Download Application

Only the difference between single- and multi-tasking environment will be point out in
this chapter. For more information see chapter 4.6.

In order to establish a TCP/IP communication the workbench needs to know the IP
address and the socket port number of the target runtime. Each PLC task communicate
through its own port number. By default the port number of the 'Main task' is set to
1100. The port number of the each task are incremented by one in the sequential order
of the task number: port 1101 for Task2, port 1102 for Task3, etc.. If required for some
platforms the port number of the '"Main task' and thereby the other tasks can be
changed via the Win-GRAF Runtime Utility.

Download a built multi-tasking application to the runtime:

Step 1: Click the download button Eiin the toolbar or select 'Project\Download All
Projects...".
1. The prompted dialog list all the task from the project to be downloaded.
2. Click 'Load' button to start the download process. Wait until the download

ICP DAS Page 86 Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

Step 3:

ICP DAS

has finished.

Load

7 =)

I< project list >

- MainTask
| - Task2

V/|192.168.2.50:1102 - Task3

/|192.168.2.50:1103 - Task4

Password ‘

[Load l | Cancel

ATTENTION:
The runtime stops all running tasks before the download process starts.

Note:

By default all tasks files are selected for download. For large programs to
reduce the download time deselect the task files which have not been
changed since the last download.
After the download process has been completed the application does not
automatically restarted. This has to be done by the user. The user can
decide between a cold or warm restart. During a cold restart the PLC
program begins again with the initial values while during a warm restart
the program uses retentive data.

Connect the workbench to the runtime via Ethernet by clicking the 'On Line'

button ™' on the toolbar or using the keyboard shortcut 'Ctrl/+F5'.
Start the PLC application in 'Cold start' mode:

Normally the 'Start mode' window automatically pops up right after creating a
online connection. In the 'Start mode' window select the first 'Cold start'
ppﬁon and click the 'Start' button. Now the PLC application star'Es running.

Start mode

Q) Cold start- Dan'tload RETAIN variables
() Cold start - Load RETAIM variables Cancel

) Hot restart

[T] startin Cycle Stepping mode

Start

i

If the 'Start mode’ window does not pop up during the previous step, then you

Page 87 Win-GRAFWorkbench User Manual

Version 1.0

can open this window as follows:
- Gotothe 'Tasks' tab of output window at the bottom. All tasks are shown

in idle mode.

Tasks

& MainTask Idle Ba

o | ocation | Status | Type
kMainTask
Tasks Idle
Task3 Idle
Taskd Idle

u Build eferences Call tree Runtirme Call stack

First select the 'MainTask' item by clicking it and click the traffic light
button. Now the 'Start mode' window should pops up, which allows you to
select the start mode of the PLC application.

The main task will start executing the other tasks if the function SYSSTARTTASK() is being
called from the main task. Each task can be manually started by selecting it in the 'Tasks'
tab output window and activating the traffic light button.

Tasks

| & MainTask RUN =scs Pgesg m §

fo/ | ocation | Status | Type
Tasks RLUMN
Task3 RLUMN
Taskd RLUMN

Runtirme Call stack

55 Digital
Figure 70: Tasks status tab

As for single-tasking the same function are available to directly manipulate each task:
- Stop atask and set the it again into idle mode

- Pause a task for one cycle

- Online change the cycle time for each task

First select the task you like to control in the 'Tasks' tab (Figure 70) and then activate
one of the commands (Table 9).

Button Description
ke Start or stop task
h Download program change
2 Online change
ICP DAS Page 88 Win-GRAFWorkbench User Manual

Version 1.0

n Pause (cycle to cycle)

] Change cycle time
Table 9: Task commands

Variable monitoring are supported for all tasks. In the program code the current value of
each variable will be shown. For example in the FBD editor all the current in- and output
variable values are shown next to the function block and in the variable view (Figure 71).
Messages from each tasks are displayed in the output window.

File Edit View Insert Project Tools Window Help
B = Y0 XX S92 @WEme &0
Workspace weee [C:\Users\imartin\Documents\WinGRAF 9.3\FirstProg\Tutorial1\Main Task - MyProg] [HL P4
4 Main task [RUN] - = [7[Hame [value [Type |
4 Pragrams = [E} 4 1 MyProg ("My first program -
S MyProg ("My first progranm®) = Input1 BOOL
% Fieldbus Configurations o Input2 BOOL =
%3 Binding Canfiguration z Output BooL L
Profil . Global variables
1;; Ig s . Input1 = FALSE 2 " Output = FALSE @ Slobalivaiati -
& _ <« r
{ai Variahles = haLE =S b
4 | Taskz[idie] =
b (Al -
Programs ks b Used ‘T‘
Fieldbus Configurations _N> b '(A;E) 4 =
%3 Binding Configuration 3 _VEHEE
) F b Avithmetic
€ Profiles I b N
T yos | revs
3 Booleans
{ai Variahles O b Clock
4 | Taskd[die] 4 a v i
Programs d [111] r
Fieldbus Configurations Tasks
%3 Binding Configuration . MainTask RUN seec BEEEE MW
€ Prafiles fo[Location | Status | Type RUN
1l yos Cycle time (ms):
L4 Last=0
{zi Variables Task? Idle Allowed = 0
4 Taskd[Idle] Task3 Idle Maximum = 0
Frograms Taskd Idle Overflow = 0
Fieldbus Configurations .
Local application:
%3 Binding Configuration V2 - 15/02/2020 -
€ Profiles - o . o i
1 v ~f ¢ Calltree Runtirne C =8 Tasks, Dic Prompt — HMI Cot
Ready | Default | RUN (192.168.2.50:1100) | Al 0,0 | se7x22 | 0,0 #i1

Figure 71: Workbench in online mode

5.8 Debugging

The debugging function is identical to the single-tasking workbench environment (see
chapter 4.7).

6 Editing Programs

The programming environment provide language dedicated editors for:

ICP DAS Page 89 Win-GRAFWorkbench User Manual
Version 1.0

- Structure Text (ST)

- Function Block Diagram (FBD)

- Ladder Diagram (LD)

- Sequential Function Chart (SFC) and
- Instruction List (IL)

PLC Programming
Languages
Ladder Diagram (LD) Instruction List (IL)
Structured Text (ST) f)‘i':;io; g;lg;l;)

Sequential Function
Charts (SFC)

The editor provides you the ideal programming environment with drag and drop
features:

- Drag a variable from the list to the program to insert it.

- Drag a definition to the program to insert its name.

- Drag a block in the program to insert it.

- Drag a function block to the variable list to declare an instance.

- Drag a variable from the program or from the variable list to the spy list.

- Double-click on a line of the output window to highlight the corresponding code.

6.1 Structured Text (ST) and Instruction List (IL) Editor

The ST / IL editor is a powerful language sensitive text editor dedicated to IEC 61131-3
languages. The editor supports advanced graphic features such as drag and drop, syntax
coloring and active tooltips for efficient input and test of programs in ST and IL.

ICP DAS Page 90 Win-GRAFWorkbench User Manual
Version 1.0

Elinker (TRUE. t#Z=):
Trigger (Blinker . Q):

bSig := Trigger.qQ:

Counter |

bSig.
nhot bCommand .
255
iValus := Counter . CV;

S T

{# blinking input #)

(#* reset the counter if command =)

Figure 72: Structure text edi

tor

The ST / IL editor also supports context sensitive help. Place the caret on a keyword or
on the name of function or function block and hit F1 key to get help about the text.

In ST and IL Language you can use the following commands of the vertical toolbar:

Icon Function

Description

- Insert Variable

cursor position.

Opens the dialog to create or insert a variable at the current

iF Insert FB

Opens the Select dialog, to insert a function block.

Toen List Key Words

program:
- #define

- ’Variables: (all)

- Keywords and functions

Opens the dialog to select the selected content to add it to the

Hitclef

@ #else
- #Fendif
@ #ifcet
..m _PRF
o _PRPPATH
@ ahs
- @ absL
L = ua
- acosk
- AND
-l ANDEA
I ANCL BYTE

@ Keywards and functions

[m] »

Keywords and functions

Kewwords and functions
Wariables: (all)

[

Insert comment
line (Ctrl+ K)

Changes an entry to an comment.
Add two forward slashes '//' to the beginning of the line.

For example mark the lines 1 to 4 with the mouse and click the
insert comment button to add a double forward slash at the
beginning of the line

ICP DAS

Page 91

Win-GRAFWorkbench User Manual
Version 1.0

1 / fuVar := uVar +1;
2 //Ndivarl := REGPRARGET('RegDintl', -1 };
2
4 /Muivarl = uivarl +1;
= Remove comment | Changes a comment to an normal entry.
(Ctrl + Shift + K)
For example: Mark the line 1 to 4 and click the 'Remove
comment' button to remove the double forward slashes at the
line start
1 //fuvar := uvVar +1;
2 //divarl REGPARGET ('"RegDintl', -1);
2
4 //uivarl := uivarl +1;
1 uvar := uVar +1;
2 divarl := REGPARGET('RegDintl', -1 };
2
4 uivarl := uivarl +1;
bil Show Value in Text | If enabled, the value of a variable is shown next to its name in
the code.
LS Show Expression Allows to see a alternative graphical view for regular expressions
in your code.
1. Select the expression
2. Press Show Expression to open a popup window
3. that shows the expression in a graphical view.
:1 f * fizi:z:dz:zre save Path)H @
8 flgsave := false:
o ENPLIE L saveRETAING save Path) [=]
e T e B E]
13 flg ™ - @ W
14 END_IF;
= Indent text Indents the selected text.
= Group/Ungroup Allows to group or ungroup text lines, based on used control
Lines structures (e.g. IF-ELSE) or multi-line comments. Grouped lines
can be collapsed and expanded in the editors display.
ICP DAS Page 92 Win-GRAFWorkbench User Manual

Version 1.0

24 |EH|IF flghctive

25| 1 uivarl :

26| -|END IF;

27

28|H|IF uivarl > 1000
2901 uivarl :

30| -|END_IF;

TREUE THEN
uivarl +1;

THEN

Table 10: Vertical toolbar for ST and IL language

6.1.1 ST / IL Language Selection

The Workbench allows you to mix ST and IL languages in textual program. ST is the
default language. When you enter IL instructions, the program must be entered
between 'BEGIN_IL' and 'END_IL" keywords, such as in the following example:

BEGIN TIL
1D varl
ST var?
END TL

Figure 73: IL example

6.1.2 ST / IL Syntax Coloring

The ST/ IL editor supports syntax coloring according to the selected programming
language (ST or IL). The editor uses different colors for the following kind of words:

Counter

bSig.
(::}——————nat bCommand,
255

{(# blinking input #*)

),\®
i¥alue = Counter . CV:

Figure 74: Editor coloring

ICP DAS

Page 93

Win-GRAFWorkbench User Manual
Version 1.0

PwnNhpE

Comments

Default (identifiers, separators...)
Reserved keywords of the language
Constant expressions

The set of colors used can be changed from the Tools/Options menu command.

W Options ﬁ
R Window Description | Color | Additional ... |
A Characterfonts 4 Common -
Editing Drawing (defaul) |] E
Z Colars Diagrams: dragged area _
l¥ Diagrams TRUE state _
b Prefixes FALSE state I:|
Toaltips STOPPED state]
Extensions FPAUSED state _
Comments _
Mot supported by current configurati... _
Text: keywords _
Text: constant expressions _
Track changes I:|
4 FED
FBD: background I:|
FEBD: Arc color for type error _ i
This is the general look and feel of the IDE.
L If you change this option, the workbench will have to be re-started.
e

Figure 75: Color setting option

6.1.2.1Intellisense

Some more features are available for smart editing and are referred to as ' IntelliSense’.
IntelliSense can be memory consuming and can be activated or deactivated from the
Tools/Options menu command. After activating or de-activating the IntelliSense, you

must close and reopen your project list.

Figure 76: Activate IntelliSense

The following features are available when IntelliSense is activated:

1. Conditional compiling coloring
Parts of code which should not be compiled can be set by conditional #ifdef
directives. Code which are shown in grey are not being compiled. Figure 77 shows

ICP DAS

Page 94

Win-GRAFWorkbench User Manual

Version 1.0

that the active part of the program changes once the conditional directive changes.

= #define MY CONDITION o //#define MY CONDITION
O !
Then I
2 o
b1, |m (HEI |m
e 24 B #1fdef MY CONDITION o, 24 O #ifdef MY CONDITION
= 25 | _._ 25 |
a 26 | IF flghctive = TRUE THEN||= 56 | = TRUE THEN
= 27 | uivarl := uivarl +1; || 27 | uivarl +1;
23 | END IE; 28 |
25 | 29 |
30 | #else 30 | #else
31 31 |
32 32 | IF uivarl > 1000 THEN
3z 33 1 uivarl := 0;
34 1 34 | END_IF;
35 | a5 |
36 - #endif 36 L #endif

Figure 77: Conditional directives

The #ifdef identifier statement is equivalent to #ifdef 1 when identifier has
been defined. It's equivalent to #ifdef 0 when identifier has not been defined.

These directives check only for the presence or absence of identifiers defined with
#define.

The editor for defining the local preprocessor statements can be opened by right
clicking the ST Editor and selecting 'Show/Hide Local Defines' from the popup box:

Insert/Set Variable...
Insert/Set Function Block...

Find/Replace...
Find Next

e R, S

[5. Show/Hide Local Defines ||
Send to Spy

Go to Variable Definition

Browse Variable 4

Figure 78: Showing/Hiding the editor for defining local identifiers

Auto-indentation

Lines are automatically formatted (indented) on the left as you enter structured ST
statements.

ICP DAS Page 95 Win-GRAFWorkbench User Manual
Version 1.0

[IF flgSave = true Then

7 IsSaved := F SAVERETAIN(Save Path);
g8 flgSave := false;
9 END IF;

IF flgLoad = true Then

12 IsLoaded := F _LOADRETAIN(Load Path };
13 flgLoad := false;
14 END IF;

Auto-completion of ST statements

On an empty line, just enter the main keyword of a ST statement such as 'for’, 'if'...
and immediately press the ENTER key. The whole statement will be completed
including comments that will guide you through the syntax. The caret is
automatically placed where you must enter the first required term or condition.

Example:
- Enter 'if' and press the ENTER key:
IF (¥ condition : BOQL *) THEN

ELSE

END IF;

- Enter for"and press the ENTER key:

FOR (* DINT war *) := (*¥ minimum : DINT *) TC (* maximum : DINT *) BY 1 DO

END FOR;

Auto-declaration of missing symbols
When you press ENTER at the end of a line containing an unknown variable symbol,
you will be prompted for declaring it immediately.

Example:
Enter a variable name ‘myVariable' and press ENTER. A popup window shows up
which allows you to do the necessary variable declaration:

ICP DAS Page 96 Win-GRAFWorkbench User Manual
Version 1.0

== -
5:1 myVariable Wifa myVariable Lﬁ
15
3;' This symbol does not exist. Possible actions:
37 Fename wvariable
“zz 0 Declare new wvariable
40 Mame: S ariable
Type: -
Where: Frogl v
Description:
Init walue:
=zer Group: A
Tang:
Advanced: [|Read Only [CJiNouT Dirm.: O =
[] External Y
Fewer] [Yes] [Mo l l Cancel] ’ Help

5. Lineindentation

When lines are selected, you can automatically indent them. Press TAB or
Shift+TAB keys to shift the lines to the left or to the right, by adding or removing

blank characters on the left.

6.1.2.2 Auto Completion of Words

The ST/ IL editor includes commands for automatic completion of typed words,
according to declared variables and data types. The following features are available:

1. Auto completion of a variable name

If you enter the first letters of a variable name, you can hit the CTRL+SPACE key for
automatically completing the name. A popup list is displayed with possible choices

if several declared variable names match the type characters.

Example:

ICP DAS Page 97

Win-GRAFWorkbench User Manual

Version 1.0

Axis] v X

Yariables: (all)

|Variahles: fal) ﬂ
[Localvaiables onk
[Hide FB instances

——"

Auto-completion of function calls

Enter the name of a function simply followed by an opening parenthesis and
immediately press the ENTER key. The call will be completed with the appropriate
argument list including comments and possibly default values so that you are
guided through the list of values to be passed to the called function.

Example:
Enter the Function name followed by a parenthesis 'SYSSTARTTASK()'and press
enter:
SYSSTRRTTASK (
(* Task : DINT *) ,
(* Warm : BOQL *)

)i

Selection of FB member

When you type the name of a function block instance (use either as an instance or
a data structure), pressing the point "' after the name of the instance opens a
popup list with the names of possible members.

Example:
- 32
a 33 B IF uivarl > 1000 THEN
L. 34 | uivarl := 0;
— 35 - END IF;
= 36
= 37 Inst ACTIVERTSWITCH. 1
bid 38
= 40 R
is 41 =
= ---EI Inst_MC_MOWVEABSOLUTE N
I M el nadad

|Variables: (all v|

[Local variables anly

[]Hide FB instances

b <
ICP DAS Page 98 Win-GRAFWorkbench User Manual

Version 1.0

6.1.3 Tooltips in the ST / IL Editor

During test (connected mode or simulation) of the program the ST / IL editor shows in a
tooltip the current value of the variable pointed to by the mouse cursor. You do not
need to run any specific command to open the tooltip. Just put the mouse on the
variable symbol and wait for one second.

iValue = Counter .CV:

(=}

I 3 IF flgSave = true Then

= 7 Issaved := |E_SAVERETRIN| Save Path);
= - flgSave := false; [cuVERETAIN (*Save RETAIN variables to file®)
= 9 - END IF; i
Bl 10 Fath:3TRING
oUT

. 1% IF flgLoad = true Then OKROOL

12 IsLoaded := F LOADFETEIN{ Load Fath J;
i= 13 flgload := false;
= 14 - END IF;

The value shown in the tooltip is automatically refreshed while the tooltip is open.

6.1.4 Shortcuts for ST and IL Editor

Multiple lines of the same column in the ST/IL editor can be marked and replace by text.
Multiple lines at the same offset can be marked as follows:
- while pressing the Shift + Alt key the keyboard arrows can be used to select
vertical text blocks
- while pressing the Alt key the mouse can be used to select vertical text blocks
So it is possible to copy existing parts of a program and modify them in a short time.

21 0 := flgvarl; 21 divarl.jl:= flgVarl;

22 1 := flgvar2; 22 divarl. = flgVar2;

23 2 := flgVar3; 23 divarl.p:= flgvVar3;

24 3 := flgVaré; 24 divarl .gl:= flgvar4;

25 4 := flgVars: 25 divarl. = flgVar5;

26 26

ICP DAS Page 99 Win-GRAFWorkbench User Manual

Version 1.0

6.2 Function Block Diagram (FDB) Editor

The FBD editor is a powerful graphical tool that enables you to enter and manage
Function Block Diagrams according to the IEC 61131-3 standard. The editor supports
advanced graphic features such as drag and drop, object resizing and connection lines
routing features, so that you can rapidly and freely arrange the elements of your
diagram. It also enables you to insert in a FBD diagram graphic elements of the LD
(Ladder Diagram) language such as contacts and coils.

-1 = Dront execute thiz program if bCommand iz FALSE

min ourtput blinking signal

i Fast command Output signal
i bFast bOut

lab; e

= Slow period

5N tPerio

l_

i

— The =nd

Figure 79: Function Block Editor

6.2.1 Using the FBD toolbar

The vertical toolbar on the left side of the editor contains buttons for all available editing
features. Push the wished button before using the mouse in the graphic area.

Icon | Function Description

b Selection In this mode, you cannot insert any element in the diagram. The
mouse is used for selecting object and lines, select tag name
areas, move or copy objects in the diagram. At any moment you
can press the ESCAPE key to go back to the Selection mode.

1t Add Block In this mode, the mouse is used for inserting blocks in the
diagram. Click in the diagram and drag the new block to the

ICP DAS Page 100 Win-GRAFWorkbench User Manual
Version 1.0

—

£

ICP DAS

Add variable

Add Comment

Add Arc

Add corner

Add break

wished position. The type of block that is inserted is the one
currently selected in the list of the main toolbar.

In this mode, the mouse is used for inserting variable tags.
Variable tags can then be wired to the input and output pins of
the blocks. Click in the diagram and drag the new variable to the
wished position.

Insert comment text:

In this mode, the mouse is used for inserting comment text areas
in the diagram. Comment texts can be entered anywhere. Click in
the diagram and drag the text block to the wished position. The
text area can then be selected and resized.

Insert connection line:

In this mode, the mouse is used to wire input and output pins of
the diagram objects. The line must always be drawn in the
direction of the data flow: from an output pin to an input pin.
The FBD editor automatically selects the best routing for the new
line. You can change the default routing by inserting corners on
lines. (see below)

You also can drag a line from an output pin to an empty space. In
that case the editor automatically finished the line with a user
defined corner so that you can continue drawing the connection
to the wished pin and force the routing while you are drawing
the line.

INC

@IN Q %

In this mode, the mouse is used for inserting a user defined
corner on a line. Corners are used to force the routing of
connection lines, as the FBD editor imposes a default routing
only between two pins or user defined corners. Corners can then
be selected and moved to change the routing of existing lines.

Insert network break:

In this mode, the mouse is used for inserting a horizontal line
that acts as a break in the diagram. Breaks have no meaning for
the execution of the program. They just help the understanding
of big diagrams, by splitting them in a list of networks.

Page 101 Win-GRAFWorkbench User Manual
Version 1.0

EH Add ST condition
lub: Add label

= Add jump

F Add left power rail
I Add direct contact
I Add 'OR’ bar

{¥ Add direct coil

ICP DAS

— Dont execute this progrsm if bCommand is FALSE

bCommand
< RETURN -

¥

AIN1 IN o

In this mode, the mouse is used for inserting a label in the
diagram. A label is used as a destination for jump symbols (see
below).

In this mode, the mouse is used for inserting jump symbols in the
diagram. A jump indicates that the execution must be directed to
the corresponding label (having the same name as the jump
symbol). Jumps are conditional instructions. They must be linked
on their left side to a Boolean data flow.

In this mode, the mouse is used for inserting a left power rail in
the diagram. A left power rail is an element of the LD language,
and represents a TRUE state that can be used to initiate a data
flow. Power rails can then be selected and resized vertically
according to the wished network height.

In this mode, the mouse is used for inserting in the diagram a
contact as in Ladder Diagrams.

In this mode, the mouse is used for inserting a rail that collects
several Boolean data flows for an 'OR’ operation, in order to
insert parallel contacts such as done in Ladder Diagrams.

F_TRIG
CLK Q

INC

@IN Q
INC

@IN Q |

The OR rail has exactly the same meaning as an OR block
regarding the execution of the diagram.

In this mode, the mouse is used for inserting in the diagram a coil
as in Ladder Diagrams. It is not mandatory that a coil be

my\ar

Page 102 Win-GRAFWorkbench User Manual
Version 1.0

connected on its right side.
- Add right power In this mode, the mouse is used for inserting a right power rail in
rail the diagram. A right power rail is an element of the LD language,
and is commonly used for terminating Boolean data flows.
However it is not mandatory to connect coils to power rails. Right
power rails have no meaning for the execution of the diagram.

L Show execution Display the execution order of the elements in the diagram. At
order each element a yellow box is attached which shows the
execution sequence number.
bCommand
Blink main command is always TRUE - Select fast or slow peried for biinking (fast is 2 times faster]

Blink1

bilink

Fast command ==l RUE
bFast G @

Slow period IN1 M Q
tPerio i

Figure 80: Function block diagram (FBD) toolbar commands

6.2.1.1 FBD Variables

All variable symbols and constant expressions are entered in FBD diagrams using small
boxes.
Step 1: Insert variable tag

1. Pressthe 'Insert variable' button in the FBD toolbar

2. Click at a wished position in the FBD editor where to place the variable

@ |;y/////////////////////////ﬂf//: ://////////////ng
= =

! 7 s}

[GOT T RTER T TRTRIIITIITRTITE u LT T VRPN R P P |

Step 2: Double-click on a variable tag to open the variable selection box and either
select the symbol of the wished variable or enter a constant expression.

ICP DAS Page 103 Win-GRAFWorkbench User Manual
Version 1.0

I e W s |
&

-~ 5

ryar

OO

lab:

i d

|Variables: (all -

[]Local variables only
[]Hide FB instances

Step 3: Variables tags must then be linked to other objects such as block inputs and
outputs using connection lines.
1. Click 'Add Arc' button to insert connection line.
2. Connect the variable tag either to the input or output of a block.

F_TRIG myVar

Step 4: You can resize a variable box vertically in order to display together with the
variable name its tag (short comment text), its description text, plus its I/0
location if the variable is mapped to an I/O channel. The variable name is
always displayed at the bottom of the rectangle:

- tag

- description
- % location
- name

ICP DAS Page 104 Win-GRAFWorkbench User Manual
Version 1.0

CI p’/////////////////////////rD’/////////////////////////el;
-~ - -

F_TRIG 7 My first Variable ;

o Z :
s s

ICLK Q f MyTag B

f— - -
= -

= =

; my\ar ;

| RIS P PP P PR TTT TS o AT T T O Py o |

6.2.1.2 FBD Comments
Comment text areas can be entered anywhere in a FDB diagram.

Step 1: Add a comment box to the FBD editor:
1. Pressthe '‘Add comment' button in the FBD toolbar for inserting a new
comment area
2. Dragthe comment box to the required position

InVar @IN Q Q

|
@\i

2
=
=
=
-

i 0 A A AR AR RIS A]

Step 2: Edit a text into the comment box:
1. Double-click on the comment area for entering or changing the attached
text. You can also insert a bitmap to the comment box by entering the
directory of the bitmap

Lk Ak, Zu|

¢ X

by first comment] -

A

ICP DAS Page 105 Win-GRAFWorkbench User Manual
Version 1.0

Chessssssssssdiesssssssssr]

Ficture\ECAT-20915_2 bmp -

) @

A A A AT A AT B A A R

-
[y o E e s

2. Confirm the setting. When selected, comment texts can be resized.

el

AL,

My first comment

[EERREEES | TOPREREee u|

e e W e

6.2.1.3FBD Corners

Corners are used to force the routing of connection lines, as the FBD editor imposes a
default routing only between two pins or user defined corners.

Example:

The FBD editor connects the FBD elements by choosing the shortest distance. The
corners of the connection line are chosen by the FBD editor in such a way that the lines
do not cross another function block or variable element.

Figure 81 shows the connection line generated by the FBD editor

F_TRIG

CLK Q

INC
@IN Q[

Figure 81: Connection line path generated by the FBD editor

Corners can then be selected and moved to change the routing of existing lines (Figure
82). In order to change the pathway of the line insert a corner on a line by pressing the
'Add corner' button in the FBD toolbar and clicking the connection line. The newly added
corner can now be move by the mouse to a new position and the connection line will

ICP DAS Page 106 Win-GRAFWorkbench User Manual
Version 1.0

automatically follow the new corner position.

F_TRIG

CLK Q

INC
@IN Q[

Figure 82: Connection line path manually edited by using corners

Before moving the corner make sure the corner is surrounded by a square otherwise a
new corner will be generated

F_TRIG
CLK Q

INC
D1 den Q

fhr et

You can drag a new line from an output pin to an empty space. In that case the editor
automatically finished the line with a user defined corner so that you can continue

drawing the connection to the wished pin and force the routing while you are drawing
the line.

INC
1@IN Q 0

6.2.1.4 FBD Network Breaks

Network breaks can be entered anywhere in a FBD diagram. Breaks have no meaning for
the execution of the program. They just help the understanding of big diagrams, by
ICP DAS Page 107

Win-GRAFWorkbench User Manual
Version 1.0

splitting them in a list of networks.

— Diont execute this program if bCommand is FALSE
T bCommand
< RETURMN >
m /
— Elink main command iz alvays TRUE - S=lect fast or slow peried for blinking {fast is 2 times faster
lab:
3% Inst_blink
blink main owtpurt blinking signal
ast command sl RUE Q utput signal
= F TRUE RUIN O ignal
I bFast : |c] Q (CYCLE bOut
A IMND any_to_time
I Slow pericd HIN1 AN Q
{H tPzrio (]
_| N1 Q onverts to
AIN2 s
a— The =nd

Press the following button in the FBD toolbar for inserting a new break:

The break line is drawn on the whole diagram width. No other object can overlap a
network break. Break lines can then be selected and moved vertically to another
location.

Network breaks can also be used for browsing the diagram. Press Ctrl+Page Up or
Ctrl+Page Down keys to move the selection to the next or previous network break.

6.2.1.5FBD 'OR' Vertical Rail

The FBD editor enables the drawing of LD rungs. A particular object, the 'OR'rail can be
inserted on a rung in order to connect parallel contacts together (Figure 83).

ICP DAS Page 108 Win-GRAFWorkbench User Manual
Version 1.0

F_TRIG { "OR" Bar ‘

CLK Q /
INC
@IN Q
INC
@IN Q

Figure 83: Example of an 'OR' bar application

my\Var

The OR rail has exactly the same meaning as an OR block regarding the execution of the
diagram (Figure 84).

CLK Q
OR
INC n my\ar
@IN Q
INC
@IN Q

Figure 84: Example of an 'OR’ function

6.2.2 Drawing FBD connection lines

The connection lines are being used to connect input and output of the objects in the
FBD editor. The line must always be drawn in the direction of the data flow: from an
output pin to an input pin. The FBD editor automatically selects the best routing for the

ICP DAS Page 109 Win-GRAFWorkbench User Manual
Version 1.0

new line. You can change the default routing by inserting corners on lines.
Press the ™ button before inserting a new line.

SEL

PLS1

+
rand any_to_real 3
Wbsz= i = [l 2 3

Figure 85: Connection lines indicate the data flow

Connection line is colored in red if the two linked elements are not the same data type.

The editor enables you to terminate a connection line with a Boolean negation
represented by a small circle. To set or remove the Boolean negation, select the line and
press the SPACE bar.

Boolean
negation

OR
In0 | Qut0
In1

Figure 86: Connection line with a Boolean negation termination

Connection lines must always be drawn in the direction of the data flow: from an output
pin to an input pin. The FBD editor automatically selects the best routing for the new
line. Connection lines indicate a data flow between the following possible objects:

Procedure for drawing a connection line:
Step 1: Add two blocks to the FBD editor:
1. Click the 'Add function block' T command. Now a function block icon is
displayed next to the mouse pointer

%ﬂ
This indicates that every mouse click drag on the FBD editor will generate

a new block at the current pointer position.
2. Insert two blocks: A block is being added left clicking the mouse and

ICP DAS Page 110 Win-GRAFWorkbench User Manual
Version 1.0

dragging it. By default the function block which appears in the first row of
the selection list will be inserted.

C¥essssirrrDherrrrssnd]
A A

&

LI
ASEES B ARERER
\\\\\\\\[ﬂ}\\\\\\

RANES

&,

|

3. Change the function block type by double clicking it

[s
& Z Z

Z

Z
C i a
5

Select @

i & (*Boolean AND*)
£ = (*Multiply®)

i+ (*Addition®)

i - (*Subtraction®)

.} (*Divide®)

iz 1 (*copy (1 gain)*)
¢ < (*Less than®)

t. <= (*Less or equal®)

+

iz <> (*Is not equal®)

iz =(*Is equal®)

i > (*Greater than®)

il >= (*Greater or equal®)

i >» [LJK] (*Put array item (3 dim)*)
iz »» [LJ] (*Put array item (2 dim)*)
i 2> [1] (*Put array item (1 dim)*)

i [1LJ.K] »> (*Get array item (3 dim)*)
L [1LJ] >> (*Get array item (2 dim)*)

LI fS5Cnt areaas itoes (1 dinsd®)

Inputs: 2 = [IHelp [oK ” Cancel ‘

§\\\\\\\\n\\\\\\\

C

[»

-

In this example the NOT function will be selected for the left block:

LASEIILELSEA SIS,

NOT
1 CIN Q
R . /mm

&

& SERRN

ST

Step 2: Connect the output pin of the & function to the input pin of the NOT function
1. Click the 'Add arc' button on the left toolbar to enter the 'insert
connection line' mode. A line icon appears next to the mouse pointer

i,
2. Move the mouse pointer over the output pin of the & block.

—— . . y///////////////////ﬁ

& i NOT ¢

L @ el

C Efo ZIN Q]

. B

C

When a star appears the click the left mouse button and drag it to the

ICP DAS Page 111 Win-GRAFWorkbench User Manual
Version 1.0

input pin of the NOT block.

& | [noT |
i —'—/@N Q[
Once the star appears at the input pin release the mouse button. A
connection line is drawn between the output and input.

B IN Qf

6.2.3 Selecting FBD Variables and Instances

To attached a variable to a graphic object (e.g. input and output pin of a function block),

you must be in Selection mode. Simply double-click on the gray area of the variable tag
box.

Procedure for assigning a variable to a object in the FBD editor:

Step1: Gointo selection mode by clicking the 'Selection’ button *or press the 'Esc’
key. A rectangular will be shown next to the mouse pointer.

uivar1 — N uivar2
UINT#440022

1. Double click on the tag name in the gray area. A dialog with variable list
pops up.

ICP DAS Page 112 Win-GRAFWorkbench User Manual
Version 1.0

272 1 n 272
/////////////////////////enf/////////////////////////lg L
-

?2?7?

a -

[= S m S}

@ variables: (all) -
i dfval El
flghar
flgv/ar?
fw'all N

Wariables: (all -

[| Local variablas anly
[|Hide FB instances

2. You have three possibilities to assign a variable:
* Select a variable from the variable list

uiv/arl

i strame
L[switch

------ B uivan E

Wariskles: (al) -

[Local variables only
[Hide FB instances

e Declare a new variable in the variable list.
The variable list can also be used as an variable editor by entering a
new variable name in the list header and click 'OK".

newh'ar

@ variables: (all) -
[dfval =
flgvarl
flgv'ar?
fvall -

Wavisbles: (all) v|

[| Local variables onky
[|Hide FB instances

A dialog box pops up which allows you to directly declare the variable.

ICP DAS Page 113 Win-GRAFWorkbench User Manual
Version 1.0

W newVar M

This symbol does not exist. Fossible actions:

Fename varighle

@) Declare newvariable

Mame: newyar

Type: UINT -

Where: Frog3 -
’ More] [‘Yes J ’ Mo] ’ Cancel l [Help]

k. - —— = =

* Assign a constant expression (e.g. UINT#440022, BOOL#FALSE).

UINT#440022

[#define
------ § _SYSINFO_AFRPPSTAMF
------ § _SYSINFO_APPYERSION

-8 SYSINFD RIGENDILAN
4 | 1 | P

4 [

#define v|

[| Local variables onky
Hide FB instances

Step 3: Option: It is also possible to drag a variable from the variable editor directly to
the grey variable tag.

» 7| Narme | Type | Diirn

o Out2 BOOL -

= Out3 BOOL

= _ = o . Outd BOOL

_ uiVar1 —1 ,5 dragVar g Out5 BOOL
UINT#440022 1 x switcht BOOL H
e — — 1 o S LiVar? UINT E

= S ~— dragVar UINT ¥

6.2.4 Viewing FBD Diagrams

The diagram is entered in a logical grid. All objects are snapped to the grid. You can use
the commands of the View menu for displaying of hiding the points of the grid.

ICP DAS Page 114 Win-GRAFWorkbench User Manual
Version 1.0

File Edit [View | Insert Project Tools Window Help

| W B = ZoomIn o
Workspac: €, Zoom Out _
4 [Z Mair

N 2, Zoom..

4 [piH Grid 4— Ctrl+G

[i v | Status Bar

Figure 87: Viewing commands

The (x,y) coordinates of the mouse cursor are displayed in the status bar. This helps you
locating errors detected by the compiler, or aligning objects in the diagram.

At any moment you can use the commands of the View menu for zooming in or out the

edited diagram. You also can press the [+] and [-] keys of the numerical keypad for
zooming the diagram in or out.

6.2.5 Moving or Copying FBD Objects

The FBD editor fully supports drag and drop for moving or copying objects.

6.2.5.1 Moving FBD Objects
To move objects, select them and simply drag them to the wished position.

Step 1: Select an object
1. Gointo selection mode by clicking the ‘Selection’ button or press the 'Esc’
key.
2. Select the object by clicking on it with the mouse. The selected object will
be shown in a selection frame.

------ - @ . . ?’////////D////////J?

1t : OR ¢

=’ i ° e 5
In0 b 4 Quto
In1 7 . @

— . . (B m] j

Step 2: Drag the object to a new position.
ICP DAS Page 115 Win-GRAFWorkbench User Manual

Version 1.0

=

= n0 out0
— In1 T

.

I

6.2.5.1.1 Using the Keyboard

When graphic objects are selected, you can move them in the diagram by hitting the
following keys:

Shortcut Description

Shift + Up Move to the top.
Shift + Down Move to the bottom.
Shift + Left Move to left.

Shift + Right Move to right.

Table 11: Keyboard shortcuts for moving objects

When an object is selected, you can extend the selection by hitting the following keys:

Shortcut Description

Shift + Control + Home Extend to the top: select all objects before the selected
one.

Shift + Control + End Extend to the bottom: select all objects after the
selected one.

Table 12: Keyboard shortcuts for selection extension

To insert or delete space in the diagram, you can simply select an object, press
Shift+Control+End to extend the selection and then move selected objects up or down.

6.2.5.1.2 Auto alignment

When multiple objects are selected, the following keystrokes automatically align them:

| Shortcut | Description |

ICP DAS Page 116 Win-GRAFWorkbench User Manual
Version 1.0

Control + Up Align to the top.

Control + Down Align to the bottom.
Control + Left Align to left.
Control + Right Align to right.

Table 13: Keyboard shortcuts for auto alignment

6.2.5.2 Copying FBD Objects
To copy objects, select the object, and just press the CONTROL key while dragging.

Step 1: Select an object
1. Gointo selection mode by clicking the ‘Selection’ button or press the 'Esc’
key.
2. Select the object by clicking on it with the mouse. The selected object will
be shown in a selection frame.

@ - - . . I;P////////U////””A;
11 ¢ OR
- | . . . i Z
In0 b s Out0
o . Z ? b
In1 I : @
- . : LF77r72 77777777741 .

Step 2: Copy the object:
1. Pressthe 'Ctrl' key and drag the object to a new position.

11 OR
In0 || Out0
In1
?’////////D////////a?
_ ~ OR °
= r]
" C
| e e u|

It is also possible to drag pieces of diagrams from a program to another if both are open
and visible on the screen.

At any moment while dragging objects you can press ESCAPE to cancel the operation.

ICP DAS Page 117 Win-GRAFWorkbench User Manual
Version 1.0

Alternatively, you can use classical Copy / Cut / Paste commands from the Edit menu.
When you run the Paste command, the editors turns in Paste mode, with a special
mouse cursor (Figure 88). Click in the diagram and move the mouse cursor to the wished

position for inserting pasted objects.

ful OR

- In0 n Out0
In1

o

Figure 88: Mouse cursor when in paste mode

6.2.6 Inserting FBD Objects on a Line

The FBD editor enables you to insert an object on an existing line and automatically
connect it to the line. This feature is available for all objects having one input pin and
one output pin, such as variable boxes, contacts and coils. This feature is mainly useful
when entering pieces of Ladder Diagrams. Just draw a horizontal line between left and
right power rails: this is the rung. Then you can simply insert contacts and coils on the
line to build the LD rung.

Example:

1. Addaleft F and right - power rail to the editor and connect both ends with a
connection line '™

2. Insert a contact ¥, coil D'and variable = on the line by dragging the objects
directly over the connection line:

ICP DAS Page 118 Win-GRAFWorkbench User Manual
Version 1.0

T
A

line:

299 _I

N
OB

6.2.7 Resizing FBD objects

Most of the objects provide inside the FBD editor can be resized. Objects which support
resizing show small square boxes after they have been selected. The square boxes
indicates in which direction the objects can be resized. Click on the small square boxes
for resizing the object in the wished direction.

Shortcut Description

switch? Object can not be resized

= I =
Ferleriepedeess

INC Object can only be resized in horizontal direction
g

@IN Q

DO
BN OR

"

*‘D\.\\\\

|

O”R"?‘ Object can only be resized in all directions

**\\\\\\\‘q

|

\\\\\\\\a\\\\\\\

Resizing procedure:
Step 1: Select an object
1. Gointo selection mode by clicking the 'Selection’ button or press the 'Esc’
key.

ICP DAS Page 119 Win-GRAFWorkbench User Manual
Version 1.0

2. Select the object by clicking on it with the mouse. The selected object will
be surrounded by a rectangular frame with small squares.

I;f////////lj‘////////el;

’ OR
b
'

\\\\\\\\E\\\\\\\

e

|

Step 2: Move the mouse pointer over one of the tiny squared boxes, click on it and
drag the boundary to the required size.

ChesssssrsDesssisss]
- A

oo JRRRY, 5 JEREREY
\\\\\\\\E\\\\\\

;i

Step 3: Optional: Some function (e.g. OR, AND, etc.) allows the user to increase the
number of input pins. The number of pins can be increased/decreased by
resizing the block in vertical direction:

[= e |
F F]

e n

OR

L ™ e

OR

R R e N e e R e S e L R N e O .
-

\\\\\\\\\\\\\\\\\\\\\\n\\\\\ﬁ\\\\ﬁ\\\\\\\q

it T s
ST R

o

|
|
|

ICP DAS Page 120 Win-GRAFWorkbench User Manual
Version 1.0

6.3 Ladder Diagram (LD) Editor

The LD editor is a powerful graphical tool that enables you to enter and manages Ladder
Diagrams according to the IEC 61131-3 standard. The editor enables quick input using
the keyboards, and supports advanced graphic features such as drag and drop.

JEE ~
i L (* sample boolean expression *)
i) b b2 % bOut
—1 Rl | |} |} o—

b
- I 1
HE [11
H | | * Uze of & function block witinh & rung *)
o hStart Timer1 hSignal
~ || Rz mMyRung f— | I TOM G
bl

halarm
{H| | | — t#1=4PT ETHElapsed
HKZH
= | -
S >

Figure 89: Ladder diagram (LD) editor

A Ladder Diagram is a list of rungs. Each rung represents a Boolean data flow from a
power rail on the left to a power rail on the right. The left power rail represents the
TRUE state. The data flow must be understood from the left to the right. Each symbol
connected to the rung either changes the rung state or performs an operation. Below
are possible graphic items to be entered in LD diagrams:

- Power Rails

- Contacts and Coils

- Operations, Functions and Function blocks, represented by rectangular blocks

- Labels and Jumps

- Use of ST instructions in graphic languages

6.3.1 Using the LD Toolbar

The vertical toolbar on the left side of the LD editor contains buttons for inserting items
in the diagrams. Items are inserted at the current position in the diagram.

Icon | Shortcut Description
I Shift+F4 Insert a contact before the selected item.
i F4 Insert a contact after the selected item.

be! Ctrl+F4 Insert a contact in parallel with the selected items

4

Ctrl+Space Insert a horizontal line before the selected item so that it is
pushed to the right.

O Spacebar Swap item style of the current cell for a contact coil
— f— —— f— [=} P
N
4 Shift+F8 Insert a block before the selected item.
o F8 Insert a block after the selected item.
o Ctrl+F8 Insert a block in parallel to the selected items.
=2 Shift+F9 Add a jump in parallel to the selected coil.
o F9 Add a coil in parallel to the selected coil or contact.
i Ctrl+R Inserts a new rung in the diagram before the current one.

REI I
Hint: If you mark a rung and press CTRL while clicking on the
vertical toolbar entry, the rung will be inserted after the marked
rung.

= Ctrl+D Insert a comment between rungs.

kL3
i

lgel

—— My cemment: This iz my first comment line

=3 Align the coils

Figure 90: Ladder diagram (LD) toolbar

6.3.2 Managing Rungs

A LD diagram is a sequential list of rungs. Each rung represents left to right Boolean
power flow, that begins with a power rail, always drawn in the first column of the
diagram, and finishes with a coil or a jump symbol.

Each Rung is identified by a default numbered identifier (Rnnn) displayed on the left of
the power rail. The rung identifier can be used as a target for jump instructions.
Alternatively you can enter a specific rung label by double-click in the rung head on the
left margin.

The LD editor enables you to manipulate whole rungs by selecting only their head in the

left margin. The following example shows a selected rung:

ICP DAS Page 122 Win-GRAFWorkbench User Manual
Version 1.0

b1
R1

bz

b3 bOut

Figure 91: Rung in a ladder diagram

When a rung is selected, use the commands of the Edit menu to delete, copy or cut it.

FiIeView Insert Project Tools Win

[l o Undo Ctrl+Z
Worl o

¥ Cut Ctrl+X

4 Copy Ctrl+C
=

¥ Delete Del
E 4

Select All Ctrl+A

Figure 92: Copy, cut and delete commands for the ladder diagram

Steps for adding a new rung:

Step 1: Select a line at the which the rung has to be inserted.
Step 2: Click on the 'Insert new rung' button on the left toolbar
£
ik
byl
o
; ®
ﬂ_
I
»
= (2)
HHZH |
A new rung is added one line above the selected line:
ICP DAS Page 123

Win-GRAFWorkbench User Manual
Version 1.0

dE
1k

lye!

6.3.3 Contacts

Contacts are basic graphic elements of the LD language. A contact is associated to a
Boolean variable written upon its graphic symbol. A contact sets the state of the rung on
its right side, according to the value of the associated variable and the rung state on its
left side.

Below are the possible contact symbols and how they change the rung state:

Symbol Description

Normal: the rung state on the right is the Boolean AND
between the rung state on the left and the associated
variable.

Negated: the rung state on the right is the Boolean AND
between the rung state on the left and the negation of the
associated variable.

Positive pulse: the rung state on the right is TRUE only
when the rung state on the left is TRUE and the associated
variable changes from FALSE to TRUE (rising edge).

N Negative pulse: the rung state on the right is TRUE only
when the rung state on the left is TRUE and the associated
variable changes from TRUE to FALSE (falling edge).

Table 14: Contact symbols

Info
When a contact or a coil is selected, You can press the SPACE bar to change its type
(normal, negated, pulse...).

Two serial normal contacts represent an AND operation.

R9 |

Two contacts in parallel represent an OR operation.

ICP DAS Page 124 Win-GRAFWorkbench User Manual
Version 1.0

R12 l

6.3.4 Coils

Coils are basic graphic elements of the LD language. A coil is associated to a Boolean
variable written upon its graphic symbol. A coil performs a change of the associated
variable according to the rung state on its left side.

Below are the possible coil symbols and how they change the rung state:

Symbol Description
Normal: the associated variable is forced to the value of the
rung state on the left of the coil.
Negated: the associated variable is forced to the negation
of the rung state on the left of the coil.

Positive Transition-Sensing Coil:
A Positive Transition Contact gives a single one-shot pulse
when the bit operand it is linked to rises from FALSE (logic
0) to TRUE (logic 1).

N N N

1

)
Negative Transition-Sensing Coil:

A Negative Transition Contact gives a single one-shot pulse
when the bit operand it is linked to falls from TRUE (logic 1)
to FALSE (logic 0).

" 4 4 4
0
z Set: the associated variable is forced to TRUE if the rung
state on the left is TRUE. (no action if the rung state is
FALSE)

Reset: the associated variable is forced to FALSE if the rung
state on the left is TRUE. (no action if the rung state is
FALSE)

Table 15: Coils symbols

ICP DAS Page 125 Win-GRAFWorkbench User Manual
Version 1.0

Info
When a contact or a coil is selected. You can press the SPACE bar to change its type
(normal, negated, pulse...).

Attention

Even though coils are commonly connected to a power rail on the right, the rung may be
continued after a coil. The rung state is never changed by a coil symbol.

6.3.5 Power Rails
Vertical power rails are used in LD language for representing the limits of a rung.
The power rail on the left represents the TRUE value and initiates the rung state. The

power rail on the right receives connections from the coils and has no influence on the
execution of the program.

R12 |

"\

~

Figure 93: Vertical power rails (left and right)

Power rails can also be used in FBD language. Only Boolean objects can be connected to
left and right power rails.

6.3.6 Calling a Function or Function Block

To call a function block in FBD or LD languages, you just need to insert the block in the
diagram and to connect its inputs and outputs. The name of the instance must be
specified upon the rectangle of the block.

All available operators, functions and function blocks are listed in the bottom/right area
of the editor. The list of available blocks is sorted into categories.

The All category enables you to see the complete list of available blocks. The Recent
category contains the last used blocks. The Project category lists all UDFBs and sub-

ICP DAS Page 126 Win-GRAFWorkbench User Manual
Version 1.0

programs declared in the project.

To insert a block in a program, simply select it in the list and drag it with the mouse to
the wished position in the ladder diagram.

Press the F1 key when a block is selected to have help about its function, input and
output pins. In selection mode, you also can double-click the mouse on a block of the
diagram to change its type, and set the number of input pins if the block can be
extended.

6.3.6.1EN Input and ENO Output for Blocks

The rung state in a LD diagram is always Boolean. Blocks are connected to the rung with
their first input and output. This implies that special EN and ENO input and output are
added to the block if its first input or output is not Boolean.

The EN input is a condition. It means that the operation represented by the block is not
performed if the rung state (EN) is FALSE. The ENO output always represents the sane
status as the EN input: the rung state is not modified by a block having an ENO output.

Examples:
1. XOR block, having Boolean inputs and outputs, and requiring no EN or ENO pin.
First input is the rung. The rung is the output.

N1 a
R12 A HOR 7] |

M2 jD—

[INZ

2. > (greater than) block, having no Boolean inputs and a Boolean output. This block
has an EN input in LD language.
The comparison is executed only if EN is TRUE.

EN Q
R13 En = 7] |
uivart 4 IN1
uivar2 Nz

3. The SEL function has a Boolean input, but no Boolean output. This block has an
ENO output in LD language.
The input rung is the selector. ENO has the same value as SELECT.

ICP DAS Page 127 Win-GRAFWorkbench User Manual
Version 1.0

SELECT ENOD

R14 G SEL Eno

uivar - INQ —wL_ Q- uivar3d

uivarZJ N1

4. Addition, having only numerical arguments (no Boolean inputs and no Boolean
output). This block has both EN and ENO pins in LD language.
The addition is executed only if EN is TRUE. ENO is equal to EN.

EM ENO

R15 En + Eno

uivari uivard

=
[=}

uiVar2

=

6.3.7 Jumps - Labels

A jump to a label branches the execution of the program after the specified label. The
jump is performed only if the input is TRUE. In LD language the target label name, is
used as a coil at the end of a rung. The jump is performed only if the rung state is TRUE.

£
1
el
— i R8 MyLabel
o
iF
g | R10 |
!
Y
-CH
R11: MyLabel |
HKOH

Label

=

Figure 94: Jump-label in a ladder diagram

A label must be represented by a unique name and is shown on the left side of the rung.
- Ajumpis added by first selecting the target cell in the ladder editor and clicking the

ICP DAS Page 128 Win-GRAFWorkbench User Manual
Version 1.0

'Insert jump' > command.

- Alabelis inserted to the LD editor by double clicking the first cell of a rung and

entering the label name in the popup edit box.

gl

R11: MyLabel

il

Attention

Backward jumps may lead to infinite loops that block the target cycle.

6.3.8 Use of ST Expressions

The workbench enables any complex Structure Text (ST) expression to be associated
with a graphic element in either LD or FBD language. This feature makes it possible to
simplify LD and FBD diagrams when some trivial calculation has to be entered. It also
enables you to use graphic features for representing a main algorithm where as text is

used for detailed implementation.

Expression must be written in ST language. An expression is anything you can imagine
between parenthesis in a ST program. Obviously the ST expression must meet the data
type required by the diagram (e.g. an expression put on a contact must be Boolean).

Level=100
R10

bReset

ST statement
MaxStep - Nblnc

Inst_CTU
CTU

RESET I]E

5

cv

Figure 95: ST expression as input in a LD editor

ICP DAS

Page 129

Win-GRAFWorkbench User Manual
Version 1.0

6.3.9 Comments in LD Diagrams

The LD editor enables you to insert comment texts in the diagram. A comments is a
single line of text inserted between two rungs. The comment text is displayed on a

double line in the diagram:

—— Wy comment: This i my first comment line

&
d b b2 b3 bOut

0 R1 |
(5]

bd

Figure 96: Comments (green) in a LD editor

Comment texts have no meaning for the execution of the diagram. They are used to
enhance the readability of the program, enabling the description of each rung.

The comment text remains visible when the diagram is scrolled horizontally. To change
the text of the comment, place the selection anywhere on the comment line and hit
ENTER key, or simply double-click on the comment line.

Steps for adding a comment line:
Step 1: Select a line at the which the comment has to be inserted.

Step 2: Click on the 'Insert comment line' button on the left toolbar

o RE |

R7
HHZH
—0f @
==

A new comment line is added one line above the selected line:

Win-GRAFWorkbench User Manual
Version 1.0

ICP DAS Page 130

iF RE

R7

Step 3: Insert text to the comment line by double clicking the line:

0 Ra! |

by first LD comment -

R7

Step 4: Click the check button to insert the text:

ik F‘.EI

= —— My first LD comment

b

RT

6.3.10 Viewing LD diagrams

The diagram is entered in a logical grid. All objects are snapped to the grid. You can use
the commands of the View menu for displaying of hiding grid lines.

ICP DAS Page 131 Win-GRAFWorkbench User Manual
Version 1.0

File Edit [View | Insert Project Tools Window Help
| B B & Zoomn +
Workspac: €, Zoom Out _
4 [Z Main
N 2, Zoom..
4 |:|1¢ Grid Ctrl+G
%
1| v | Status Bar

Figure 97: Displaying/hiding grid line

The (x,y) coordinates of the mouse cursor are displayed in the status bar. This helps you
locating errors detected by the compiler, or aligning objects in the diagram.

At any moment you can use the commands of the View menu for zooming in or out the
edited diagram. You also can press the [+] and [-] keys of the numerical keypad for
zooming the diagram in or out.

You also can drag the separation lines in vertical and horizontal rulers to freely resize
the cells of the grid:

D

=

o

Figure 98: Resizing the cells

The LD editor adjust the size of the font according to the zoom ratio so that the name of
variables associated with contacts and coils are always visible. If cells have sufficient
height, variable names are completed with other pieces of information about the
variable:

- lIts tag (short description).

- Its description text.

- Its1/O name (%...) if the variable has a user defined name.

6.3.11 Moving and Copying LD Objects

The LD editor fully supports drag and drop for moving or copying objects.

ICP DAS Page 132 Win-GRAFWorkbench User Manual
Version 1.0

6.3.11.1 Moving LD Objects

To move objects, select them and simply drag them to the wished position, in the same
rung or in another rung.

Alternatively, you can use classical Cut/Paste commands from the Edit menu. Paste is
performed at the current position.

At any moment while dragging objects you can press ESCAPE to cancel the operation.

Step 1: Select the item to move:
1. Click on the item to move. The background of the selected item turns
yellow.

2. Now click on the item again and hold the left mouse button down until
the background color turns grey. A rectangular attached to the mouse
icon indicates that the item is ready to be moved.

RS

s

Step 2: Move the object
1. With the left mouse button still down move the item to a new position.
2. Release the mouse button when the target position has been reached.
Remember that item is moved to the cell which precedes the selected
cell.

e

After the left mouse button has been release the item is dropped to the
cell which column precedes the selected target column.

RS

Step3: hh

ICP DAS Page 133 Win-GRAFWorkbench User Manual
Version 1.0

6.3.11.2 Copying LD Objects

To copy objects, select them and just press the 'Ctrl' key while dragging. It is also
possible to drag pieces of diagrams from a program to another if both are open and
visible on the screen. The procedure is the same as moving object except that in
addition the 'Ctrl' key has to be pressed while dragging the object.

Alternatively, you can use classical Copy/Paste commands from the Edit menu. Paste is
performed at the current position.

At any moment while dragging objects you can press ESCAPE to cancel the operation.

You can manipulate whole rungs by selecting only their head in the left margin (select
only the cell where the rung number is displayed).

Step 1: Select the rung to copy:
1. Click on the first cell of the row to copy. The background of the selected
cell turns yellow.

R9 l

2. Now click on the cell again and hold the left mouse button down until the
background color turns grey. A rectangular attached to the mouse icon
indicates that the item is ready to be moved or copied.

Step 2: Copy the rung:
1. With the left mouse button still down press the 'Ctr/' key move the item
to a new position.
2. Release the mouse button when the target position has been reached.

ICP DAS Page 134 Win-GRAFWorkbench User Manual
Version 1.0

The selected rung is copied to the selected row:

i R9 |
L —— R10) |
[E—— R |

6.4 Converting a Program to Another Language

The Workbench includes a feature that enables you to convert a program written in an
IEC language to another language. Use the contextual popup menu in the Workspace to
convert a program to another language.

ICP DAS Page 135 Win-GRAFWorkbench User Manual
Version 1.0

File Edit View Insert Project Tools Window Help

R EILIR YR | MainTask MEMe | @
Workspace
4 [Z] Main task - 20
A Programg _iJ- 21 diVarl.U = flg’Varl,‘
o) o 22 divarl.l := flgvar2;
B Prog? Open 2 := flgVar3;
°H) Prag3 - i oy - 3 := flgVard;
B oot 5 Open in Separate Window 1 := flgVars;
#s Fieldbus Configure
¥$ Binding Configurati &2 Properties... tive = TRUE THEN
1 yos Informations... rl := MY DEFINE 2;
(ot Wariahles
b [E Task2 Insert New Folder
b 12l Task3 y
> B Teskd) Ingert New Program... r1 > 1000 THEN
b @ Library Insert New Item... rl := 0;
{All Projects) [Copy..
¥ Delete
Convert Program T To FBD
To LD
E Call Tree W To
&)
o) Toll

¥ < » M| MainTask- 19

Figure 99: Converting a Structure Text into another language

Any conversion in between ST, IL, LD and FBD are possible. Conversion of SFC programs
is not allowed. Converted POUs can be main programs, UDFBs or sub-programs.

The program must be saved and the project built without errors before converting a
program.

When a program is converted to another language, its former implementation in the
original language is kept until you make a change in the converted program. Thus, if you
re-convert it back to the original language, you get 100% of the original contents.

Info
When a program is converted, some presentation items (such as blank lines in ST or
specific alignment in FBD) are lost.

ICP DAS Page 136 Win-GRAFWorkbench User Manual
Version 1.0

It is possible that converting a language requires some new intermediate variables to be
declared. Such variables are declared locally to the program and are prefixed with '_T".

6.5 Some Tips

6.5.1 Bookmarks

Bookmarks are used for navigating in a document. You can freely insert bookmarks
everywhere in a document and jump from one bookmark to another with a single
command. Bookmarks are supported in all program editors plus the variable editor.

Below are the available commands for using bookmarks:

Shortcut
Ctrl + F2
Shift + F2

Description

Toggle the bookmark at the current position.

Go to the next bookmark.

Table 16: Bookmark commands

Info:

Bookmarks are valid only while the editing window is open, and are not stored in the
document when the window is closed.

The possible locations for a bookmark are:

- Inthe text editor, a bookmark is placed on a line of text.

TG

E

I % T L T L I L
= o

e T e T A T % R A
5 I R O [T = FE I o

[I N we]

L [N

divarl.0 := flgvVarl;
divarl.l := flgVar2;
divarl.2 := flgvar3;
divarl.3 := flgvVard;
divarl.4 := flgVar5;

IF flgActive = TRUE THEN
uivarl := uivarl +1;
END IF;

- Inthe SFC editor, a bookmark is placed on a SFC symbol (step, transition, jump...).

ICP DAS

Page 137

Win-GRAFWorkbench User Manual
Version 1.0

Bct.lgait for
ol 1 P]_ coin
+ ED
.
h

It INC

[

o uiVar1i @IN Q Q
. DEC

__ InVar @IN Q Q

- Inthe LD editor, a bookmark is placed on a rung header.
|

1
0O
i
el
| R1 En NC Eno}—
o
0
| N @i al-out
4 O
Il
-
| R2 RETURN

- In the variable editor, a bookmark is placed on any line of the grid (variable or

group).
7| Name | Tvpe [Dirn. | Public |
4 [Prog3

myVar BOOL
Inst_F_TRIG F_TRIG

(] Invar BOOL
Q BOOL

ICP DAS Page 138 Win-GRAFWorkbench User Manual

Version 1.0

6.5.2 Handling Exceptions

The compiler enables you to write your own exception programs for handling particular
system events. The following exceptions can be handled:

- Startup (before the first cycle)

- Shutdown (after the last cycle)

- Division by zero

- Array index out of bounds

6.5.2.1Startup

You can write your own exception program to be executed before the first application
cycle is executed. Add the following command to the to define editor of the startup
exception program:

#OnStartup ProgramName
The 'ProgramName’ has to be replaced by the name of the exception program.

The startup exception program is executed before all other programs within the first
cycle. The program is called only once before the first cycle. This implies that the cycle
timing may be longer during the first cycle. You cannot put breakpoints in the Startup
program.

In the startup program you can system initialization:

- Start other tasks executions

- Initialization of complex data structures

- Initialize variables from recipe: 'Initial values'
ApplyRecipeColumn ('Initial values', 0);

- Fieldbus intialization

Procedure for adding an exception program:

Step 1: Create a new program that will handle the exception. It cannot be a SFC
program. The exception program can have any name. In this example it is
called 'pStartup’.

Workspace

4 [Z] Main task

4 Frograms
BN Progl
s Fieldbus Canfiguratians
%3 Binding Configuration
W os

ICP DAS Page 139 Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

Edit code to the exception program:

1. Inform the compiler that the program is an exception program:
Open the define editor by right clicking the program editor and

selecting 'Show/Hide Local Defines'
[

&1 Show/Hide Local Defines

Send to Spy
Go to Mariable

finitj

Insert the following line in the:
#OnStartup pStartup

2. Edit the source code for the exception program

]

Workspace
4 @ Main task

iy m
Pragrams 1
I

D@ Prag1 Then

AL T

#OnStartup pStartup

#% Fieldbus Configurations E

%13 Binding Configuration
s
(ul Variahles
b I Task?
b2 Taskd
b 2 Taskd
b IR Library
(All Frojects)

et

©

e LR BT TU R

(x

*)

2dd here your start up code
(e.g. system intialization)

6.5.2.2 Shutdown

You can write your own exception program to be executed after the last application

cycle when the runtime system is cleanly stopped.

Create a new program that will handle the shutdown exception. It cannot be a SFC
program. In the local define editor of the shutdown program, insert the following line:

#OnShutdown ProgramName

The 'ProgramName’ should to be replaced by the name of the exception program

(Figure 100).

You cannot put breakpoints in the Shutdown program.

ICP DAS

Page 140

Win-GRAFWorkbench User Manual
Version 1.0

Workspace

4 [F] Main task . #0nshutdown pShutdown
4 Pragrams it

@ Fra [s] 1 Then

[pStartup -E
% Fieldbus Configurations
%1% Binding Canfiguration

M vos S
Lol Wariahles s= I
b2 Task? — 1 // pShutdown:
B Task3 = 2 //this program is called once after
b [E Taskd 3 | //the last cycle
i 4
' Elerary_ 3 // add your code here
[All Projects) -

Figure 100: Shutdown exception program

6.5.2.3 Division by Zero

You can write your own exception program for handling the 'Division by zero' exception.
Create a new sub-program without any parameter that will handle the exception. In the
define section of the subprogram, insert the following line:

#OnDivZero SubProgramName

The 'SubProgramName' should to be replaced by the name of the exception sub-
program.

In the sub-program that handles the exception you can perform any safety or trace

operation. You then have the selection between the following possibilities (Figure 101):

- Return without any special call. In that case the standard handling will be performed:
a system error message is generated, the result of the division is replaced by a
maximum value and the application continues.

- Call the FatalsStop function. The runtime then stops immediately in Fatal Error
mode.

- Call the CycleStop function. The runtime finishes the current program and then
turns in cycle setting mode.

Handlers can also be used in DEBUG mode for tracking the bad operation. Just put a

breakpoint in your handler. When stopped, the call stack will show you the location of

the division in the source code of the program.

ICP DAS Page 141 Win-GRAFWorkbench User Manual
Version 1.0

4 @ Main task

o
4 Pragrams 1
[Progt =
B pShutcd own E
[pStartup —
#s Fieldhus Configurations
%13 Binding Configuration Lo —
i vos =

(o1 Wariahles =

| #0nDivZero pOnDivZero

// this sub program is called in case

b [Taske // of a division by zero
b3 Task3
b [Taskq // add your code here
b IR Library
(Al Frojects)

// To turn the runtime in 'cycle to cycle!
// pause mode, use:
[// cyclestop (TRUE); |

// to turn the runtime in "fatal error’
//mode, use:
L|N FatalStop (TRUE); |

EN pPONDivEero:
|
|
|
|
|
|
|
|
|
|
|
|

Figure 101: 'Divide by zero'- exception sub-program

Below is the procedure you must follow for setting an exception handler:
Step 1: Create a sub-program. In this example the name of the sub-program is
'pOnDivZero'.

ICP DAS Page 142 Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

Step 3:

ICP DAS

New program I

Properties | Advanced | Description

Program

Name pOnDivZero

Description:

Programming language

SFC - Sequential Function Chart - Grid editor
SFC - Sequential Function Chart - Free form editor
FBD - Function Block Diagram (CFC)

IL - Instruction List (deprecated)
PACKML - PACKML State Machine

LD - Ladder Diagram
ST - Structured Text

Execution mode

(") Main program

A/

Sub program

(O UDFB
I Child SFC program

Child of:

Cancel

Lok J J |

Help]

Do not define any in/output parameters for the

sub-program.

Program properties u‘
Inputs:
Edit
Remave
Move up L
Move down |
Swap
CQutputs:
I
[0K] ’ Cancel] ’ Help]
e

Add the following line to the define editor (Figure 101):

#OnDivZero pOnDivZero

Page 143

Win-GRAFWorkbench User Manual
Version 1.0

Step 4:

6.5.2.4 Array Index Out of Bounds

You can write your own exception program for handling the 'Array index out of bounds
exception. The procedure for the setting an exception handler is similar to the '‘Division
by zero' exception (Figure 102):

Step 1:
Step 2:

Edit the source code for the exception sub-program.

1

First create a new sub-program without any parameters the exception
In the define section of the subprogram, insert the following line:
OnBadArrayIndex SubProgramName

The 'SubProgramName' should to be replaced by the name of the exception

sub-program.

Fl @ Main task

4 Frograms

pOnBadindex

“2 pOnDivZero
[Progt
[pShutd own
[pStartup
#s Fieldhus Configurations
%13 Binding Configuration
H 10s
u] Wariahles
b IE Taske?

Edit the code of the exception program.

T

;
0

lex pOnBadIndex

= // pOnBadIndex:

| // called in case of array
L // index out of bounds

Figure 102: Array index exception sub-program

Note:

The array index out of bound error is a fatal error. If the ‘Check array bounds' compiling
option is set, the runtime goes in 'fatal error' mode after calling your sub-program.

ICP DAS

Page 144

Win-GRAFWorkbench User Manual
Version 1.0

7 Variable Monitoring (Debugging Tools)

The workbench provides several windows and tools for monitoring and manipulating variables
while the PLC program is executing. The workbench has to be connected to the runtime and the
application project needs to be open in order for the workbench to display the current variable
values.

The following tools are available for monitoring and debugging the application program:

- Monitoring variables

- Diagnostic information: A diagnostic window displays messages of the runtime

- Spylist: Variable values are displayed in the program or in the lists of variable. Variable lists
allow you to spy on real-time values of variables. SpyList monitors variable values of more
than one task, program or function at the same time.

- Test Sequences: The workbench includes an integrated tool for designing and running
automated test scenarios.

- Graphics monitoring: Graphic libraries are provided to create simple graphic interfaces to
monitor and write variables. User interfaces for debugging and monitoring purpose can be
done via drag and drop and linking the graphic object to a application variable.

- Step by Step debugging: When the program has reached a breakpoint you can execute the
program in single steps. At each halt position you see the current value of the variables in
the monitoring views. In addition to the cycle by cycle execution mode is supported which
stops the program at the end of each cycle.

- Recipes: The recipe manager allows the user to force a number of variables values at the
same time.

- Soft scope: An integrated oscilloscope displays variable values in a real time.

7.1 Monitoring Variable Values

When the workbench is connected to the runtime (online) you can monitor the values of the
variables of the running application. It is possible to change the value of some variables while
you are monitoring the variable values.

7.1.1 Inline Monitoring

If the workbench is online and the inline monitoring is activated, the inline monitoring
boxes are placed behind each variable in the code, or next to the variable in the function
block. The inline monitoring boxes shows the actual value of the variable in real time
(Figure 103: Area 1).

ICP DAS Page 145 Win-GRAFWorkbench User Manual
Version 1.0

File Edit View Insert Project Tools Window Help
| HE[8 ¥ H s XX | & WO e
Workspace [H. B3
4 Main task [RUN] 2 test 5970 := test 5870 + 1; - |¥[ame a [Value [Type [Dim [
Pl Programs 3 =] figinitMaster TRUE BOOL =
S Init 4B //#ifdef 0 fighoveAbs BOOL
% Fieldbus Configurati . | — - (2 - T . fighoveLinear BOOL
W% Bincing Configuration i i \L .::F;:st initialize the master before calling any other FBs: fighoveRel BOOL E\
= Profiles bt 8 Inst_EM INITMASTER(CardNo 1, flgInitMaster TRUE , N§ figPowerEnable [RUE — BOOL
iu fos 9 B IF /7 © Inst EM INITMASTER.Error = TRUE THEN figReadSerialNo BOOL
i Varisbles =l 10 return: flgSetPos BOOL [0.5] |-
3 Taske [Idle] = 11 ' END IF; < 1] b
3 Task3 [Idle] = 12 '; Name | 'value | T 0e
b Taskd[dle] = 13 B IF TRUE Inst_EM INITMASTER.Done = FALSE then Tgnihiastar TRUE BOCL =
b B Library 14 | flgrxisAssign 1= FRLSE; b Inst_EM_INTMASTER: EM_Initvaste =)
(Al Prajects) 15 | flgsetPulseUnit := FALSE; figAvisAssign B00L
el //return; flgPowerEnable TRUE BOOI
17| ELse . . fightoveRel BOOL
18 | flgAxisAssign := TRUE;
18 | flgsetPulseUnit 1= TRUE; " ReselEroriop BooL
20 . END IF: flgGrpPeset BOCL
21 I AvdsStop BOOL
22 RelPos 10000 LREAL
23 B //#ifdef AbsPos 0 LREAL
24 1 4 lActPos DINT
23 | ;:Reac serial number of ECAT-M801. Can be used for program |ACtPos[0] 0 DINT -
26 -
22 = if Ioci EN DELDSERILINQ Don TRIIE AL SR _thon & ! ‘] D
4| Define
Tasks X
& MainTask RUN RS-)
o[ocation [Status [Type RUN
Ready | Ful | Default | Variables: Project=102, Group=96 | RUN (192.168.2.59:1100) | A 0,-6 149x22 | 0,0 | 100% |

Figure 103: Monitoring vari

ables

To activate or deactivate Inline monitoring click the 'Show Value in Text' (5*) button on
the left edge of the program editor window. Variable values can not be changed directly

via the program editor.

7.1.2 Monitoring in the Variable Editor

The variable editor contains all the variable declared for a POU. Once the workbench is
connected to a running PLC application each variable is updated with the current
application value in real time (Figure 104). The current variable value is shown in the
'Value' column. If the variable type is an array, structure or function block, then first
double click the variable name to open a dialog to show the variables with its values.

7] Name 4 [value | Type
Error 0 DINT
Execute BOOL
flgAddToGroup TRUE BOOL
flgAxisAssign BOOL
flgGroupEnable BOOL
flgGrpReset BOOL
flgGrpStop BOOL
flgHomeExe BOOL
flginitMaster TRUE BOOL
flgMoveAbs BOOL
flgMoveLinear BOOL
flgMoveRel BOOL
flgPowerEnable TRUE BOOL
flgReadSerialMo BOOL
flgSetPos BOOL

ICP DAS Page 146

Win-GRAFWorkbench User Manual
Version 1.0

Figure 104: Variable editor with showing the current values

You can write and force a value by double clicking a variable in the variable editor. A
dialog with the current value pops up (Figure 105). Enter a new value and click the
'Force' button to changed the variable value while the program is running. The variable
will be set to this value at the beginning of the next cycle.

diAxisQty @

0

[Forca |

flgSetPasitionAll @ dfVectorVelocity @
Lock
[TRUE L 1000
Unlock
| FALSE [0y [Force |
I
Laock Lock
|
Unlock Unlock

Figure 105: Force variable

7.2 SpylList

The SpyList is a monitoring tool that enables you to watch variables of the application at
run time. The user can define a list of project variables that are collected in one view for
the purpose of monitoring their values. Variables of simple data type as well as arrays,
data structures and statements are all supported by the SpylList. In online mode, you can
write and force variable values in a SpyList to actively influence the PLC application
behavior. The SpyList configuration with it list of variable can be saved and be used for
the next debugging session. The SpyList purpose it to help the programmer to track
down errors and resolve problems.

A PLC application program contains many hundreds of declared variables. The
workbench allows the user to add a selected number of variables to the SpyList to
monitor its current value and state in the runtime. The variables are dynamically
updated by the workbench during runtime idle time or when free runtime resource are
available and is not updated more than once in a task cycle. The values of each variables
in the SpyList can be changed by the user.

SpyList can reference global, system, and local variables. Three type of SpyLists are

ICP DAS Page 147 Win-GRAFWorkbench User Manual
Version 1.0

provided:

- Program SpyList (Local SpyList): Only variables which are declared in the program are

supported by the local SpyList.

- Task SpyList: A task may have several programs; variable of any program in the task

can be added to the Task SpyList

- Multi SpyList: Any variable declared in the application can be monitored

7.2.1 Local SpyList

Each program editor has a local SpyList. If the SpyList is not visible then select in the
menu 'View/Info Tab2'to display it. The variables, structure and function block instances
of the local program are added to the local SpyList by simple drag and dropping it from
the program or variable editor (Figure 106). In the program editor double click the
variable name to mark it and then drag the name over the SpyList window to drop it.

Figure 106: Local SpyList

7.2.2 Task-SpyList

2 test 38704 := test 38704 + 1; « [Mame 4 [Value [Twpe |Di [P [Attib | Initvalue
3 . 3 flginitMaster TRUE BOOL TRUE -
£/ /pataet 0 figMoveAbs BOOL FALSE
E E //First initialize the master before calling ar flghovel inear BooL FALSE =
= - e T T T T T ot flgivloveRel BOOL FALSE
5= g Inst EM INITMARSTER|(CardNo 1 , flgInitMaste ﬂgPowerEn_ab\e TRUE BOOL TRUE
9 O IF Tnst BM_INTTMESPER.Error = TRT flgReadSerialNo BOOL FALSE -
oy 0 return: <« 1l] b
= 11 END_IF; . [Tlname | alue | Type | Dirn. [Des
= 1; IF TRUE Inst EM INITMASTER.Done - rare [N 4 ISLEMINITMASTER Et_nithlaster -
13 ALSh c= FALSE; Done .
5 flgSetPulselnit . " iz, FRLSE; Busy TRUE
16 //return; e, Erar
17 ELSE il ErrarlD 1}
18 flghxiskssign := TRUE; TP figaxishssign BOOL
9 flgSetPulseUnit := TRUE;
20 - END_IF;
21
22 Drag & drop
23 B //#ifdef variables to the
24 | // SpylList
25 //Read serial number of E.CI—;T—MSB\ -
26 /! —,
2?7 if Tn=sf FM RERNDSERTATNN Dnne TRITE = F‘If
< (1 3 r Public Define ENUM

A task controls several program and sub programs. The Task-SpyList monitors all the
variables declared within the task. Several SpyList items can be inserted to put the

variables into different groups.

Creating a Task-SpyList and adding variables:

Step 1:

ICP DAS

Page 148

Right-click the task name in the workspace and select ‘Insert New Item...".

Win-GRAFWorkbench User Manual

Version 1.0

Workspace
PR kiain task

4 Frograms
BN Init Al Online

% Fieldbus .)

%3 Binding ¢ = Olmulate

£ Profiles Insert New Folder

1l vos - [

S variakles D e
b5 Task? Shortcuts >
b2l Task3 Insert New ftem...
b2 Taskd
b 93 Library = Print Project...

(all Projects)| () Project Description...

Step 2: Select SpyList from the item list
Wa Insert New Ttem ‘ u

Categories: Available tems:

(A 3 spylist @
Programs Recipe
B Graphics

¥ Soft Scope
EP Test Sequence

Resources
Others

O

Step 3: Assign the SpyList a name and click 'OK’

1 B
Properties = EM
Name MainTaskSpy
Description
[oK H Cancel] N
L — J

The new SpylList is being added to the task in the workspace.

ICP DAS Page 149 Win-GRAFWorkbench User Manual
Version 1.0

Workspace
Fl @, Main task

4 Programs

EM Init

@ Fieldbus Configurati...
%1} Binding Configuration
£ Praofiles

1 vos

5% Wariahles

b E Task?

Step 4: Drag a variable from the variable editor to the task SpyList. Add all successive
variables that will be monitored with this list. You can change the variable
order by using drag and drop operations. If the workbench is connected to the
runtime then the current variable values are shown.

P Main task [RUN] FF T [Name [value [Desc Y[Name [Value TType
Pl Programs 2] InitfigPowerEnable @ererninininin,.... ., TRUE figMoveRel BOOL -
B nit g 4 WVMSUEMUNTMASTER T TRUE BOOL
Dons AccDecTime 999 UINT
% Fieldbus Configurati Busy TRUE Error 0 DINT
%3 Binding Configuration Enmar MotionDone BOOL
© Profiles EnorD 0 AxisPosition 0 LREAL |
1l vos Position 0 DINT I
i Variables Halt BOOL
3 Taske [Idle] HaltDone BOOL
3 Task [dle] HaltError 0 DINT
b1 Taskd[dle] Inst_MC_READACTUALP. MC_ReadAc
b @ Library Inst_MC_READACTUALVE MC_ReadAc
(Al Projects) AxisVelocity 1000 LREAL
2 Wlinst EM_INTMASTER | EM_InitMast
Inst_EM_AXISASSIGN EM_AxisAss
Inst_MC_WRITEPARANE... MC_WritePs
Drag & drop PulsePerlUnit 10000 LREAL
va_rlables _from the Exeeute BOOL
variable edlltor to the fgReadSerialNo BOOL
SpyList figWritePara TRUE BOOL
AxisArray UINT
Group1 lib:AXES_GI _
4 11 [4“_,‘--“-!;!7 ----- oo 4

7.2.3 Multi-SpyList
The Multi-SpyList provides the ability to watch variables within your application. Local
and global declared variables are support. The variable name with its location with in
the program are shown in the list.

Creating a Multi -SpyList and adding variables:

Step 1: Right-click the '(All Project)' in the workspace and select 'Insert New
Multispylist'.

ICP DAS Page 150 Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

Step 3:

ICP DAS

Workspace
[+ @ Main task
b [E) Taske?
b2 Taskd
b JE Taskq
b 93 Library

Insert New Folder

| o Insert New Multispylist

o

My Insert New Multisoftscope
Insert Extern Item...
& Insert Web Page...

‘Global Binding Editor’ Shortcut

A new Multi-SpyList item will appear in the workspace:

File Edit View Insert Project Tools Window Help
(W= XE o X |9 ™ MainTask

W5 @A

Workspace
I [E Main task
b [Taskz

b [Task3

b I Taskd
b3 Library

4 (Al Projects)

NewMultiSpy.mspl =

£ [Name

|'alue |

i
B

%Ga MewhultiSpy

Add a variable to the SpyList editor:

1. Open the SpyList editor by double clicking the name in the workspace
2. Double an empty space in the SpyList editor to open a variable list. The
list displays all the variables declared for the application project

3. Select a variable from the list and click ok

Workspace NewMultiSpy.mspl *

v 2 Main task i [Name. |'value |

:: glz:ti ? |® Initflginittdaster

b [E Taskd [InitfcwHominghade -

b 53 Librany [\n?v’Error

p Double click -0 nitfExecute

(Al Projects -
“ed MewhduliSpy (u

SpyList

editor

- InitflgAddToGroup
- InitflgdsisAssign

-0 InitflgGroFeset
[0 InitflgGrpStop

-1 Initflghovedbs

T leniaMlmh dmr om] fmme

< | 1

[InitflgGroupEnable

[MainTask: (all

[]Local variables only
["|Hide FB instancas

Connect the workbench to the runtime. Current variable values are shown.

Page 151

Win-GRAFWorkbench User Manual
Version 1.0

Step 4:

Forcing and writing variable value.
1. Double click the variable value in the 'Value' column
2. From the popup window enter or select a new value

FEIEIREEEE T | % WO A
Workspace sses NewMultiSpy.mspl T~
b | Main task [RUN] ¥ Name | value
3 Taskz [Idle] = MainTask|Inifiglnithdaster
3 Task3 [ldle] B 4 tainTask|Initfinst_EM_INITMASTER
I Taskd [ldle] Daone
b 3 Library Busy
P (Al Projects) Errar

a3 MewhuliSpy ErrarlD i

B 7 [Name [Value |
= ainTask]Initflglnittdaster [\—) | TRUE J|

B 4 MainTask|Initinst_EM_INITMASTER
Dane
Busy
Errar
ErrorlD

7.3 Soft Oscilloscope

flgInitMaster

[TRUE

[FALSE

|® Lock

Unlock

The soft oscilloscope is a tool which allows the user to view in a two-dimensional graph,
how the value of one or more variables (vertical axis) evolves over time (horizontal axis).
The soft oscilloscope enables you to track the value of boolean or numerical variables
and display it in a time curve. Traced variables are tracked by the runtime, which detects
changes and assign time stamps to each value record so that the trend displayed is very
accurate. The soft oscilloscope is available during online debugging.

Typical applications for using Soft Oscilloscope:
- Tracing the motion path of an axis during motion control execution
- Tracing the feedback position and velocity of an axis

- Any values of digital and analog input channels (current, voltage, temperature, etc.)
- Recording a variable value change in each cycle

ICP DAS

Page 152

Win-GRAFWorkbench User Manual

Version 1.0

Workspace
4 Main task [RUN]

f| Symbol [Calor | # Diagram | Hysteresis |Gain | Offset [Walue | Minim.. | Maximum

4 Pragrams 2 Initvarl I 0 1.0 0 0 100

7 Init g Initver2 I 0 1.0 0 0 100

€3 MainTaskSpy Initvar3 |] 1.0 0 Y 0 1000
¥ Soft Scope 1 E’ I"-\J

@ Fieldbus Corfigur... | &
%3 Binding Configurat...
© Profiles
 yos
(ol Wariahles
3 Task? [Idie]
3 Task3 [Idle]
3 Taskd [Idie]
b S3 Library
I (Al Projects)

Figure 107: Soft Oscilloscope

The Soft Oscilloscope window is divided into two sections:

1. List of variables to be displayed.

2. Diagram area (oscilloscope display).

In the diagram area, the user can zoom, explore a particular time range and
automatically scroll the diagrams.

To add new variables to the oscilloscope display, drag and drop them from the variable
editor, or double-click an empty line in the list area. These new variables can be added

in both online or offline modes.

The variable list supports the following configuration:

Parameter Description

Symbol Name of the traced variable.

Color Color used to draw the curve.

#Diagram Index of the diagram pane - default is 1.
You can define up to 30 panes.

Hysteresis Hysteresis to apply for change detection of
analog values.
The hysteresis is entered as an absolute value.

Value The current value of the variable is refreshed
in this column.

Minimum/Maximum | Range of the Y axis.

Time Time and date of the last change.

ICP DAS

Page 153

Win-GRAFWorkbench User Manual

Version 1.0

| Description Free description text. |
Table 17: Variable display configuration for the Soft Oscilloscope

The following commands are available from the Soft Oscilloscope toolbar:
Icon Description

T Move the selected variable up or down in the list.

Sort variables according to alphabetic order in the list.

Set refresh rate and Setup time ranges.

> Start the oscilloscope.

u Stop the oscilloscope.

= Start recording.

Save record to the file.

Reload record from file.

Auto-scroll mode (toggle).
Table 18: Soft Oscilloscope toolbar

W o

Steps for creating and configuring the Soft Oscilloscope:

Step 1: Right click a task name in the workspace and select ‘Insert New Item..." from
the pop menu.

Workspace
Main task [RUN]

3

B Task? [Idis] Al Online

4 Taski[ldle]

4 Taskd [Idle]

b SB& Library Insert New Folder

b (Al Projects) Shortcuts 3

| Insert New Item...

D Project Description...

f Cycle..
Tasks...

E Call Tree

Locked variables...

Step 2: Select ‘Soft Scope' from the item list and click ‘next’

ICP DAS Page 154 Win-GRAFWorkbench User Manual
Version 1.0

Wa Insert New [tem M

Categories: Available Ttems:
(All) 63 Spylist
Programs B Recipe

£ Graphics
Resources ¥ soft Scope
Others EP Test Sequence

e [

Step 3: Enter a name for the Soft Oscilloscope and click 'OK".

Properties &J
Name | Soft Scope 1 |
Description
[oK ” Cancel]
\

A new Soft Oscilloscope item with the defined name appears in the
workspace:
Workspace
P Main task [RUN]
3 Programs
6o MainTaskSp
@i Fieldbus Configurations
%3 Binding Configuration
£ Profiles
i vos

{af Variahles

Double click the oft Oscilloscope item to open its editor and display window.

Step 4: Select a variable to be displayed in the Soft Oscilloscope:
1. Double click the white area of the variable list. A window pops up which
list all the variables declared in the task.
2. Select a variable from the list click 'OK’
ICP DAS

Page 155 Win-GRAFWorkbench User Manual

Version 1.0

Step 5:

Step 6:

ICP DAS

H[Symbol [Color | # Diagram | Hysteresis | Gain | Offset [Value | Minim... | Masimu
1.0 0 0 100

l) Double click
variable list area

Init™arl

----- 01 InitySetPosition[]
-0 Init/SlavedxisPair]
----- 0O Inititest —

----- 0 Initpvar?

~

0 Inithvar3
wyl | - O Initelocity
a-lfl| O InithcEnCnt
-

----- 0 InitdwTransitionFPara
B |sAxisissignad

----- B Cphode =

0 1

|Var|ab|es: (all)

Local vanakles only
Hide FB instances

Select the color for displaying the variable curve. Do all the setting described
in Table 17. Repeat this process for each variable.

£| Syrbal | Color | # Diagram | Hysteresis | Gain | Offset |Walue | Minimumv.. | Maximum | Time
E Inithvart I 0 1.0 0 i 100
g Inivvarz I 0 1.0 0 i 100

Inity'ard 1+ 0 1.0 0 i 1000

Time ranges X

Refresh

Refresh rate:

Time ranges

@ Zoom

From: 2020-05-14 = 6:16:42 |

To: 2020-05-14 — 6:16:43 =

Auto scroll

Page 156 Win-GRAFWorkbench User Manual
Version 1.0

Step 7: Start the sampling process by clicking '*.
When sampling is active, you can start recording all events from now by
clicking on corresponding (red) button "*® . You must specify a csv file where
samples will be recorded. All events on all symbols will be recorded in this file
until you uncheck recording by clicking the button again.

H| symbol | Calor |# Diagram | Hysteresis | Gain | Offset [Walue | Minimum v | Maxim

7 Initvarl I 0 1.0 i 552 0 1000
Initfvar? I 0 1.0 i 880 0 1000
Initfy'ard | 0 1.0 i 760 0 1000

Step 8: Save display to file:

When sampling is inactive, you can save particular parts of the diagrams to

file.

1. Select the variable which curve needs to be saved. Select multiple
variables by pressing the 'Ctrl' and clicking the variable with the mouse.

2. Select the time range to save.

3. Store the file as a .rec format by clicking the 'Save selected diagrams'
button. The file can be loaded by clicking the 'Restore diagrams' button.

ICP DAS Page 157 Win-GRAFWorkbench User Manual
Version 1.0

Fi Syrnbol | Color | # Diagram | Hysteresis | Gain | Offset |Value | Minimurn v | Masimy
| Initrvart ,1_ I i 1.0 0 0 1000
. (
gy |Initvarz |) I 0 | Time ranges) o S
|nitf/ard 1 0
= !

TN Refresh
> (3 .
A Refresh rate: m ms

Time ranges I:’\%)
@) Zoom !
From: 202005-15 |5 5:23:471 :ms [1<]

Ta: 2020-05-15 | 52357121 [604

Auto scroll
-‘-.
12:00:04 = |58b
e 7

-t

oK l | Carf;el | | Help

7.4 Control Panel for Debugging

The control panel tool enables you to create graphic user interface for the workbench.
When the workbench is connected to the runtime (online mode) the graphic user
interface is updated in real time with the current values of the project. Via this interface
variables of the PLC application can me directly manipulated by modifying its value or
status. The control panel tools assist the user to create a HMI for debugging purpose to
operate the PLC application. The HMI can only run together with the workbench or the
X5Viewer tool but it can not act as a stand alone HMI. The X5Viewer tool which is
installed with the Workbench runs and displays the control panel.

ICP DAS Page 158 Win-GRAFWorkbench User Manual
Version 1.0

ouT B

N IN
e e
e ¥ |
- : -::
it El? ,,,,,,,,,,,,,,,,, T - @ -
=1 -
+F -
->|:||
0| b oo
gél 1) i Lo
i 7
3 200
© 0 1000 1L B
iLevel = 548 o

fiv

Al AN AR =

«]

| value
hdeter -

Objecttype
“arighle sy..

Analog meter

Graphics_1_prog/iLe
g
{ 2

Spying delay 0 B
Border size 2
Border color

Borderstyle 3DUP

Diata format %q il

I < Prupeniesﬂm

Analog buttons -
Bar Graph I
Binary @

Charts

Combo

Embedded HWI (Simulation anby)

LED Displays
Links -

1

Bitmap

R A A A A A A

.

P I* >| Graphics

Figure 108: Control panel design interface (1- graphic area, 2- graphic object property, 3- available

graphic objects)

Table 19 list all the graphic objects available for designing the control panel.

Graphic Objects

Description

Basic shapes

HOA
HEA

A collection of basic drawings is available. Each
object may be either static, or linked to a
variable used to enable its visibility
(show/hide).

Bitmaps

Bitmap file (BMP, GIF, JPG) can be inserted in
the graphic area.

Scales

[ARASRAGaRS panes hanan Anaed Manas Manas Anaes anans pang
oW W W W W™ @ T W W W

Scales are static drawings representinga X or Y
axis, generally used to document other objects
such as trend charts or bargraphs.

Text boxes

[Edit]|
Hello

Static, animated or edit text boxes are available
for displaying / forcing variables. For edit boxes
at runtime, double-click on the object to enter
the value and then hit ENTER to validate the
input.

ICP DAS

Page 159

Win-GRAFWorkbench User Manual
Version 1.0

Graphic Objects

Description

Switches and 2-
state displays

Buttons, switches and 2-state displays are used
for control or display of a boolean variable.

Analog buttons

Analog buttons are used for setting the value of
an integer or real variable. Mouse is used for
setting the value.

Bargraphs

Trend charts

Bargraphs are rectangles filled according to the
value of an analog variable. Bargraphs can be
horizontal or vertical.

Trend charts enable the tracing of a variable as
with an oscilloscope.

20 Analog meters provide a graphical display of an
Analog meters analog value.
-100 100
Lewvel
Sliders 1 Sliders are used for entering an analog value

with a horirontal or vertical mouse driven
cursor.

Digital meters

Digital meters (digits) display the value of a
variable with the same aspect as a digital clock.

Back to main page

Links Links are mouse driven hyperlinks that are used
as shortcuts for opening another graphic
document. Using links enable the design of
multi page animated applications.

Connection Connection status is a box actuated with the

status current status of the connection and the
connected runtime application. It is aimed for
diagnostic.

Gauge
Analog view meter.

ICP DAS Page 160 Win-GRAFWorkbench User Manual

Version 1.0

Graphic Objects Description

Table 19: Graphic objects provided for the control panel

Table 20 list the toolbar commands available for the graphic editor.

Icon Description

g Set Operate or Edit mode.

The Operate button is used to enable/disable changes in the graphic
when the workbench is online. When the operate mode is selected, no
change can be made. In that mode, the mouse can be used for driving
active objects such as buttons.

T Select the previous item in the graphic area.
=, Select the next item in the graphic area.
2 Align selected items on the left.

Select items with CTRL key pressed.

7 Align selected items on the top.

33 Align selected items on the right.

55 Align selected items on the bottom.

= Makes all selected items the same width (*).

10 Makes all selected items the same height (*).

ki Makes all selected items the same width and height (*).

= Send to front: move the selected item to the top in Z order.

L Send to back: move the selected item to the bottom in Z order.
@ Define the background color for the graphic area.

€l Export graphics

* Export graphic for display in the X5Viewer tool
* Export graphic as HMTLS5 file (not supported by the runtime)

Table 20: Graphic editor toolbar

The Z-order tab in the property area shows the list of the graphic items sorted according
to their Z order. You can simply move objects in that list to change the Z-order and thus
arrange overlapping items.

ICP DAS Page 161 Win-GRAFWorkbench User Manual
Version 1.0

— L Tank_1 . AIA £ Groupld -

3 I T :_::::::Iil dol DEFAULT

..... R | do| Editbox

‘ E N O Meter

i S —;gan O Meter |

El‘t: @ pee Default 5
700

Bar graph scale

{600

_— =1 bar graph

paon | m ; = 0UT command
¥ . .

2 IN Command

- 0 1000
i iLevel = 548
.

—E_ B valkve OUT /
— B walve IN 1

Figure 109: Z-order property

Table 21 details all possible properties for graphic objects.

Graphic Object Properties

Description

Identifier

You can freely attach a text identifier to each graphic object inserted in
a document. Identifiers are useful for arranging overlapped objects as
they appear in the Z-order list.

Variable symbol

This is the full name of the application variable connected to the graphic
object. In case of a local variable, its symbol must be prefixed with the
parent program name, separated with /".

Example: 'MyProg/MyVar'

Spying delay This is the minimum period for actuating the value of the connected
variable, expressed as a number of milliseconds. If the delay is not
specified or equal to 0, refresh is done as fast as possible.

Border size This property indicates the width of the border drawn around the

object, as a number of pixels. If this property is 0, then no border is
drawn.

Border color

This property indicates the color of the border drawn around the object.

Border style

This property indicates the possible 3D effect used for drawing the
border around the object. Possible values are:

* FLAT = no 3D effect

* 3DUP = depressed 3D effect

* 3DDOWN = pressed 3D effect

* 3D =default 3D effect

Text color

This property indicates the color used for drawing texts in the graphic
object.

Text mode

This property indicates the font effect used for drawing texts in the
graphic object. Possible values are:

* HIDE = text is not displayed

* NORMAL = normal font

¢ BOLD = bold text

¢ |TALIC = italic text

* UNDERLINE = underlined text

Font name

This property indicates the name of the character font used for drawing
texts in the graphic object.

Font size

This property indicates the size of the character font used for drawing

ICP DAS

Win-GRAFWorkbench User Manual
Version 1.0

Page 162

Graphic Object Properties Description

texts in the graphic object. The size is expressed as a percentage of the
actual height of the object. Maximum possible value is 100. This ensures
that the ratio is kept when the object is resized.

Background color This property indicates the color used for filling the background of the
object. In case of a bitmap, it specifies the color that should not be
drawn if the TRANS (transparent) background mode is specified.

Background mode This property indicates whether the background of the object must be
filled or not. If this property is OPAQUE, then the background is filled
with the specified background color. If this property is TRANS
(transparent) then background is not filled. Transparent drawing mode
may be useful in case of overlapping objects.

Attention

Specifying the TRANS (transparent) mode for large bitmaps is time
consuming and will affect the real time performances of graphic
updates.

Data format If defined, this property indicates that the value of the connected
variable must be displayed on the graphic object. You must specify for
this property a format string that indicates how the data must be
formatted.

Attention
The text property is ignored when a data format is specified.

Format string has the same format as the famous ‘printf' function of 'C’
language. It may include static characters together with one of the
following possible pragmas that specify the value:

* %s = default formatting according to IEC syntax

* %d = integer (decimal)

* %X = hexadecimal

* %g = floating point

* %.nf = decimal real (n is the number of displayed decimal digits)

B Example
ad 12.3 12
Var = %g 1.2 Var = 1.2 meters
meters
%.2f 1.12345 1.12
Info
Only one % pragma can be used in a string.
Text If defined, this property indicates the text to be displayed on the graphic
object.
Attention

This property is ignored when a data format is specified.

ICP DAS Page 163 Win-GRAFWorkbench User Manual
Version 1.0

Graphic Object Properties Description

Bitmap display mode For bitmap based objects, this property indicates whether the attached

bitmap must keep its original aspect or be stretched to the actual size of

the object. Possible values are:

* ORIGINAL = Keep the original aspect of the bitmap (cut if too large).

e STRETCH = Stretch or shrink the bitmap for fitting the actual size of
the graphic object.

Attention
Large bitmaps with STRETCH display mode are time consuming during
animation and can lead to poor performances.

Minimum value For analog animated objects (meters, bargraphs, trends...) this property
indicates the minimum possible value that can be displayed. For static
scales, it indicates the value of the lowest mark.

Maximum value For analog animated objects (meters, bargraphs, trends...) this property
indicates the maximum possible value that can be displayed. For static
scales, it indicates the value of the highest mark.

Data color This property indicates the color used to represent the value of
connected variable within the object (for example the filled part of a
bargraph).

Nb divisions (main) For objects including a graphic scale, this property indicates the number
of main division marks to be drawn in the scale.

Nb divisions (small) For objects including a graphic scale, this property indicates the number

of small division marks to be drawn in the scale, between each main
division mark.

Scale color For objects including a graphic scale, this property indicates the color
used for drawing the axis, the division marks and corresponding values
of the scale.

Bitmap pathname For bitmaps, this property specifies the pathname of the bitmap to be

displayed. BMP, GIF and JPG formats are supported. If no directory is
specified, the specified file name is searched:

* Inthe project folder.

® |nthe '\BITMAP' folder of the workbench.

Bitmap for 'TRUE' state For 2-state objects having the CUSTOM aspect, this property specifies
the pathname of the bitmap to be displayed when the value of the
attached variable is TRUE (or not zero for analogs). BMP, GIF and JPG
formats are supported. If no directory is specified, the specified file
name is searched:

* Inthe project folder.

® |nthe '\BITMAP' folder of the workbench.

Bitmap for 'FALSE' state For 2-state objects having the CUSTOM aspect, this property specifies
the pathname of the bitmap to be displayed when the value of the
attached variable is FALSE (or zero for analogs). BMP, GIF and JPG
formats are supported. If no directory is specified, the specified file
name is searched:

* Inthe project folder.

* In the '\BITMAP' folder of the workbench.

Color when not connected For shapes, this property indicates the color used for filling shapes when
no variable is attached to the graphic object.

TRUE color For shapes, this property indicates the color used for filling shapes when
the attached variable has the TRUE state, or non zero for analogs.
FALSE color For shapes, this property indicates the color used for filling shapes when
ICP DAS Page 164 Win-GRAFWorkbench User Manual

Version 1.0

Graphic Object Properties

Description

the attached variable has the FALSE state, or zero for analogs.

Direction (basic shapes)

For oriented shapes such as triangles, half ellipses or cylender, this
property indicates the direction of the drawing; to the left, to the right,
to the top or to the bottom.

Direction (scale)

For scales, this property indicates the direction of the axis. If LEFT, the
minimum value is on the left side. If RIGHT, the minimum value is on the
right side.

Placement (scale)

For scales, this property indicates the location of the scale within the
object rectangle: on the left, on the right, on the top or at the bottom.

Action (text)

Indicates the possible mouse action for text boxes. Following values are

possible:

- STATIC = No mouse action.

- EDIT = Double-click opens an edit box for entering the variable
value.

Action (switch)

Indicates the possible mouse action for switches. Following values are

possible:

¢ STATIC = No mouse action.

* PUSHBUTTON = The variable is forced to TRUE when pressed and to
FALSE when depressed.

* SWITCH = The status of the variable is inverted when the button is
pressed (toggle).

* ONESHOTBUTTON = Same as switch, but the display remains
depressed when the mouse is released.

Direction (bargraph)

For bargraphs, this property indicates the growing direction: to the left,
to the right, to the top or to the bottom.

Nb of points (trends)

For trend charts, this property indicates the maximum number of stored
points. If the width of the object (in pixels) is less than this number, then
oldest points are not visible.

Direction (slider)

For slider, this property indicates whether the slider is horizontal
(RIGHT) or vertical (TOP).

Link This property indicates the name of the target .GRA animated document
for shortcuts. If no directory is specified in the link, then the file is
searched in the project folder.

Aspect (shapes) This property indicates the type of basic shape to be drawn. Possible

aspects are:

* CYLINDER = A 3D like cylinder.

* ELLIPSE = An ellipse.

* HALFELLPISE = One half of an ellipse.

* GATE = A simple vector drawing for a valve.

* RECTANGLE = A rectangle.

* ROUNDRECT = A rectangle with rounded corners.
* TRIANGLE = A triangle.

Aspect (switches)

This property indicates the type of switch to be drawn. Possible aspects

are:

* DEFAULT = A standard Windows-like push button.

* CUSTOM = A button with TRUE and FALSE drawings defined with
bitmaps.

Aspect (trend charts)

This property indicates the type of drawing for a trend chart. Possible
aspects are:

* POINT = Only relevant dots are drawn.

* LINE = Lines are drawn from point to point.

ICP DAS

Page 165 Win-GRAFWorkbench User Manual
Version 1.0

Graphic Object Properties

Description

* HISTO = Histogram style.

Aspect (digits)

aspects are:

e DEFAULT =
e BEZEL = All segments have a 3D effect.

This property indicates the type of drawing for a digital meter. Possible

Plain drawing.

Table 21: Graphic obje

ct properties

7.4.1 Create Control Panel

This section describes the procedure of creating a control panel on the workbench for
debugging the PLC application in online mode.

Step 1: Add control panel:
1. Right click a task in the workspace tree and select ‘Insert New Item...’
from the pop menu.
2. Select the 'Graphics' item and click 'Next'.
3. Assign the control panel a name and click 'OK’
Workspace
S Er—
“ Programs Wa Insert New Item l ﬁ
EN Init Al Online
&3 MainTaskSpy *= Simulate Categories: Available Trems:
;i'ﬂf\‘dsbmp; 1 figurati Insert New Fold o =i
ieldbus Configuratic nse ew Folder B Recipe
WBmdmg Configuration f Insert New Program... T
i:;; :z;mes Shortcuts by [Others B ‘SFZstSSZELI]puche
(4 Variables Insert New Item... |
E g:zi = Print Project..
b B} Taskd () Project Description...
b3 Library @ Compare Project with..
b (Al Projects)
B Cycle..
Tasks...
[E Call Tree
Target System Configuration...
Libraries...
Update Tasks with Library
Settings...
v | Alphanumeric Sorting L] ||
Properties M
Description
[oK ” Cancel
ICP DAS Page 166 Win-GRAFWorkbench User Manual

Version 1.0

Step 2: Open the control panel graphic area by double clicking the newly added
control panel name in the workspace.
The Graphics window on the right hand of the graphic area list all the graphic
objects with its properties supported by the workbench. Insert a graphic
object to the graphic area by simple drag it over the area and drop it where
you want to place it.

Workspace
4 B Main task = N e T
4 Pragrams < =
B i =
ea MainTaskSp
R DR
¥ Soft Scope 1 e S
& Fieldbus Configurations | 75
¥} Binding Configuration L b Analog buttons -
© Profiles 5 S b BarGraph
yos S b Binary =
(3 Versties W e L
b [F Task? +a b Charts
b [E Taski) b Combo
b B Task4 % b Embedded HMI (Simulation only)
I EE‘]Lihrary I LED Displays 7
b B (Al Projects) @ ...
& L
<) » 1T crapnico SN

In the following it is shown how to add a meter object to the graphic area and link it to a
PLC variable.

Step 3: Drag the analog meter graphic object to the graphic area:

] R « N Hame [alue
N |E| Identifier Analog meter -
= U - Ohject type Analog mater E

‘ . YWarable symbaol
e Spyving delay il
=
=
4l 4 Meters o
N .

— Digits
=i Gauge Needle
| i

..................... Gauge Ring

% Needle i
L .

. . . .
e

« [»

Step 4: Set the property of the graphic object (e.g. color, range, name, front style, etc.

)

ICP DAS Page 167 Win-GRAFWorkbench User Manual
Version 1.0

o » l Name [alue
T] \E Border size 1 -
— Border color l:|

Border style

Data format s
|E'£ Diata color _F
35 Background colar _
3 Background mode OPAQUE
% Text TestMeter
= | Text color l:l =
1 Text made NORMAL
O Fontname ARIAL
=, SO Fontsie 10
LR - - Minimurm value 0.000000
o L T T TN taximum value 1000.000000 L=
2 Scale color l:l
@ Mb divisions (main) 10

bl dlivisinns famalll & b

Step 5:

Double click the 'Variable symbol' property
Select a variable from the variable list. The value of this variable will be
shown by the graphic object

Click 'OK' to confirm the selection

Link the graphic object to a variable which value is has to represent
1.

I=[||I]”
=
B
W
£

Marme ["alue
Identifier Analog meter -
Object type Analog meter D
Variable symbol
Spying delay Initf/art
Border size -1 IniyPosition 3
Border color -0 InityFulseFarlnit
Barder style -0 l”WRB‘PDS
Data formal -0 InitfPiesetErarsiop] |

-1 InitySetPosition]]
Data. colar -1 IniySlaveAxisPair]
Background color [Inittest o
Background mode ' 2

-1 Initfvar, =i
Texd e n| Init,."w\farS E
Text color -0 Initvelocity -
Textrode <] m | D
Fant name |
Font sive [vaiables. (al) -]
b Aimir i el | D Local wariables only
4 | Pmpeniei! [Hide FB instances

Step 6:

current value to which it has been linked.

ICP DAS

Page 168

Connect the workbench to the runtime. The graphic object displays the

Win-GRAFWorkbench User Manual

Version 1.0

CEIEIEAETE R R AR £

Workspace
P Main task [RUN]
4 Programs
) Init

&d MainTaskSpy

F& MyGraphics

¥ Soft Scope T

= Fieldbus Configurations
¥} Binding Configuration
 Profiles

1 yos

ariahlo

1000 |
Lest Meter

In the following steps a switch is added which serves as an example to show how to
modify a PLC variable via the control panel.

Step 7:

ICP DAS

Drag a round switch and a green LED to the graphic interface.

=
20

®$FE LEM(EEHR |

............... R e | alue
--------------- B EI Identifier Fiound switch -
o Objecttype Biuttan :
Aspect CUSTOM H
Wariable symbol
Spying delay
Border size 0
Border color _
0 1000
Test Meter
4 Switches -
Grey Minus-Plus
i e e e |V Rou

1 [

Fush button

............... .. = Name | "alue
g = N Identifier LED Dizplay 2
— Ohijecttype Button L
o Aspect CUSTOM k
_’ Wariahle symhbol InitfaFlag
e Spyving delay i
3T Border size 0
%3 Border color _
14
1= a forra
— -
I=I|][| ComputerOnOfi_B4_&4
48 nLED
§ S S o - LEDGraenRad_16_16 -
o . f

Page 169 Win-GRAFWorkbench User Manual

Version 1.0

Step 8:
Step 9:

Step 10:

ICP DAS

Set the properties of the round switch and the green LED.
Map both the round switch and the green LED to the same BOOL variable

1. Double click the 'Variable symbol'
2. Select a BOOL variable from the variable list
3. Click 'oK'
TE » fHame | alue
= T |=) 1deniifier Fiound gwitch -
Objecttype Button :
CUSTOM ‘"

- Aspect)
(1 IVarlabIe symbol f —)
: - Spying delay InittbFlag E

e
1= Baorder size (@ ariahbles: (&l o -
) Border calar R AxisRe] =]
ﬁ_ Oatsfornst 4| 77 & CardMo
— < » | Properties, I """ O InitfAbsPos
= R |] [InitYaccDecTime
1 Grey Minus-Plus -0 InitjdxesGroup
+8 Grey Round Switc] | [.| O Initfdeisdrray]
— Fushbuton ||| [InittéxisPosition
O L L e 0 InitpéxisStap[]
b Text .
----- hitftodish'el oci —
A O Initfxisvelacity
; {01 InitthFlag | (2 -
R 4 1 2
€
[verisbles: (all -]
[Localvariakles onky
................. . i DHIdE FBinStﬁnCES
‘W T e —

Set the workbench in online mode. By turning the switch from 0 to 1 the
linked BOOL variable is forced from false to true or vice versa.

CEIEE R R L Y]
Workspace asas
4 Main task [RUN] » | ame | Value
4 Programs B E\
Froae W
3 MainTaskSpy -
°F MyGraphics 0 PRI
W SoftScope 1 A .0
% Fieldbus Configurations 77 p
Binding Corfiguration b= 7 R
tgF’rUMEZ ’ £ 0 N 1000
M yos = Test Meter Z Drdler
(&1 variahles 100 S Grey Minus-Flus -
b Task2 [idle] X o - . .. Grey Found Switch
b Task3[idle] [y . ' _____ Push button E
4 Taskd [ldle] [L& b Text -
b W3 Librany — o
4 (Al Projects) g _____ q
Bl .
[W 3 O

7.4.2 Exporting Control Panel to X5Viewer

Page 170

Win-GRAFWorkbench User Manual
Version 1.0

The control panel developed with the workbench can also be opened and run with
X5Viewer which is part of the workbench package. It is necessary to export the control
panel as a .X5T file before it can be displayed by the X5Viewer tool.

The procedure of exporting the control panel and running it by X5Viewer are explained
in the following steps:
Step 1: Export the graphic display

Click the 'Export graphic' command in the toolbar
Select 'Export graphic for display in the X5Viewer tool' option. After
clicking 'OK' a wizard window pops up.

.] j
| Wia Select Export Type w

(@) Export graphic for display in the XSWiewer tool

(") Export graphic as HTMLS file — requires the data server on the runtime

oK] ’ Cancel

Step 2: Follow the steps provided by the wizard guide

1.
2.
3.

o

ICP DAS

Select the folder where to save the .X5T file

Set the name of the X5T file

Set driver used for communication with the runtime. Specify

K5NETS5 . DLL for the standard runtime.

Set communication parameters for connecting to the runtime. The IP
address has to be followed by colons (:) and the IP port number. If not
specified, the default port number used is 1100.

ZIP file name: This field has to be empty

Include symbol table: Do not check this option

Check the 'Display X5T graphic file' option

Page 171 Win-GRAFWorkbench User Manual
Version 1.0

Generate

=) (Finish I

Press 'Next' to start process.

The X5T graphic file is now ready to be generated. Generation is now complete

X5T graphic file has been generated in folder.

Graphic file C\Users\T—T\Documents)_\MyGraphics gra Ci\Users_I\D: RAF 9.4\FirstP _V_\MainTask
Destination folder: C:\Users\[__J\Documents\WinG..\MainTask
MyGraphi
g thicnane e Activate this option if you wish to stant X6Wiewer graphic tool when
Targetname: KSNETSDLL " closing this dialog
Connection seftings: 192.168.4.20:1100 Dlsplay)GT graphic file
ZIP file name:
Include symbol table (|
|
<Back [Mex»> | [Cancel Help <Back || Finsh | [Gancel Helf

Step 3: After clicking 'Finish' the X5Viewer with the control panel starts. The X5Viewer
automatically connects to the runtime IP address set in the previous step and
continuously updates the control objects with the linked variable value. Via
X5Viewer variables can be forced to new values, e.g. by changing the state of

a switch.

m K5Viewer - Ch\Users),

\Documents\WinGR...l =IE ﬁ

File View Help

0
Test Meter

<[

s

1000

Ready

The X5Viewer execution file location is in the following directory:

C:\Program Files

(x86) \Win-GRAF Workbench\Win-GRAF Wb 9.xx

The control panel can be directly open by the X5Viewer by clicking 'File/Open from file...'
and selecting a xxx.X5T file.

ICP DAS

Page 172 Win-GRAFWorkbench User Manual
Version 1.0

i X5Viewer e EHRES | (o xsviewer - CAUscre

File View Help File | View Help

a Open from file.. Ctrl+0 -
[

Open from target..

Save file.. Ctrl+S
1 MyGraphics x5t

Je Exit

‘Waiting for instructions

W <« [»
Ready H |

Figure 110: Open a X5T file in X5Viewer

7.5 Recipe Control

Similar to the variable editor or SpyList the recipe control enable the user monitor the
values of a list of variables. In contrast to the variable editor and SpyList the recipe
control has a couple of advantages:

- The values of more than one variables can be force synchronously in one cycle time.
The SpyList only allows one variable value change at a time while the recipe control
supports up to 50 variable value change per command by one mouse click. This
ensures that all variables are written together at the same moment in the runtime,
i.e. in between two cycles.

- Values of multiple variables can be saved (latched) with one command

- Several columns can be created which stores multiple variable values. The runtime
can be forced to replace all current values with the values stored in one a column

ICP DAS Page 173 Win-GRAFWorkbench User Manual
Version 1.0

Woerkspace sess
4 Main task [RUN] ma| Name ['value |Walue_ 1 | MyInitvalues | MyLatchedvalues |
y Programs B Initvarl 508 UDIMT#188 UDINT#0 UDINT#152
S Init Ei Inivar? 20 UDINT#470 UDINT#D UDINT#405
8 hyRecipe EE Initvard 40 UDINT#340 UDINT#0 UDINT#810
&s MainTaskSpy T Iniyvars 40 UDIMT#340 UDINT#0 UDINT#810
& MyGraphics = nitvard 4040 UDINT#340 UDINT#0 UDINT#250810
¥ Soft Scope 1 = niyvars BOBD UDINT#D UDINT#376215
s Fieldbus Configurations \FE Inithvark 8080 UDINT#1880 UDINT#0 UDINT#501620
#$ Binding Corfiguration B Initvar? 10100 UDINT#2350 UDINT#0 UDINT#627025
€ Profiles L Inithars 12120 UDINT#2820 UDINT#0 UDINT#752430
1 10s = Initvard 14175 LUDINT#0 UDINT#1817405
(21 Variables Initfar! 0 16160 UDINT#3760 UDINT#0 UDINT#1003240
b Taske [Idle] B nivan 15150 UDIMT#4230 UDINT#0 UDINT#1128645
b Task3 [Idle] Initear 2 20200 UDINT#4750 UDINT#0 UDINT#1254100
b Taskd [Idle] Initfar 3 22220 UDINT#5170 UDINT#D UDINT#1379455
b 93 Library Initfvar! 4 24240 UDINT#5640 UDINT#D UDINT#1504860
b (Al Projects) Initfar! 5 26260 UDINT#6110 UDINT#0 UDINT#1630265
Inits/arl B 25280 UDIMT#5560 LUDINT#D UDINT#1755670
Initv'ar! 7 30300 UDINT#7050 UDINT#0 UDINT#1851075
Initf/ar! 8 32320 UDINT#7520 UDINT#0 UDINT#2006480
Initf/ar! 8 34340 UDINT#7990 UDINT#0 UDINT#2131885
Initf/ar20 36360 UDINT#8460 UDINT#0 UDINT#2257250

Figure 111: Recipe control

Several toolbar commands are available to add, delete, copy, move columns (Table 22).

Icon Description

=i Insert a new column to the recipe table

E=i Add a new column behind the last column

i Remove selected column

i Rename column: Change the header name of selected column

= Copy column: copy values of selected column to another column

Bl Move selected column to the left

= Move selected column to the right

oH Move variable one row down

el Move variable one row up

B Send recipe: sends the values of the current selected column to the runtime to
replace the all the current variables values (force variable value change)

B Save recipe: copies the current variable values of the 'Value' column to a new
column.

B Sort variables in the recipe table in alphabetical order

Table 22: Recipe editor toolbar commands

Procedure to add a new recipe control to the workbench:

Step 1: Right click a task or program item in the workspace and select 'Insert New

ICP DAS Page 174 Win-GRAFWorkbench User Manual
Version 1.0

Item..." from the popup menu.

Workspace
4[5l Main task
4
F2

] Rename...
CE) Ini

ed Main

E by Gr
W con s 1 Insert New Program...

Insert Mew Folder

4 Field Shortcuts »
¥4 Bindi | Insert New Item..
© Profile
M yos | X Delete
{ui Wariables

2 Taske

2 Task3

B Task4

L E] Library
(Al Projects)

v v v W W

Step 2: Select 'Recipe’ and click ‘Next'
M.. Insert New Item p— ‘- - M

Categories: Available Ttems:

(Ally &o Spylist

= < Graphics
esources

Others [B¥ Soft Scope

B Test Sequence

Next J ’ Cancel]

Step 3: Enter arecipe name

Properties ﬂ

Name | IMyRecipel

Description

Step 4: Open the recipe editor by double clicking its name in the workspace

ICP DAS Page 175 Win-GRAFWorkbench User Manual
Version 1.0

Step 5:

Step 6:

ICP DAS

Workspace
Fl @ Main task
4 Frograms

CE Init
oo MainTaskSpy
& MyGraphics
& Soit Scope 1
Fieldbus Configurations
%} Bincing Configuration
£ Profilas
Hyos
{uf YWariables
& Taskz
12 Tasks
B Task4
2 Library
(Al Projects)

v v v v v

e R L FHE R

B
=
m
3
o

[value

Add variables to the recipe editor:
1. Double click the white field in the recipe editor. A variable list will pop up.
2. Select a variable from the list
3. Click 'OK"and the variable name will appear in the first column of the

recipe editor.

Workspace
Fl @ Main task
Pl Frograms
E Init (
& MyRecipe
ed MainTaskSpy
& WhyGraphics
¥ SoftScope 1
@ Fieldbus Configurations
¥§ Binding Configuration
€ Profiles
1 yos
ui Variahles
B Taske
B Task3
B Taskq
3 Library
(Al Projects)

v v v v W

m| Marme

[value |

[0 | 5 00 el A

L

Initfarl

[IniyNetworkinfo

-~ InitPosition

0 InittPulsePernit
-0 Ini¥RelPos

[IniyFesetErorStop[]
-0 Ini¥SetPosition]]
F-0 InitSlavedxisPair]]

[Initttest —
10 el | (2
00 Iniftvar? .)
-0 Inithar3

< | 1n

||

[Vanablea. (all)

[]Local variables only
[Hicle FB instances

Repeat this step to add several variable to list which can be monitored.

Connect the workbench to the runtime. Now the variable values are
continuously being updated with the current values of the runtime.

Page 176

Win-GRAFWorkbench User Manual
Version 1.0

FEIRC I A = | & % | (7 " 2 A

Workspace ssas
4 Main task [RUN] ma| Name | value | f
Fl Programs =i Initfy'ar] 3k
EE Init = Initvar2 | 540

B tyRecipe
&a MainTaskSpy

54 Initvard | 180
Ha
B_>
& MyGraphics Ed
B
tH

¥ Soft Scope 1
= Fieldbus Configurations

Application examples:

1.

Forcing one variable value

In online mode the 'Value' column is continuously updated with the current

variable values.

Step 1: Double click a value in the 'Value' column to open a windows which
allows you to force / control the value of the selected variable. You can
also first select the a value in the 'Value' column and press the ENTER key
to open the force variable window

Step 2: Enter a new value for the variable and

Step 3: Click 'Force' button to replace the current value with the new value.

g Name | value |

E=i Initfarl 458 -

S Iniverz 145 ."/1 '

EA nigvard 200" Var3 =]

= Inivard .

E2 hivard 72280

=l higvers 108438

B Initvars 144580 Force]l

H Inittvar? 180725 D

L Inivars 218870 Lock (3

B nitvard 253050

= itvartn 283160 Wit

B Init™artd 328305 15 g 7]
Initfvariz 361500 o 2 2 o a2
e I x s .
nr ar
nirvas 5085 EEEEEEOE BEEEEEEE
Init"arl6 506030
Initharl? 542175
Initharld 578320
Initharl3 614465
Inithardl BROE10

Forcing a column of variable values

In the recipe editor a new column can be created and be filled with new values.

With one force command all the current variable values are replaced by the new

column values at the same time between two cycles. A maximum of 50 variables

(or less if strings) can be sent at the same time.

Step 1: Define a new column add fill it with new values
- Click 'Insert Column' button to add a new column to the recipe editor
ICP DAS Page 177 Win-GRAFWorkbench User Manual

Version 1.0

Step 2:

ICP DAS

Enter a name for the column header (e.g. 'Value_1")

Enter new values for each variable in the new column. If no value is
assigned for a variable (e.g. Var5, Var9) then the current value for
this variable in the runtime is not being replaced if the new column
value is forced to replace the current values.

[Name | Value [Value_1 | r.r";
= Inittar! [UDINT#188 | _)
%1) Initpvarz UDINT#470
Initpvar UDINT#340
= hipvars UDINT#340
B2 hnitpvard UDINT#340 i
= nitvars {2
H o hitvar UDINT#1880 |
A nitvar? UDINT#2350
Initpvars UDINT#2820
x| Initfarg
Initpvar10 UDINT#3760
B nivart UDINT#4230

Several new columns can be created. In the figure below two columns
('"Value_1', 'MylnitValues') has been added and filled with values.

ma| Name [value [value_1 | Mylnitvalues
B Inithvarl UDINT#188 UDINT#0
S Initvar UDINT#470 UDINT#0
BB Inithvar UDINT#340 UDINT#0
B nitvard UDINT#340 UDINT#0
B jnitvard UDINT#340 UDINT#0
= lipvars UDINT#0
H nitvarb UDINT#1880 UDINT#0
0 hivar? UDINT#2350 UDINT#0
nitpvard UDINT#2820 UDINT#0
£y Initvar UDINT#0
Initpvart UDINT#3760 UDINT#0
B ipvartt UDINT#4230 UDINT#0

Set the workbench in online mode

Select a column (e.g. 'MylnitValues') which variable values will be
forced by the workbench to replace the values in the runtime

Click the 'Send Recipe’ button to force a variable value replacement.
All the variable values are replaced at the same time between two
cycles. In the next cycle the 'Value' column shows the replaced

values.
| Name [alue [value 1 | Mylnitvalues
B Inivarl BED UDINT#188 UDINT#0 1\
B nitvarz 150 UDINT#470 UDINT#0 '_)
BB Iniyvard 300 UDINT#340 UDINT#0
T nitvard 300 UDINT#340 UDINT#0
B nipvard 168300 UDINT#340 UDINT#0
S hiyvars 252480 UDINT#0
Fl InitverB 336600 UDINT#1880 UDINT#0
A Initvar? 420750 UDINT#2350 UDINT#0
= Inilhvard 504300 UDINT#2820 UDINT#0
E{Q iihard 1628620 UDINT#0
ihvarll 673200 UDINT#3760 UDINT#0
B aiwvar1 757350 UDINT#4230 UDINT#0
Page 178 Win-GRAFWorkbench User Manual

Version 1.0

3. Latch all variable values in a column
In online mode the values in the 'Value' column are continuously being updated
with the current values in the runtime. All the values listed in the 'Value' can be
latched at the same time with one command and saved to a new column.

Step 1: Latch column values
- Click the 'Save Recipe' button. A new column is being created and
filled with the latched values (grey reactangle)
- Enter a name for the new column
| Name | value [value_1 [Mylnitvalues || MyLatchedvalues |
E=i Initf/ar 794 UDINT#188 UDINT#0 UDIMNT#162 I/" B
Ed Initf/ar 985 UDINT#470 UDINT#0 UDIMNT#405
= Initf/ar3 a0 UDINT#340 UDINT#0 UDIMNT#810
= Initf/ar3 a0 UDINT#340 UDINT#0 UDIMNT#810
E3 Initf/ard 253970 UDINT#340 UDINT#0 UDIMNT#250810
Initf/ars 380455 UDINT#0 UDIMNT#376215
H Initf/ark 507340 UDINT#1880 UDINT#0 UDIMNT#501620
If? Initfar? 534925 UDINT#2350 UDINT#0 UDINT#627025
Initf/ard 761910 UDINT#2820 UDINT#0 UDINT#752430
El Initf/ard 1928465 UDINT#0 UDINT#15917405
Initf'ar10 1015880 UDINT#3760 UDINT#0 UDINT#1003240
Initf/arll 1142865 UDINT#4230 UDINT#0 UDINT#1128645

7.6 Test Sequences

The Workbench includes an integrated tool for designing and running automated test
scenarios. Test scenarios are expression evaluations and forcing variable values. Test
sequence does not need to be command and can be edited while the workbench is in
online mode.

9 [# [Command | Status
o 1
5| = 2z j{Force variable value
- | _ .
N 2 //Force variable value: 3 J# -Incrementthe Varl wvariable:
= 3 /7 — Increment the Varl variable: > 4 InitfvarT = Inithvarl + 1 DK
4 Init/Varl := Init/varl + 1; - 5 wiait time #10s; OK
5 wait time t#10s; [Iniyvart = Initfvarl +1; oK
[Init/Varl := Init/vVarl + 1; CLU N wait_time t#10s; oK
7 wait time t#10s; L I
o 8 e 9 JiCheck vanahle expression:
= 9 //Check variable expression: 10 Inivar - 43417
- in?igar; o oo T Initvarz > 1000 = FALSE
- 11 ni ar 1000
aA . . e 12 InityBooll &1 3>7000 =FALSE
12 Init/Booll & (Init/var3 > 1000) 1 nivBool & niyvar)
14 //Wait until conditions are met: 14 /Awaituntil conditions ars met
15 wait[t#1000s] Init/Booll = FRLSE; 15 waillt#1000s] IniBooll = FALSE; =TRUE
16 walt [t#1000s] Init/Varld > 200; 16 waitl#1000s] Initfard > 900; =TRUE
17 17
18 //Force variable wvalue: 18 HfForce variahle value
19 Init/Vard := 999; 19 Inithvard = 999; aK
20 Init/Var5 := Init/Var5 + 1; 20 InitAars = Inithvark + 1: oK

Figure 112: Test sequence syntax (left) and execution result (right)

ICP DAS

Page 179

Win-GRAFWorkbench User Manual

Version 1.0

Syntax
The following syntaxes are allowed in a text sequence:

1. Comments
Empty and comment lines are allowed. Comments may have the following

SyntaxeS:
// comment up to the end of line
(* delimited comment *)

2. Evaluation of an expression
You can evaluate a complex expression using ST operators. Function calls are not
allowed within an expression.

Examples:

Varl

Var2 > 1000

Booll & (Var3 > 1000)

9/ [# |Command | Status
= K
2
L Initpvarl - 584
4 Inittvar? > 1000 = FALSE
: 5 Init/Boal1 & (InitAvard > 1000) = FALSE
B

If an expression is entered alone on a line of a sequence, its value is simply
displayed in the 'Status' column when run.

3. Forcing a variable
A line may contain a statement to force a variable, using the syntax:

variable name := expression;
Examples:
Varl := 1000;
Varl := Varl + 1;
9 [# |Command | Status
= R
2
. Initpvar! = 1000; oK
4 Init™arl = Initarl +1 Ok
>
5
Y .

The status column indicates whether forcing a variable was successful.

ICP DAS Page 180 Win-GRAFWorkbench User Manual
Version 1.0

Waiting for an expression to be TRUE

Use the following syntax to wait for an expression to be TRUE:

walt expression;

The default wait timeout is 10 seconds. A timeout can be specified in between
brackets after the 'wait' keyword:

wait [timeout] expression;

Examples:
wait Booll;

While wait command is executing the status column displays 'Executing
instruction’. If the default wait time of 10 seconds has elapsed before the
expression turned TRUE then a 'Timeout(>)'is shown in the status column.

9| [# [Command | Status 9 [#_ [Command | Status
~] E R L)
: wait InitBoall; Executing instruction - 2 wait Init/Booll; Timeout (>)
»>
M

wait Booll == FALSE;
Once the expression turns TRUE the wait command ends and the status column
shows TRUE.

9/ [# |Command | Status
- 1

2 wait IniBooll = FALSE: =TRUE
I

4
>

walit [t#5s] Booll OR Bool2;
Add a wait time of 5 seconds to the wait command. If the expression does not turn

TRUE within the wait time a timeout status is being shown.
9/ [# |Command | Status

S 1
oy
[> 2 walt T#5s] InitfBoaoll OR Init/BoolZ; Executing instructian. .
|
3

] p

Execution delay

The delay statement holds the execution of the test sequence for the set time.
Delay statement syntax:

wait time time value;

ICP DAS Page 181 Win-GRAFWorkbench User Manual
Version 1.0

Examples:
wait time t#2s;

Delay the execution of the next command by 10 seconds:

Varl := Varl + 1;
wait time t#10s;
Varl := Varl + 1;

Use the editor toolbar to check and run your sequence (Table 23):

Icon Description

| Use this button to activate or deactivate the sequence. The sequence must be

deactivated for editing. When activated, the sequence can be run and tested.

ES Check the syntax of the sequence.

u Abort the sequence when running.

n Pause the sequence when running.

> Start the execution of the sequence.

M Single step: execute the selected line

<M Set/remove a breakpoint on the current line.

fo Remove all breakpoints.

Table 23: Sequence editor toolbar commands

Steps for adding a test sequence:
Step 1: Right click a task or program item in the workspace and select 'Insert New

Item..." from the popup menu.

Workspace
4[5l Main task
4

&) Ini Rename... F2

&d Main
E byGi
W 5ot S
& Fieldy Shortcuts »
i Bindirl Insert New Item...
© Profile
M yos | X Delete
5 varables |
B Task2
B Task3
B Task4
& Library
(Al Projects)

Insert Mew Folder

Insert New Program...

v v v W W

Step 2: Select 'Test Sequence’ and click ‘Next'.

ICP DAS Page 182 Win-GRAFWorkbench User Manual
Version 1.0

W Insert New [tem M

Categories: Available Ttems:

All &d Spylist
B Recipe
Others £ Graphics

Soft Scope
B Test Sequence

Enter a name for the test sequence.

Properties

Name NewTestSeq

Description

[ox || conce

Step 3: Edit test sequence commands:

1. Open the sequence editor by double clicking its name in the workspace
tree

2. Dragand drop the variable which needs to be evaluated or forced a new
value from the variable editor to the sequence editor

[T 11]] [HL B4
i 1 ~ [¥[Hame [value [Type |
= 2 //Force variable value: E flgSetPul... BOOL =
= 3 /I - Increment the Varl wvariable: Vard e UDINT

4 |Init/Var1| 1= Init/Varll + 1; R4 440 UDINT

g by

- Var3 880 UDINT

o bFlag BOOL

Vard 136929 UDINT El
< D 3d Var5 991128 UDINT —
fo rag & drop Varé 13217 UDINT _
_ variables D M e

|«] <« | »

Step 4: After the test sequence has been edited check for any syntax error by clicking
the 'Check Test Sequence’ button.

g
2

//Check variable expression: =
Init/Varl i
Init/var2 > 1000

Init/Booll & (Init/Var3 > 1000

b1 oon oo 0

Ldiadt antil conditions.are nefs

W NewTestSeq.seq -

=3 No error detected
=

el

e

Step 5: Run the test sequence
1. Make sure the workbench is online
2. Activate the test sequence. Click 'Activate/Deactivate’ button

ICP DAS Page 183 Win-GRAFWorkbench User Manual
Version 1.0

3. Click 'Run Test Sequence' button to execute the test

9]/ Ll Command

—_

—A—Ammwm(_/wru(
= |

> fCheck variahle expression:

u Initpvart
El Initfar2 » 1000

= Init'Boall & {Initar3 > 1000}

<y fhdait until conditions are met
waitli#1 000s] InifBoaoll = FALSE;
wait[t#1 000s] Initfv'ard > 900;

{fForce varighle value:
12 Initard == 999;
13 Initfv'ars = Initfv'ark + 1;

The result of the test sequence execution is shown in the status column.

9| [# [Cormmand | Status
= 1
2 {{Check variable expression:
_INE InitAvar - 103387
4 Inittarz » 1000 =FALSE
L 5 Init¥Booll & (Inithvard > 1000) =FALSE
L2
[
< 7 Shdait until conditions are met;
8 wait[t#1000s] InittBooll = FALSE; =TRUE
— 9 waitl#1000s] Initfvar3 > 900; =TRUE
10
11 fForce varable value:
12 Initfvard .= 999; QK
13 Initfars o= Inith/ark + 1; QK
Note
1. Torun the test sequence the PLC program does not need to be
recompiled.

2. The test sequence does not need to be compiled.
3. The test sequence can be edited while the workbench is online the and
the PLC application is running.

7.7 Debug Message (PRINTF)

The PRINTF function outputs a trace statement from the runtime to the workbench. It is
used for debugging to trace data of the PLC application and has to be embedded in the
PLC code. PRINTF give you the opportunity to print out information during application
execution and allows you to trace a particular path of execution and watching the order
of execution to ensure that everything is happening when you expect it to occur.

ICP DAS Page 184 Win-GRAFWorkbench User Manual
Version 1.0

This function works similar to the ‘printf' function of the 'C' language and supports up to
four integer (DINT) arguments. You can use the following pragmas in the FMT trace
message to represent the arguments according to their left to the right order:

- %Ild signed value in decimal

- %lu unsigned value in decimal

- %Ix value in hexadecimal

This function can be used in debug and release mode.

PRINTF
Fmt Qp
Arg1
Arg?2
Arg3
Argd

PRINTF (Fmt (*STRING*), Argl (*DINT¥*), Arg2(*DINT*), Arg3(*DINT*¥*), Argd4 (¥*DINT*))

Figure 113: PRINTF function

Variable Data Type Description

Input Fmt STRING Trace message.
Argl DINT Numerical arguments to be included in the trace.
Arg2 DINT Numerical arguments to be included in the trace.
Arg3 DINT Numerical arguments to be included in the trace.
Argd DINT Numerical arguments to be included in the trace.

Output Q BOOL Return check.

Table 24: PRINTF function input and output variables

The trace message is displayed in the 'Runtime' window of the workbench (Figure 114).
PRINTF is supported by the simulator. Trace messages shown in the 'Runtime’ log
window can be saved to file.

ICP DAS Page 185 Win-GRAFWorkbench User Manual
Version 1.0

[WE= %D =X | 3 & % | @ A I
Workspace sees B X
P Main task [RUN] 1 N |

b Frograms 2 PRINTF ('Searched home finished;'): E|

& MainTaskSpy 3
B MyGraphics o 4 PRINTF ('Current position: x=%ld, y=%1d, z=%ld, u=%ld', Pos[0], Pos[l], Pos[2],Pos[3]);
I&¥ Sott Scope 1 = 7
& Fieldous Configuratio... | °
b1l
¥§ Binding Configuration
© Profiles L ¥
i yos — K| »
fui Wariables Runtime I X
3 Task? [idle] gt [Time [Project Bme | Event description
4 Task3 [Idle] I 1 2020/05/21 11:36:12.816 MAINTAZK Searched home finished: [MAINTASK]
3 Taskd [idle] = 2 2020/05/21 11:36:12816 MAINTASK Current position: x=20053, y=8561, 2=76524, u=52354 [MAINTASK]
b B Librany
b (All Projects) =
< |
Cro gital sampling trace Prompt Cad cke
Ready | Full | Default | | RUN (192.168.2.59:1100) [A | o,0 oxo | o0 |
Figure 114: PRINTF output window using Structured Text
smee [HL P4
] -
o J PRINTF El
— 'My first trace statement Value1= %Id, Value2= %I|d' Fmt ap Q=FALSE =
B 30 —2Arg1
B 9999 —aAIg2
0 —MArg3
— 0 —2Arg4 i
‘oKl \m| I 3
Runtime J »
W[t [Time [Project Name | Event description |
7! 2020/05/21 142708789 MAINTASK @yﬁrsttrace statement: Valuel= 30, Value2= BBBB[MAINTASKD
Ed
o
>
< Build Cross references Calltree i Call stack asks g ace Frompt Code Checker

| Default | | RUN (192.168.2.58:1100) || 0,0 | oxo 18,6 | 1 .

Figure 115: PRINTF function call in Function Block Diagram

PRINTF function is supported by both the Debug and Release mode compiler.
Conditional statement has to be added to the source code if the PRINTF function should
only output trace statements when the application is compiled in debug mode. The
condition '__DEBUG' is automatically defined by the workbench when the application is

compiled in debug mode. Add the __DEBUG conditional statement in your code to
prevent the PRINTF function from outputting messages in release mode.

#ifdef DEBUG

PRINTE ('Searched home finished;"'"):;

PRINTF ('Current position: x=%1d, y=%1d', Pos[0], Pos[1l]):;
#endif

Figure 116: Structure Text - Conditional compile statement

ICP DAS Page 186 Win-GRAFWorkbench User Manual
Version 1.0

= (2 -Addbreak line
o - Double click break line and enter "#ifdef _ DEBUG"

: = #ifdef _ DEBUG =

T+ PRINTF

'My first trace statement: Value1= %Id, Value2= %Id" —#lFmt Qp— Q
- 30 —aArg1

m 1 9999 —lArg2

o 0 —a{Ag3

T 0 —aArgd

1k

> #endif
= #endi

i g —— -

3 "~ - Add break line
- Double click break line and enter "#endif"

Figure 117: Function Block Diagram - Conditional compile statement

7.8 Breakpoints - Step by Step Debugging

The step by step debugging feature is enabled by setting one or more breakpoints in the
source code of the application (Figure 118). Breakpoints are a marker that is set in the
source code which, when reached, stops the code's execution at the location.

Step by step debugging is available:

- In ST and IL text programs (a step is a statement).

- InLD program (a step is a rung).

- In FBD (a step is a graphic symbol corresponding to an action).

ICP DAS Page 187 Win-GRAFWorkbench User Manual
Version 1.0

File Edit View Insert Project Tools Window Help

EEIEIFSEEE |3 & W ol /A A
Workspace wues [C:\Users\martiniDocuments\WinGRAF 9.3\EtherCAT\Test1\MainTask - BreakPointDemo] [HL$4
4 ' Main task [STEPFING] 1 Var0 544754 := Var0 544754 +1; « ¥ Hame [value | Tvpe
4 [Programs 2 Varl 544753 := Varl 544753 +1; =l » O BreakPointDemo o
“F) BreakPoiniDemo 3 Var2 544753 = Var2 544753 +1; b @ Global variables il
@& Fieldbus Configuratio.. L} Var3 544753 = Var3 544753 Jr:"' «md T b
%} Bindling Corfiguration i Vard 544753 = Vard 544752 +:
M 106 E Var> 544753 = Var> 544753 +1; b (U] :
Wil 7 3 Achsanced =l
(sl Variables A I Avithmetic *
l; Iasti Hj:e} 7 [» FPubl
as [=]
b Taskd [Idle] TaSks_ - X
b B Livrary ® MainTask STEPFING RS- RV AT)
(Al Prajects) %o Location | Status [Tvpe SgE\PPt!NG]
4 MainTask - BreakPoiniDemo: (2F STEFPING P (ms):
BREAKPOINTDEMO: (2): Active Breakpoint Allowed = 0
BREAKFOINTDERMO: (4): Active Breakpoint Maximum =0
BREAKPOINTDEMO: (B): Active Breakpaint Overflow =0
Taske Iclle Local application:
Task3 Idle V13 - 22/05/2020 -

Taskd Idle

<« b C] Call tree Funtime

Figure 118: Program with debug breakpoints

Attention

- Step by step debugging is available only if the project has been compiled with the
debug option (Figure 119). This option can be selected from the project settings
dialog box ('Project\Settings..."). Make sure that the compiler for the task which
needs to be debugged is set into debug mode. The compiler for other task can be
left in release mode.

- An application compiled in debug mode includes additional information for
stepping. This leads to bigger code size and less performances. It is recommended to
compile your application in release mode when the debugging is finished.

ICP DAS Page 188 Win-GRAFWorkbench User Manual
Version 1.0

Project settings ﬁ

- Main'l'asg
Options | Harne | value |
p B8 Runtime Little endian
Compiling 3
Test ¥ Cycle time: 100 ms
Advanced 35 Campiling g
(A1) &4 Exchange /0 whan stepping “as
Variable locking Mo
[il. Store complexvariables in & separate segment Yes
 OnLine change INACTIVE
v Allow dynamic memory allocation Mo I
i
Endianness of the target system processor

Figure 119: Set compiler in debug mode

When the program has reached a breakpoint you can execute the program in single
steps. At each halt position you see the current value of the variables in the monitoring
views.

When the breakpoint is reached, the execution stops at the specified location and you
can step further in the program. A yellow arrow next to the breakpoint (®) indicates at
which breakpoint the execution has stopped.

Breakpoints are shown as a brown dot (dark or light) in the left frame of the program
editor. Breakpoints are active (#) when the dot is dark brown and inactive (#) when the
dot is light brown. Breakpoints are inactive if the workbench is not in online mode
(connected to runtime) , the target application is not running or the version of running
application and the source code is not identical.

7.8.1 Add a Breakpoint

To add or remove a breakpoint, click the line in the source code where to add/remove a
breakpoint then right click and select 'Set/Remove Breakpoint' from the popup menu
(Figure 120) or press F9 key. Breakpoints are added to the left frame of the program
editor. If the current position is not on a valid line for stepping, the breakpoint is
automatically moved to the nearest valid position.

ICP DAS Page 189 Win-GRAFWorkbench User Manual
Version 1.0

@ Set/Remove Breakpoint)
= Set/Remove TracePoint

)

i

{

:I Run To Selection

Figure 120: Set/Remove Breakpoint

Breakpoints can be placed in programs, sub-programs or UDFBs. They are not available
in SFC programs.

A list of active breakpoints are shown in the 'Tasks' Log Window (Figure 121). From here
you can directly remove breakpoints in the program. Double clicking on a breakpoint in
the Log window the program editor jumps to the position of the breakpoint in the

program.

Tasks

.® MainTask STEPPING BEEE e »r m B F{FR

o | ocation | Status | Type

4 MainTask - BreakPointDemao: (2): STEPFING
BREAKFOINTDEMO: (2): Active

BREAKFOINTDEMO: (4): Active Breakpoint
BREAKFOINTDEMO: (B): Active Breakpoint
Tasks Idle
Task3 Idle
Task4 Idle

Build Cro ferences Call tree Runtime Call stack W Digital

Figure 121: Tasks Log Window

Run To Selection

It is possible to run a program to a defined position. The 'Run To Selection' function is
available in the context menu (Figure 120) of the program editor, when step-by-step
execution is active. This function is supported in ST, FBD and LD.

Icon Description
[T Step over:

The debugger (yellow triangle) jumps to the next source code line in the

ICP DAS Page 190 Win-GRAFWorkbench User Manual
Version 1.0

program editor. Now the program executes the instruction at which the
debugger in the previous step was located and stops the program execution at
the new debugger position.

The debugger will not leave the current program editor page. If the next
instruction is a function or function block call then the debugger will not enter
the source code of the call, but just jumps to the next instruction line of current
program editor page.

I Step in:
If the next instruction is a function or function block call, then the debugger
leaves the current program editor page and steps into the function or function
block instance and stops the execution at the first line.

i

Step out:

If the current debugger position is inside a function or function block source
code page, then in the next step the debugger leaves the page and jumps to the
instruction which follows the function call. The program executes the function or
function block from the previous debugger position up to the end of the block.

Table 25: Step by Step commands

Icon Shortcut Command
e CTRL + Alt + F4 On line change
- CTRL + F5 Debug
F4 Pause/resume
F5 Simulation
U] F9 Set/Remove breakpoint
i F11 Download
SHIFT + CTRL + F4 Start/stop application
& F8 Step In
¥ CTRL +F8 Step Out
[SHIFT + F8 Step Over
Bl Ctrl+F10 Run to Selection

Table 26: Key shortcuts for debugging commands

7.8.2 Example

Example of a step by step debug procedure:

Step 1:

ICP DAS

Set compiler to debug mode ('Project\Settings...")

Page 191 Win-GRAFWorkbench User Manual

Version 1.0

Step 2:
Step 3:

Step 4:

Step 5:

ICP DAS

Project settings ﬁ
- Main'l'asg
%m_ [Name [value |
Compiling B8 Runtime Little endian
Test W Cycletime: 100 s
Advanced @' Compiling -‘-—-""‘

(A &4 Exchange /0 when stepping Yes
Variable locking Mo
[il- Store complex variables in a separate segment Yes
= OnLine change INACTIVE
w Allow dynamic memaory allocation Ma I
t

Compile your program, download it to the target runtime.

Set the workbench in online mode and start the application from the
workbench.

Add a breakpoint at line 2:

Set the cursor at line 2 and press F9.

Once the program hits the breakpoint the program execution stops and a
yellow triangle appears next to the breakpoint. The code of line 2 will not be
executed.

1 Var(886668 = Var(B86668 +1; -
=3 2 hiarl 886667 = Varl 886667 +1 =
3 Var2 886667 = Var2 886667 +1
- 4 MyFunction () ;
= 5 Var3 88€667 = Var3 8Be6&7 +1;
= & Vard 886667 = Vard 886667 +1
55 7 Var> 886667 = Var> B86667 +1
< |l b
Tasks
® MainTask STEFPING Pats e » m B TFPE
o[Location | Status [Type
4 MainTask - BreakPointDemo: (2): STEPPING
BREAKPOINTDEMO: (2): Active Breakpaint
Task? ldle
Task3 ldle
Taskd Idle

Run program to next line by clicking the 'Step Over’ button.
Now the program executes the instruction of line 2 and stops the program at
line 3.

1 Var(765758 = Var(76573% +1; -
L 2 Varl 765759 = Varl 7€575% +1; E
b= 3 i\iar2 765758 = Var2 765758 +1;
- 4 MyFunction();
- 5 Var3d 765758 = Var3 7653738 +1;
= 6 Vard 765758 = Vard4 765758 +1;
bl 7 Var5 765758 = Var5 765758 +1;
<« [\ »
Tasks o
® MainTask STEFFING PAEE R » m [P E
o[| ocation Feitep Over| | Type
4 MainTask - BreakPointDemo: (3): STEFPING
BREAKPOINTDEMO: (2): Active Breakpoint

Click the 'Step Over' button again to stop at the next line (line 4)

Page 192 Win-GRAFWorkbench User Manual
Version 1.0

Var(d 765759
Varl 765759
Var2 765759
I'r\-IyE‘unction ()
Var3 765758
Var4 765758
bl 7 Var5 765758

Var0 7e5759% +1;
Varl 76573% +1;
Var2 765759 +1;

1| »

Var3 765758 +1;
Vard 765758 +1;
Var5 765758 +1;

v
Ioan Unod= W o
I mn

oo

PRI »
—

Tasks

© MainTask STEPPING

-8
L)
B
1

o PR R

Step 6: Enter a function call:
Line 4 calls a user defined function (‘MyFunction'). In the next step we want to
enter the source code of this function. Click the 'Step In' button to stop the
program at the first instruction line of the function.

1 Varl 763759 = Var0Q 76575% +1; -
L] 2 Varl 765759 = Varl 765759 +1; 3
3 Var2 763759 = Var2 76575% +1;
= 4 MyFunction();
= 5 Var3 763758 = Var3 765758 +1;
- [Vard 765758 = Vard 765758 +1;
[XE1 7 Var> 765758 = Vard T&5758 +1;

o

== < [\\ 3

1asks
& MainTask STEFFING P ta 2 » wE P e
fo[Location Fiey S | Type
4 MainTask - BreakPointDemo: (4): TSTEPFING

The workbench opens the source code page of the calling function and set the

stop triangle at the first line.
1 Subvar0 6891822
2 SubVarl 6891822
3 SubvVar2 6891822
4 SubVar3 6891822

SubVar(6891822 +
SubVarl 6891822 +
SubVar2 6891822 +5;
SubVar3 6891822 +

| \ =
= < [m] s

Tasks

© MainTask STEPPING Pime rm B p{PE

o | gcation | Status | Tvpe
4 bdainTask - MyFunction: (1): STEPFING

Step 7: Leave the source code of the function by clicking the 'Step Out’' button
In this step the program should execute the function until the end and stop at
the instruction following the function call.
MainTask STEPPING B2 » M ﬁl@f—

ICP DAS Page 193 Win-GRAFWorkbench User Manual
Version 1.0

Step 8:

Step 9:

Step 10:

Step 11:

Var0 765759 +1;
Varl 765759 +1;
Var2 765759 +1;

Var0 765759
Varl 765759
Var2 765759
MyFunction();
Var3 7€5758
Vard4 765758
bl ! Var5 765758
< [

*

Var3 765758 +1;
Vard 763738 +1;
Var5 765758 +1;

Il
v
| I A O Y =S W I % T)

Run the program to the end of the cycle.

1. Remove the breakpoint in line 2 by setting the cursor to line 2 and
pressing F9 key.

2. Click the 'Execute a single cycle' button to let the program to execute all
the code from the current position to the last instruction of the cycle.

MainTask STOP VEE-TICIG R0)

Run a full single cycle.

If no break point exist in the program and the 'Execute a single cycle' button is
activated then the program executes one full cycle before it stops at the cycle
end.

Run the program continuously without a break (normal execution mode).

1. Remove all breakpoints. Make sure no break point exist in the program
2. Click 'Resume cycle to cycle' mode.

MainTask STOP - D IRCANEVE]

The program runs now continuously without interrupt.

If you want to stop the program at the end of the cycle and go back into cycle
to cycle debug mode then click the 'Pause (cycle to cycle)' button
MainTask RUN =-== g5 @[] @

Remember to compile the application in release mode after debugging has
been finished.

7.9 W5Monitoring Utility

When the workbench is set into online mode the current variable values of the
application are being shown in a box next to each variable in the source code and in the
variable editor. The source code in the programming area can not be modified while the
workbench is in online mode but the variable editor allows the user to force a variable

ICP DAS

Page 194 Win-GRAFWorkbench User Manual
Version 1.0

value change.

The purpose of the W5Monitoring utility is to monitor variable values and support
forced variable value change without using the workbench. The utility provides similar
functions as the workbench when in online mode: current values are shown inline next
to the variables in the source code and in the variable editor (Figure 122).

MyMonitor - MyCounter SISl X
|28 m|°
Féoi:ass @MyCounter = el e
vCounter E —
B MyFanction 7| Name | 'vValue | Tag | Description |
B MyUDFE_1 b Inst_MyUDFB
Variables Warl 13687
B Glohal vaniahles varl 13687
B My Counter imi 13687
. ar.
E# MyFunction Vard @ MyCounter
Lists Vars ar0 12687 := var0 13687 +1;
Configurations Ve
. arl
% Runtime messages Var? IF Var0 13687 > Varl 13687 THEN
Vars Varl 13687 := Varl 13687 +1:
& ELSE
Vard Varl 13687 := varl 13687 +10;
wvarld END IF;
IF Varl 13687 > Var2 13687 THEN
Var2 13687 := Var2 13687 +1;
ELSE
Var2 13687 := Var2 13687 +100;
END_IF;
MyFunction();
Inst_MyUDFB (TRUE, TRUE, TERUE);
RUN

Figure 122: W5Monitoring utility

The data to be displayed in the utility has to be set via the workbench wizard. The
wizard allows you to select which programs, variable list and runtime messages to be
monitored by the W5Monitoring utility. Normally a PLC project exist of at least one task
and several program organization units (POUs). IEC 61131-3 defines three types of
POUs: programs, function blocks, and functions (Figure 123). The W5Monitoring utility
can only display the POU of one task and therefore the user has to decide which task
and POU to display. If inside the task more than one program, function block or
functions has been defined then the user can select which one to display during
execution. If required all the POU defined within one task can be selected.

ICP DAS

Page 195 Win-GRAFWorkbench User Manual
Version 1.0

Configuration
Resource Resource
Task Task Task Task
Function
\ Block
Program Progral Program Program
[FBj={FB]
Execution
control path
X p
Access path

Figure 123: The IEC 61131-3 software model

All POU stored in the monitoring application are encrypted. For security reasons the
W5Monitoring utility does allow any POU content to be copied or dragged to another
program.

7.9.1 Create Monitoring Application File

This section describes how to use the workbench wizard to create a monitoring file for
the W5Monitoring utility.

Step 1: Compile the project and download it to the runtime.
In the following steps it is shown to create a monitoring file for the main task.
In this example the main task runs three POUs: a program 'MyCounter’, a
function 'MyFunction' and a user defined function block ‘'MyUDFB'. All three
POUs will be exported to the W5Monitoring utility.

ICP DAS Page 196 Win-GRAFWorkbench User Manual
Version 1.0

File Edit View Insert Project Tools Window Help
N = %D XX | MainTask HEWME | @ = A
Workspace
4 [E Main task - 1 WVar0 := Var0 +1;
4 Frograms it 2
&) hMyCounter . 3 OB IF Var0 > Varl THEN
2 hMyFunction — 4 | Varl := Varl +1;
MyUDPB T 2 i : E‘LSE‘\."'aJ':l Varl +10
)) = [T= 10;
% Fieldbus Configuratio... . 7 . END_IE;

%3 Binding Configuration

1 yos 2 5 B IF Varl » Var2 THENW

{a) Warizbles i= 10 | Vard := Vard +1;
b B Tasks = 11 | ELSE
b B Task3 = 12 | Var2 := Var2 +100;
b B Taskd 13 - END_IF;
b B Library 1? .

(All Projecis) 15 MyFunction () ;

16 Inst MyUDFB(TRUE, TRUE, TRUE);

Step 2: Start the monitoring wizard:
1. Double click the 'Main task'in the workspace to tell the workbench that
the POU of this task will be exported
2. Select '‘Build Monitoring Application... from the menu bar 'Tools'.

File Edit View Insert Project |Tools| Window Help
[Ml Br| =] ¥ [= X 3% 4 Options..

Workspace D Reset settings and close...
F @ Main task <

4 Frograms £
B MyCourter Toe
2 MyFunction
MyLUDFE_1
s Fieldbus Configuratio..
%3 Binding Configuration

W5 i

-
=

M vos 2

(=} Wariakles = Generate Html Document...
b B Taskz = Build Monitoring Application...
b Taskd e History...
b [Taskd)

Compare projects

b I3 Library R C) pare proj

(Al Prajects) Clients >

SCL Editor

Communication Settings...

z o ol x|

Runtime Parameters 4
Import...
Export...

Step 3: Give a name to the monitoring application.
This name will be displayed in the main title bar of the W5Monitoring utility.
The configuration of a monitoring application can be saved to the workbench
project. This allows you to modify the configuration at a later stage.

ICP DAS Page 197 Win-GRAFWorkbench User Manual
Version 1.0

Step 4:

ICP DAS

Generate Monitoring Application i ﬁ

This assistantwill guide you through the steps for configurating the generation
of a monitoring application.

Project path
DAPLC\MyApp1iMainTask

Application A/

| MyManitor | |

Configuration

(one)]

_ <Previous | >New | [cCancel | [Hep |

Select how to display the POU in the tree. In addition select to display the
program editor of the POU, the variable editor, or both. Here we select both
(Default).

'Selec‘c type oftree- ﬂ1

Selecttype oftree: ‘/ Preview:
Defaull - e
Local variables under programs

Programs only
Wariables only

Options
[¥]Include symbol table
[|Insert variables before

| <Previous || >Next | [cCancel | [Hep |

If you check the ‘Include symbol table' option, the monitoring application will
work on the full symbol table generated by the compiler. In this case you have
to make sure that the same version of the application is running on the
runtime. If you don't select this option, then the W5Monitoring utility will
automatically upload symbols from the target at connection time. In this case,

Page 198 Win-GRAFWorkbench User Manual
Version 1.0

Step 5:

Step 6:

ICP DAS

you have to ensure that all used symbols are embedded in the runtime

application.

Select the items (POU, variables) of the project that you want to include in the
monitoring application. By default all items are selected. Deselect the items

Select Items

that should not be displayed in the W5Monitoring utility.

(-

4 Programs
My Counter
hyFunction
MyUDFB_1
4 ‘ariables
Global variahles
My Counter
MyFunction
Lists
Canfigurations
Funtime messages

NERNEEEEEEER
=

| <Previous ||

= Next] I Cancel

s

Add passwords protection for selected items (optional)
For each item included in the application you can define a password so that
the corresponding document will be protected in the monitoring application.

Passwords

X

i

Name

MyCounter
MyFunction
MyUDFB_1
Variables
Global variables
MyCounter
MyFunction
Lists
Configurations

Runtime messages

Password

Programs

|| Show password

[Add.

[

< Previous ”

> Next] I Cancel

e

Page 199

Win-GRAFWorkbench User Manual
Version 1.0

Step 7:

Step 8:

ICP DAS

Passwords for variables

You can define passwords for the W5Monitoring utility to enable write access
(forcing) to runtime variables. For each variable you can select one of the
following access protection:

- Free : the variable can be freely forced.

- Protected : forcing the variable is possible with a password.

- No : the variable can never be forced.

Simply drag variables from the list at the bottom to the upper list to set its
protection mode. The '‘Default’ choice indicates the protection mode to be to
gpplied to all variables which hav not been dragged to the upper list.

Variables Passwords

Access to vanables || Show password
Wariables Access Password
Default Free

Selectvariable:

| Name | Type |Di. |Atrib. [Syb. [Initv.. [Us. [Tag
I @ Global variables

L i RETAIN variables

+ [MyCounter

%o MuFunectinn
1 3

1 »
—

[< Previous “ > Next l I Cancel } [Help ‘

Set the monitoring application file name and the directory.

Here we select 'MyFirstMonitor.K5m' as a name. After clicking ‘Next' the
monitoring application file is being generated and stored as a unique
compressed file. To protect your application from piracy all POU stored in the
monitoring application are encrypted.

Page 200 Win-GRAFWorkbench User Manual
Version 1.0

Step 9:

ICP DAS

Save

Select Destination File
D:APLC\WyAppT\Main TaskiMyFirstMonitor. Kbm

The monitoring application is generated as a single file, usually suffixed by
'K5M". This is the file that will be open by the Monitoring Tool Viewer

—

[< Previous ” = Next] I Cancel

|

Help

Save current monitoring application configuration.

This configuring file can be loaded and modified at a later stage if required.
The configuration will be save once the 'Finish" has been clicked.

'
Generate Monitoring Application

s

4

The monitoring application is now ready.
Infile
DAPLC\WyAppTWMain TaskiMyFirstMonitor. KEm

Run application l

Configuration
[¥]save current settings /
Name: MyFirstMonitorConfig

|| Generate monitoring application when download

—

[Finish] I Cancel

|

Help

Page 201

Win-GRAFWorkbench User Manual
Version 1.0

7.9.2 Running Monitoring Application

The W5Monitoring utility can be started in two ways:
- Via the Start menu:
Step1: WinGRAF Workbench x.x -->Tools->W5Monitoring
Step 2: Open the monitoring file (*.Km5)
Step 3: rEnter the IP address and port number of the target runtimﬂe

(@ DIgETHERNET \ DigOK
DlgAddr 192.168.2.59 DigCancel
DigEthp 1100 DigHelp

(I DIgSERIAL
DigPort COmr1 >
DigRate 15200 o

DigFarity DigFarityMNt
DigStops i x
———

Now the W5Monitoring utility shows the POU with the variable values.

- Via the workbench wizard:
Step 1: Make sure the communication setting is set to the IP address and port
number of the target runtime (Tools-->Communication Settings...)
Step 2: Open the wizard: 'Tool/Built Monitoring Application...'
Step 3: Select an application from the configuration list
Step 4: Click 'Next' button six times until you reach the last page of the wizard
Click the 'Run application’ button.
(Generate Monitoring Application) @

The monitoring application is now ready.
Infile
DAPLC\WMyApp1iMain TaskiMyFirstMonitor. K5m

l Run application l I

Now the W5Monitoring utility shows the POU with the variable values.

The tree view on the left list all the items (programs, variable list, etc.) which has been
exported by the workbench wizard. By double clicking one of the items a window with
the items data pops up. Several windows of different item can be open at the same time
(Figure 124). To protect your software POU data displayed in the W5Monitoring utility
can not be copied.

ICP DAS Page 202 Win-GRAFWorkbench User Manual
Version 1.0

Apphcatmn— MyFunction =IE X
|®mBEm 2
liéngvams I@My{uunter ‘?HEHY‘ @MyUDFB,l—My(uunter/lnst,MyUDFB ‘ o ” =] H PG ‘
My Courter e Varl 335397354 := varl 335307354 +1; .
Var0 335397354 1= Var0 335397354 +1f - &
Bl MyFunction r o = Varz 335387354 := var2 335397354 +1; =
B hyUDFET E Var0 335397354 > varl 335397354 THEN VarSEERSROBSTY = varJgEaoadiEnal +1:
Wariables Varl 335397354 := Varl 335387354 +1;
B Global variables ELSE
BB MyCounter Varl 335397354 := vVarl 335387354 +10; 8“3
B8 MyFunction END_TF; u
Lists
Conligurations E varl 335397354 > Var2 335397354 THEN
& Fumtimz messages ELSEVarZ 335397354 := vVar2 335397354 +1:
Var2 335397354 := vVar2 335397354 +100; . =
END_IF; <[b
syrunctiong Burcin ok
Inst MyUDFB (TRUE, TRUE, TRUE);
nst_MYUDFS (TRUE, TRUE,) Fubvar0 —1276391110 :— SubvarQ -1276391110 +5; =~
SubVarl -1276391110 := SubVarl -1276391110 +%; [5]
SubVar2 -1276391110 := SubVar2 -1276391110 +9;
SubVar3 -1276391110 := SubVar3 -1276391110 +
< [3 « [m] »
StaApiRun

Figure 124: W5Monitoring utility running a monitoring application

Items in the 'Variables' tree view shows all the exported variable editors of the
workbench. In the workbench each POU has its own variable editor and the user can
decide which one to export to the monitoring application which has been described in
the previous section. Depending of the protection mode set in the monitoring
application file variable value change is supported (Figure 125):

* Free: the variable can be freely forced.

* Protected: forcing the variable is possible with a password.

* No: the variable can never be forced.

Application— [MyCounter] = |[E] S
|mBml
Programs | Name | value | Tag | Description |
B MyCourter b Inst_hyl... Var? @
B My Function warl 521078427
B MyUDFE_1 Yarl 521078427 520434671
Variables a2 B21078427 |
BB Global variables Ward 0 ’ ButForce]
B MyCounter Ward 0
BB MyFunction Warh 0 = ’ Butlock l
Lists “arh 1]
Configurations Var? 0 ’ Butnlock]
. Ward 0
%5 Runtime messages o . 15 g7 0
vl Rl ¥ Sl | |
Vel 0 OO¥MMOCOFE FFIVEOMFFIF
3 24 23 16
OOCOVFFIFIM COOCOCOCMC
StaApIRun
Figure 125: Force variable value change
ICP DAS Page 203

Win-GRAFWorkbench User Manual

Version 1.0

8 Online Program Change

Online Change enables you to update your PLC application on the fly, while it is running.
You do not need to stop the application, download the new code and start again. You
only need to modify, recompile and download the new code.

Depending on the PLC code size, the time to perform the Online Change operation can
take more than one cycle. In that case, you can miss one PLC cycle before the
changeover becomes effective.

Online Change functions should primarily be used for the rare cases where small
modifications to the program code of an application has to be done while the
application is not allowed to be halted and has to run non-stop. In general it is not
recommended to do online modification and rather stop the running control application
before downloading a modified version.

8.1 Online Changes Limitations

When Online Change is enabled, the following kinds of changes on the fly are
supported:

- Change the code of a program.

- Change the condition of a SFC transition or the actions of a SFC step (Figure 126).

- Create, rename or delete global and local variables and function block instances ().

4 D

Step Action

Transitions =t Transition 1 —+— Transition 2 v\

Sequential Function
Chart (SFO)

Step Step

. /

Figure 126: Condition change for SFC transition

ICP DAS Page 204 Win-GRAFWorkbench User Manual
Version 1.0

205 ’ “— A | Name /| Type | Dim. | Attib.
i Inst_BLINK ouT ' _] Main
: | Inst_BLINK1 blink
! fa} Global variables
3 #2s Jovole _del_SW1 BOOL Deleted
o ouT1 BOOL
SW2 BOOL Added

Figure 127: Create and delete a global variable

The following kind of online changes are not allowed:

- Create, delete or rename a program. (It will appear a warning message if a program
is attempted to be deleted)

- Change SFC charts.

- Change the local parameters and variables of a UDFB.

- Change the type or dimension (or string length) of a variable or function block
instance.

- Change the set of I/0O boards.

- Change the definition of RETAIN variables.

In addition, the following programming features are not safe during a online change and
therefore should not be used:

- Pulse (P or N) contacts and coils (edge detection).

@ = Instead, you must use declared instances of R_TRIG and F_TRIG function blocks.

Rising Pulse Detection

Before Enable After Enable
S
P P
(False > True)
oUTd
P | I

Decreased Pulse Detection

SI::” = Inzt_F_TRIG
N
(True > False)
OUT SUTH
] I I
- Loops in FBD with no declared variable linked.
ICP DAS Page 205 Win-GRAFWorkbench User Manual

Version 1.0

&5 You need to explicitly insert a variable in the loop.

8.2 Using Online Change

The normal procedure for developing a PLC application is as follows: The developer
creates a new PLC application and adds logic and function blocks to the program and
compiles and download it to the runtime. If necessary the developer can modify the
program by changing the program logic, adding or deleting variables or function block
instances, recompile and download the application. Variables which have been deleted
are not shown in the variable list of the workbench any longer.

Once the Online Change for the application has been activated all the variable and
function block changes made afterwards will be shown in the variable list. Newly added
variables will be shown in blue and deleted variable in red. The attribute for variables
and function blocks instances which have been added after the Online Change has been
activate are shown as ‘Added’ and deleted variables as '‘Deleted’. In addition the
workbench will automatically add the prefix '_del_'to the names of deleted variables
(Figure 128).

7| Hame | Type | Dinn. | Public | Attrib. | Init value
@ Global variables
i RETAIN variables
4 [MyProg (*My first program®)

_del_Input1 BOOL Deleted FALSE
Input2 BOOL FALSE
Qutput BOOL FALSE
NewVar1 BOOL Added TRUE
MewVar2 BOOL Added

1 MyTask

Figure 128: Variable changes done after online change has been activated

The Online Change should only be activated once the main application development has
finished and it has been determined that the control logic is running fine. The purpose
of the Online Change functions is just to do minor adjustments to the logic control and
therefore should only be used where small modifications to the program code is
necessary.

Procedure for using online change:

Step 1: Enable the online change function for the task which needs to support
online change. of the workbench. This can be done as follows: Right click

ICP DAS Page 206 Win-GRAFWorkbench User Manual
Version 1.0

ICP DAS

the task name and select 'Settings...'

" ——
We [MT] Win-GRAF 9.3.0 - Tutorial1.w5l

P)

File Edit View Insert Project Tools Window Help

|| = X[g XS] 2 & mainTask]

) MyProg My first pro
) MyTask
“Fr Fieldbus Configurations
L’ Binding Configuration
£ Proiiles
s
2 Variables
4 [F Taske
4 Programs
) MyTaske
‘m My Test
w5 Fieldbus Configurations
%3 Binding Configuration
£ Proiiles
W os
{ef Variables
4 3 Task3
Programs
w5 Fieldbus Configurations
%} Binding Configuration
£ Proiiles
s
fa} Variables
4 [Toskd

Workspace C:\Users\martin\Document
4 Mﬂill task o ~ I
A Programs

Al On Line

*& Simulate

=
]
@ Compare Project with...
E

Insert New Folder
Insert New Program...
Shortcuts 3

Insert New Item...

Print Project...

Project Description...

Cycle...

Tasks...

Call Tree

Target System Configuration...

Libraries...

Update Tasks with Library @

Settings...

Programs

Alphanumeric Sorting

From the popup window select 'Runtime' and double click 'On Line
Change'item to set it 'Enabled’.

.
Project settings ﬂ
| hd C:\Users\martin\Documents\WinGRAF 9.3\FirstProg\Tutorial1\MainTask
1 Y[Name [value |
- Funtime system Little endian
Compiler i
Debugging W Cycletime 0
Advanced @ Code Generation Felease
(Al §4 Exchange 10s while stepping Yes
Supportwariables locking Mo
Complexwariahbles in a separate segment Mo
= On Line Change Enahled
Enable dynamic memony allocation Mo
This option cannot be modified when On Line Change is enabled.
T J

Page 207

Win-GRAFWorkbench User Manual
Version 1.0

ICP DAS

Another pop-up window will appear in which you can allocate the
memory to be reserved for added variables.

r - — ™
Current Status
EMABLED
Mumber of varishles allocated
i BOOL/SINT wariables B/8
5 WE
243
LINT/LREAL variables 140
TIME wariables 140
Active timers 1]
STRIMNG variables 140
STRING buffers (characters) 0/0
FEB instances 1]
FE instance data (bvtes - approx.) 040
Published variahles 040
Complexvariales segment (bytes) 0/0
PO 240
MNumbers displayed: Used / Allocated
Displayed "used" numbers are accarding to the last build i
Allocate: %alue Set
"
(@) Margin (%) 50

In order to allow the declaration of new variables and blocks after the
Online Change function has been enabled, you have to define the amount
of memory to be allocated in the target runtime for each type of data.

This includes:

e The number of variable for each type (8, 16, 32 or 64 bits,
character strings).

e The number of function block instances.

e The amount of memory for storing character strings.

¢ The amount of memory for private data of function block
instances.

e The amount of variables published (with embedded symbol or

profile).
e The sizing of extra segment for storing complex variables.

Page 208 Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

Step 3:

Step 4:

Step 5:

ICP DAS

To setup a value, select the corresponding item in the list, select the
Value option, enter a new number in the Value box and press the Set
button. You can select several items in the list for assigning the value to
any selected items.

If your project has been built, the box shows you in the list the size
actually used by the application according to the last build. A progress bar
shows you the percentage of used space for each item. In addition,
instead of entering an absolute value, you may select to enter a
percentage of the used memory to add to the used space.

Recompile the application again:
|E:§§ Al

Ignore the warning message generated by the compiler:
Build
Building application data...
Caompiled for OEM specific runtime ICFD
<6 BOOL/SINT: 0INT: 1 DINT/REAL 0 LINT/LREAL 0 TIME: 0 STRING; - CRC = {7824225 >

On Line Change not possible: too many variables

Buntime Call stack

Download the application to the runtime
P
Connect to the runtime and start the application.

= b
@]

Make sure the application is running:

J Tasks K
o MainTask RUN =ssc[pgsmg m @
o/ | ocation | Status [Type
kainTask
Task? Idle
Task3 Idle
Taskd Idle

u Build ferances Call tree Runtirme Call stack

| RUM (192.168.2.50:1100) Al

Do minor changes to the logic program by adding and deleting variables.
If the workbench in the online mode it shows all the current values of

Page 209 Win-GRAFWorkbench User Manual
Version 1.0

Step 6:

Step 7:

ICP DAS

each variable next to the variables. In this mode the logic program can
not be changed. Therefore first set the workbench in offline mode:

ma
mml

The offline mode will be displayed in the status bar at the bottom of the
window:

Call tree Runtime Call stack

|| offLine 192.168.2.50:1100 | £

Add new variables and delete variables. Deleted variables will be shown
in red with a '‘Deleted’ attribute and newly added variables are shown in
blue with 'Added' attribute.

V| ¥ Hame | Type |D.| | Attib. | Initvalue |
4 [MyProg (*My first program®)
_del_Inpuf1 BOOL Deleted FALSE
_del_Input2 BOOL Deleted FALSE
Output BOOL FALSE
New\Var1 BOOL Added TRUE
New\Var2 BOOL Added TRUE

In the following code the both inputs of the AND function are replace by
the newly added input variables:
Inputl is replace with NewVarl and Input2 is replaced with NewVar2.

] B e [Tvpe | D] [Aftrib. [Init value

O £ 4 [MyProg (*My first program®)

= Output BOOL FALSE

= Input1 BOOL FALSE
z Input2 BOOL FALSE

@ Global variables
' inputt 3 " Qutput ki RETAIN variables
Input2

[« ¥ Hame [Type [D.] [Attrib. [Initvalue |

o 3 4 [MyProg (*My first program*)

= _del_Input1 BOOL Deleted FALSE

= _del_Input2 BOOL Deleted FALSE

. < ™\Output BOOL FALSE
NewVar1 BOOL Added TRUE

: NewVart 3 ' Output | Newvar2 BOOL Added TRUE

— W L @ Global variables

o Ji RETAIN variables

Figure 130: Modified program

Recompile the program after the modifications have been made.

Go into online mode

| B e

Page 210 Win-GRAFWorkbench User Manual
Version 1.0

The workbench will indicate that the logic code of the application on the
runtime is not identical to the code of the workbench.
& MainTask EENERONNNN 74 *5 2

o | ocation | Status
kMainTask Bad version!
Taske Idle
Task3 Idle
Taskd Idle
Step 8: Download the modified application to the runtime by clicking the
'‘Download changes'icon in the output window:
& MainTask BRI !
o[Location A Download changes - MAINTASE
kainTask Bad vearsion!
Task? Idle
Task3 Idle
Taskd Idle
Step 9:

Click the Online Change icon to update your PLC application on the fly:

| & MainTask Bad version! T3 4«
fo Location Do On Line hange

kainTask Bad wersion!
Taske

Idle
Task3 Idle
Taskd Idle

A popup window appears where you have to confirm that you want to
update the application. Click Yes.

Do On Line change —’

Continue ?

The task will switch into run status and the current values of the newly
added variables will be shown next to the variable names.

ICP DAS

Page 211 Win-GRAFWorkbench User Manual

Version 1.0

& MainTask EREUN CICIRI < A [)

o/ Location | Status
kainTask
Taske Idle
Task3 Idle
Taskd Idle

9 Modbus Networking

The Win-GRAF runtime includes fully integrated Modbus master and slave functions for
enabling Modbus communication on serial link or Ethernet.

The following Modbus function codes are supported:

read coils

read bit inputs

read holding registers
read input registers
write 1 coil

write 1 register

write N coils

write N registers

Architecture:

The Win-GRAF runtime can be used either as a server (Modbus slave) or as a client
(Modbus master). Both server and client may be active at the same time. This allows
multiple applications such as:

Slave connection to a Modbus master such as a SCADA system.
Master connection to pilot Modbus 1/Os.
Win-GRAF to Win-GRAF communication for real time exchange of variables (binding).

ICP DAS Page 212 Win-GRAFWorkbench User Manual
Version 1.0

SCADA

Win-GRAF < Win-GRAF

Runtime Runtime

v v v

i0s | s 1103

Master ——Jp» Slave

The configuration of slave and master functions is done in the Workbench.

10 Modbus Slave

This chapter describes how to setup the runtime to act as a Modbus slave. Three types
of slaves can be installed: Modbus TCP, Modbus RTU and Modbus ASCII.
The Win-GRAF runtime can act as a multiple slave.

The Modbus slave of the Win-GRAF runtime first has to be configured via the workbench
in order for the remote Modbus master to access it. The communication layer (Ethernet,
serial), the register types and number of registers (data block) of the slave have to be
set. Below is a simple example of a slave configuration (Figure 131):

ICP DAS Page 213 Win-GRAFWorkbench User Manual
Version 1.0

B MODELS Configuration
E-ﬂ-; Local Server (MODE J
=-8 Input Reqgisters (read by clients) [0..3]
----- S 0: Prodwo
----- & 1: Prodi
----- & Z: Prodwz
----- & 3: Prods
=-"B Holding Registers (Forced by clients) [0..3]
----- & 0: Forcedwo
----- & 1: Forcedwi
----- & Z: Forcedw?z
----- & 3: Forcedws3
=B Input Bits (read by clients) [0..3]
----- & 0: ProdB0
----- & 1: ProdBl
----- & Z: ProdBz
----- & 3: ProdB3
=-"B Cail Bits (Farced by clisnts) [0..3]
----- & 0: ForcedBO
----- & 1: ForcedBl
----- & Z: ForcedB2
----- & 3: ForcedB3

Figure 131: Modbus slave configuration

10.1 Slave Data Block Configuration

10.1.1 Selecting Slave

Step 1: Double click the 'Fieldbus Configuration' tree item in one of the tasks to
open the IO Drivers' window.
Wla [MT] Win-GRAF 9.3.0 - ModbusSlaveTC

| File | Edit View Insert Project Tools

W= = Xh e XX o

Workspace

4 [Z] Main task -
b Frograms / I
| ws Fieldbus Configuratiunsl
%13 Binding Configuration
1 vos
I (ui Variables

Step 2: Click the 'Insert Configuration' button on the left side of the IO Drivers'
window and then select the 'MODBUS Slave' and click 'OK’ to enable a
Modbus Slave.

ICP DAS Page 214 Win-GRAFWorkbench User Manual
Version 1.0

Step 3:

Step 4:

Step 5:

| M

E Add Configuration ﬁ

B Choose a configuration

=

=T oAl

-
4 MODBUS EHIEET

i

B

b Shared Memory \

Click the 'Insert Master/Port' button on the left side to set the 'Slave

number' (here the value is '1'), and click the 'OK’' button.
i) Mg MODEUS Slawe

“E N
= MODBUS Slave Protocol S
tH

@ Slave
:
B

If you add more than one slave then assign each slave a ID to easier
identify the server in the PLC program (e.g. Srv_1)

IE 4 Mg MODBUS Slave | Hame | value
T Server - Slave number =1 Slawe nurmber 1

"B Server|D Shve_1
-

Now define the Modbus register and coils supported by the runtime slave

This will be described in the following section

10.1.2 Define Slave Register

The following standard Modbus register and coils are supported by Win-GRAF:

Modbus slave register type and size has to be configured via dialog (Figure 132) which

ICP DAS

Input register (read by masters)
Holding register (read/write by master)
Coils (read/write by master)

Discrete inputs (read by masters)

Page 215 Win-GRAFWorkbench User Manual
Version 1.0

can be accessed from the menu ('Insert’->Insert Slave/Data block...) .

- -
MODBUS Slave Reguest ‘- -

Request

Description:
Cancel

il

Data read by the master

(@) Input Bits
() Input Registers

Data read or forced by the master @

(") Coil Bits
(") Holding Registers

Data block

Base address: 1

b 1

[peclare variables L
Prefix: V% BOOL - @

From: 1

" i |

Figure 132: Modbus slave register configuration

Description:

1.

ICP DAS

The description field allows you to shortly describe the purpose of the data
block. This field can be left empty

First decide whether the master should only have read access or have both
read and write access to the data block. In addition decide the data format of
the block.

Access Option Data type
Read Input Bits BOOL
Input Register BYTE, INT, DINT, REAL, etc.
4/Wri Coil Bits BOOL
Read/Write || fing Register BYTE, INT, DINT, REAL, etc.

Set the start address (base address) of the number of register (Nb) of the data
block. Depending of the selection made in 2 the register size unit is either BIT
or WORD. It is recommended to set the start address to 1. If two blocks of the
same register type are added make sure that the start address of the second

Page 216 Win-GRAFWorkbench User Manual
Version 1.0

block continuous with the end address of the first block. This allows the
master to access the two blocks in one datagram and decrease the number of
datagram exchange between master and slave. If the data address requested
from the Modbus Master (e.g., the SCADA software) is smaller than the start
address or greater than the maximum address (start address + Nb -1) than the
slave of the Win-GRAF runtime will not respond.

If required the workbench automatically declares new variables and directly
map them to the newly created data block.

10.1.2.1 Define Holding Register

The following procedure describes how to add a holding register data block:

ICP DAS

Add a holding register and map global variable in one step.

Open the slave configuration window by clicking the 'Inset Slave/Data Block'

icon (Figure 133).

- Set the name of the block to ‘MyFirstBlock'.

- Add a data block of the holding register type which holds 10 registers
(Nb=10) and the first register address starts (base address) at 1.

- Declare a number of 10 INT variables and map it to the data block:

- Select the check box next to 'Declare variables'

- Set the name of the variables to ‘MyVar%' whereby the % represents a
value which starts from 1 (Set via the 'From:’ text box) and increments
by one with each following variable declaration (MyVarl, MyVar2,
MyVar3, ...).

- Select INT as data type.

Page 217 Win-GRAFWorkbench User Manual
Version 1.0

[E 4 Mg MODEUS Slave
%

4 gz Server- Slave number = 1

MODBUS Slave Request

-

Request

Description: MyFirstBlock

Data read by the master

(") nput Bits
(") Input Registers

Data read or forced by the master

(@ Holding Registers

Data block

B

Base address: 1

Nb 10

Declare variables

Prefix:

» From:

My\.l'arf}ﬁ INT -

1

MyVarl ... MyVarl0

Figure 133: Define Slave data block and assign variables

After confirming the setting the workbench adds a new data block with the
name 'MyfFirstBlock' to the Modbus slave and new global variables are
automatically being declared and assigned to the data block (Figure 134). The
PLC program has to use these new variables to access the data block.

[§ 4 Mg MODBUS Slave | B [alue ¥ Mame [Type [Dim
4 s Server-Slave number =1 Request Holding Registers 4 (@ Global variables
| PIE:] Holding Rsgisters [1.10] - My Address 1 MyVar1 INT
=3 = -0 Myarl MNb hem 10 MyVar2 INT
il = +1: Myar? Description by FirstBlock MyVar3 INT
™ o +2: MyWard MyVard INT
@ +3: MyWard - . MyVar5 INT
@ & Myvas block with the Vanat;lebs | Myvaré INT
E @ 5 Myarh aSS_ighr“IEU crea;::z Y MyVar7 INT
& & +B: Myar? variapbles MyVars INT
: @ 7 Myvars Workbench MyVard INT
* @ +8 Myvard MyVari0 INT
=+ yarlll i RETAIN variables
| Symbol | Offset | Mask | Storage | Range (Lo... | Range [Hi... | Signal (Lo >0 MyProg (*My first program™)
Wyarl 0 FFFF Defaul 0 MyTask
hywar2 1 FFFF Default
hyard 2 FFFF Default . q ‘T| D
Myvard 3 FFFF Default Variables
Myars 4 FFFF Default mapped to 7 Name [value [Type
Myark 5 FFFF Default the slave
Myvar? 6 FFFF Default data block
hyard 7 FFFF Default
hhyvard 8 FFFF Default
Myarll g FFFF Default « "] »
= A —

Figﬁre 134: Slave data block with mapped variablés

ICP DAS

Page 218

Win-GRAFWorkbench User Manual

Version 1.0

2. Add a holding register and map global variable in several steps

Step 1:

ICP DAS

Click the 'Insert Slave/Data Block'icon to open the configuration window.

1.
2.

Set the name of the block to 'MySecondBlock'.

Add a data block of the holding register type which holds 5
registers (Nb=5) and the first register address starts (base
address) at 11. The register address of the previous block
'MyFirstBlock' ends with 10 therefore the first address of the
second block continuous with 11 in order for the slave to have
one consistence address range for the same register type (here:
Holding register).

We want to declare and map the variable for the holding
register data block by ourselves and therefore make sure the
check box is unchecked.

[E 4 Mg MODBEUS Slawve

& 4 & 9 MODBUS Slave Request e
“B R
3 Request
=
FH Description: ~ MySecondBlock —————
= Cancel
= ;J
7 Data read by the master
B) Input Bits
= ! Input Registers
4 Data read or forced by the master

(7 coil Bits

4 (@) Holding Registers
Data block
i - |11 L
Syrmboal Base address: [
Nb 5
eclare variables
From: 11
V11 ... V15

The workbench adds a empty holding register data block with the name '
MySecondBlock' to the Fieldbus window:

Page 219 Win-GRAFWorkbench User Manual
Version 1.0

IE 4 Mg MODBUS Slave J Hame | value

w5 4 g Server-Slave number =1 Reguest Holding Registers
‘B - B Holding Registers [1..10] - MyFirstBlock Address 1

= M=1Holding Registers econdBElock MNb term 5

3E Description MySecondBlock
H

Step 2: Declare 5 global variables of INT type:
1. Right click a global variable and select '‘Add Multi Variables ...'

T Harme [Type | Dimn. | Public
4 [y Global variables
My\‘,’ar4 IRT —
MyVarZ
MyVar3
MyVar<

MyVars & Cut
MyVar€ g Capy

MyVarj
MyVard % Clear
MyVarg .
£t
B RE Cancel Sorting
v [My
O My||s Enable Changes Space

Swap Global <> Retain

o _Add Variable Ins
Add Multi Variables...
Edit Variables as Text...

i. Enter the variable name. The % symbol at the end of the
name indicates that a number will be attached to the variable
name at an incremental order. The start number has to be
entered in the 'From'and the end number in the 'To'text
box.

ii. Select the variable type to declare (here: INT)

iii. Declare the variables as global
iv. Click 'Create all' to declare the variables and 'Cancel’ to close
the window

ICP DAS Page 220 Win-GRAFWorkbench User Manual
Version 1.0

Step 3:

ICP DAS

-

Creation of N variables

Enter informations

Create all

Mame MyDefvar_%

e T S

Group [Globalvariables VI I Help]
[T Read-anly Dim. 0 [

Frarn 1 To 5

Owerview

Creation of 5 variables :

From wariable MyDefvar_1 to variable MyDefvar &

Feport

The workbench adds the declared variables to the variable editor:

[Name | Type | Dinn. | Public |
MyDefVar_1 INT O
MyDefVar_2 INT O
MyDefVar_3 INT O
MyDefVar_4 INT O
MyDefVar_5 INT O

Map the newly declared variables to the Modbus register data block

1. Dragand drop the variables to the mapping area
[E 4 Mg MODBUS Slave Marme [Value
£ 4 5 Server-Slave number =1 Reguest Halding Registers
‘B b *B Halding Registers [1..10] - MyFirstBlock Address 11
i b "B Holding Registers [11..15] - MySecondBlock b ltem 5
FH Description MySecondBlock ‘f‘
A Step 2: -
Step 1: Select all | l RETAIN variables -
él Select Holding variables to Lo 0
Register map leame | Value | Type
= L
4
T
/|
P4

| Symbol | Crffset | Mask | Storage [Range (Lo | Range (Hi_J@Mnal (Lo Step 3:

MyDefvar 1 0 FFFF Default —— D _p_d d

MyDefvar 2 0 FFFF Defaul ‘— - rag anc drop

M”D s e . variables to the

BREREL = mapping area
MDA R oo Difarl
i FFFF Defauk

The workbench set the data block offset of each variable by default
to zero which means there the variable memory are overlapping as
they share the same memory area.

2.

Assign each variable to a offset position in the data block.

Page 221

Win-GRAFWorkbench User Manual

Version 1.0

ICP DAS

Double click the offset column next to the variable and assign is
a offset position. The first variable should start at the offset at
0, the seconds at 1, etc..

Syrnbol | Offset | Mask | Storage
byDefvar_1 0 "_'_FF Default
hyDefyar_2 1] 1| = ;FF Default
byDefyar_3 1] FFFF Default
byDefyar_4 1] FFFF Default
byDefyar_5 1] FFFF Default
Note:

- The memory size of one Modbus holding register is 16
bits (INT), this means the offset distance is two bytes.
The 'Default’ entry in the 'Storage’ column indicates
that the variable needs one holding register (16 bits
memory) in the data block.

- If a 32-bits or greater data type (e.g. DINT, REAL,
STRING) has been assigned to the data block then the
storage size has to be adjusted.

Example:
For a DINT or REAL variable select DWORD for storage
For a STRING variable select the string size as storage

| Symbol | Offset | Mask | Storage | Range (Lo... | F
MyDefvar_1 FFFF DOrtees
MyDefvar_2 FFFF C D
WhyDefvar_3 FFFF C| DWORD {Low - High)
MiyDefvar_4 FFFF C g;mg E)
hyDefvar_5 FFFF C

o o o o O
(o)
Tk
]
=
L
i]
=
|
=
o
E
Ny »

STRING

STRING

(
(
{
(
STRING(
{
STRING(

{

{

[T e i R g Sy e

STRING
STRING(24
—laTRIMGER h

)
)
)
)
)
)
)
)

Tip:
The Workbench provides a function which allows you to quickly
assign memory offsets for each variable.

Click the head line of the offset column to select all its
entries.

Page 222 Win-GRAFWorkbench User Manual
Version 1.0

ICP DAS

Step 1:
Click offset column

or
"Clrl+A"

Step 2:
Click "Interate"”

icon

| Storage

T MyDefvar_1 Diefault
MyDefv/ar_2 Default
MyDefvar_3 Default
MyDefar_4 Default

FFFF Default

- Click the 'Iterate Property' button on the left to open the
'Offset' editor. Enter the start offset number and the offset
increment value. Confirm the setting with entering 'OK".

Offset — u‘

MName “

Fram: 0

[}

Results j
Start offset
1D number Offset increment
?
3
4

Generated offset
numbers

All the variables are assigned a offset value in sequential
order:

| Symbal | Offset ¥ | Mask | Storage
¢ MyDefvar 1 Default
hyDefvar_2 Default
hyDefvar_3 Default
hyDefvar_4 Default
FFFF Defoult

The workbench allows the user to set the storage for all

variable in one action:

- Click the 'Storage' header to select the entire column and
then press 'Enter' key to display a drop-down menu.

Page 223 Win-GRAFWorkbench User Manual
Version 1.0

Symbol | Offset | Mask | Storage 4 |Range (Lo | F

MyDefvar_1 0 FFFF efault
MyDefvar_2 1 FFFF Diefault
MyDef/ar_3 z FFFF Diefault
MyDef/ar_4 3 D

hyDefvar_b 4

DWORD (High - Low)
DWORD (Law - High)
STRING(E)

[»

. t
ofep 1 STRING(S)
Click "Storage" STRING10)
header STRING(12)
_ Step 3
Step 2:
Pross Enter Select storage type
Step 4°
Press Enter)

- Select a storage type and press enter

10.1.2.2 Define Input Bit Data Block

The following procedure describes how to add a input bit data block which can only be
read by the master.

Open the slave configuration window by clicking the 'Inset Slave/Data Block'icon (Figure
135).
- Set the name of the block to ‘MyInputBitBlock'.
- Add a data block which holds 16 input bit data types (Nb=16). The address starts
(base address) at 1 for the first bit entry.
- Declare a number of 16 BOOL variables and map it to the data block:
- Activate the check box next to 'Declare variables'
- Set the name of the variables to ‘'MyReadBool%' whereby the % represents
a value which starts from 1 (set via edit box 'From:') and increments by
one for variable declaration (MyReadBool 1, MyReadBool 2, MyReadBool 3,

)
- Confirm the setting by clicking 'OK’

ICP DAS Page 224 Win-GRAFWorkbench User Manual
Version 1.0

[E 4 Mg MODBUS Slave
4 F Server- Slave number =1

i
I "B Holding Registers [1.10] - MyFirstBlock

kB Holding Registers [11.15] - MySecondBlock

3E \ "B Input Bits [1..1]
H MODBUS Slave Request e
5 Request
B Description: MyInputBitBlock
:
) Data read by the master

Symb (@) Input Bits

(") Input Registers

Data read or forced by the master

(") Coil Bits
(") Holding Reqisters

Data block

Base address: 1

Nb 16

[| Declare variables

Prefix: ReadBool% BOOL v

From: 1

MyReadBooll ... MyReadBooll6

Figure 135: Define Slave data block and assign variables

The workbench adds a new input bit data block with the name '‘MyInputBitBlock' to
the Modbus slave Fieldbus configuration area. 16 new BOOL variables are decaled
and mapped to the data block (Figure 136). The PLC program can access the
Modbus data block via the newly created variables.

ICP DAS Page 225 Win-GRAFWorkbench User Manual
Version 1.0

AT

e+ | ¥ |

PR - | Input Bits [1..16] - MylnputBitBlock -~ f Name [Value Yl Name | T pe | Dim

2 +0: MyReadBoall Request Input Bits MyDefVar_5 INT

2 +1: MyReadBool2 Address 1 MyReadBool1 BOOL

2 +2: MyReadBoold M ltern 16 MyReadBool2 BOOL

2 +3: MyReadBoold Description MylnputBitBlock MyReadBool3 BOOL

2 +4: MyReadBools MyReadBool4 BOOL

2 +5: MyReadBools New data Variables MyReadBool BOOL

2 +E: MyReadBool? block yvith declared by MyReadBool6 BOOL

@ +7: MyReadBoals the assigned the —{MyReadBool7 BOOL

@ +8 MyReaddoold variables workbench MyReadBoold ~ BOOL

2 +9: MyReadBool10 MyReadBool9 BOOL

bl e MyReadBool10 BOOL

Symbol | Oifset | Mask | Storage & | Range (Lo | Range (Hi_ | Signal [L MyReadBool11 BOOL
MWyReadBaooll 1} FFFF Default MyReadBool12 BOOL
MyReadBoolz 1 FFFF Default MyReadBool13 BOOL
MyReadBoold 2 FFFF Default MyReadBool14 BOOL
MyReadBoold 3 FFFF Default Variables MyReadBool15 BOOL
MyReadBools 4 FFFF Default mapped to MyReadBool16 BOOL
MyPeadBaals & FFFF Default the data B RETAIN variables
MyReadBool? B FFFF Default block » [MyProg (*My first program®)
MyReadBoold 7 FFFF Default [MyTask
MyReadBoold 8 FFFF Default -
MyReadBoalll 9 FFFF Default (il D
MyReadBoolll 10 FFFF Default 7| Name | Value | Type

MyReadBooll2
MWyReadBooll3
MWyReadBooll4
MyReadBoolls
MyReadBoollB

n
12
13
14
15

FFFF
FFFF
FFFF
FFFF
FFFF

Default
Default
Default
Default
Default

Figure 136: Slave data block with mapped variables

10.2

Slave Type Configuration

The Modbus data block configuration done in the previous section defines the memory
size and structure of the slave. This chapter explains how to create a communication
interface through which the Master can exchange data with the slave data block (Figure

137). Win-GRAF provides Modbus slave function blocks which handles the

communication between master and the slave data block by processing the request
received from the master. If the master request the content of the slave data block then
the slave function block reads the data from the data block and write it to the response
data frame to the master. Function blocks are provided which supports Ethernet and
serial communication (Figure 138).

ICP DAS

Page 226

Win-GRAFWorkbench User Manual

Version 1.0

Creating a Modbus Slave

[E 4 Me MODBUS Slave

1. Define a Modbus data block B
WhICh Contalns Sectlons for b B Holding Registers [11.15] - MySecondBlack
i & b "8 InputBits [1..16] - MylnputBitBlock
— Input and output register
— Input and output bit l

Data Block

| symbol | Offset | Mask | Storage 4
2. Map the data block to global b HE e
Va ria bIeS Myard 2 FFFF Default
MyWard 3 FFFF Default
MyWars 4 FFFF Default
Myars 5 FFFF Default
MyVar?] FFFF Default
3. Set the_ Modbus protocol for E—
accessing the data block . o T T— _—

— Modbus TCP, Modbus RTU, 502 Por
Modbus UDP

Figure 137: Procedure for creating a Modbus slave

Modbus Slave Function Blocks
Ethernet Serial (RS232, RS485)
MBSLAVETCP MBSLAVERTU
MBSLAVETCP MBSLAVERTU
TRUE AN OKp Qutput TRUE 1IN e } Output
502 APort 'COM1:9600,N,8,1" 1PORT
1 1SLV
MPSLAVETCPEX MBSLAVERTUEX
MBSLAVETCPEX MBSLAVERTUEX
TRUE AN OK| Qutput TRUE AN Qp Output
502 APort 'COM1:9600,N,8,1' APORT
1 ASlave 1 ASLV
'Block_1' 1SniD ‘Block_2" ASviD
MBSLAVEUDP MBSLAVERTUEXD
MBSLAVEUDP MBSLAVERTUEXD
TRUE AN Qp Output TRUE AN Qm Qutput
502 APORT 'COM1:9600,N,8,1' JPORT Nrecl ValidReqQty
1 ASLV 1 ASLV Nx ValidReqgAllQty
TRUE ARTU 'Block_5' ASrviD Nerr|i ProcessReqErrQty
Nok SuccessReqQty
Nbrjg BroadcastQty
NbBadp BadQty
MBSLAVEUDPEX
MBSLAVEUDPEX
TRUE AN Qp Output
502 APORT
1 ASLV
TRUE ARTU
'Block_4" ASnviD

Figure 138: Function blocks for setting the Modbus protocol type

ICP DAS

Page 227

Win-GRAFWorkbench User Manual
Version 1.0

10.2.1 Single Data Block

The following procedure shows how to add a Modbus slave function block to the PLC
program which will allow the master to access the slave data block which has been
created in the previous chapter (Figure 139).

|§ FRly - HAODBLS Slave
@ 4 @z Server-Slave number =1
‘B b "B Halding Registers [1..10] - MyFirstBlock
I "B Holding Registers [11..15] - MySecondBlock
i "B Input Bits [1..16] - MylnputBitBlock

Figu;g 139: Slave data block

Step 1: Create a program called 'MbScan’. Right click in the workspace the '‘Programs’
tree item to insert a new program.

4 @— Main task Y 1
4 it

Rename... F2
REi

“Fx Fie
0 Bir Insert New Folder

L3 prcl {1 Insert New Program... |

o Shortcuts » | |4 [E Main task

(v Insert New Item... 4 Proarams
b B Task? |) MbScan Mhodbus Slave®) |
b [Taskd X Delete) MyProg My first program®)

= -

Step 2: Define the slave type. Select one of the following type.

- Modbus TCP slave: This allows the Modbus TCP master to access the slave
data block. Add a '"MBSLAVETCP' function block to the 'MbScan’ program.
The standard port number for Modbus TCP is 502. A different port number
can be selected if it is being supported by the master supports. As long as
the IN input is true the '"MIBSLAVETCP' function checks in every program
cycle whether a new master command has arrived, process the command
and responds to the master.

ICP DAS Page 228 Win-GRAFWorkbench User Manual
Version 1.0

7| Name | Type | Dirn
4 [MbScan (*Modbus Slave*) -
Inst_ MBMAS... MBMasterR

ml»

lnné BADCI A MADCIA AT
] il »

---------- £F MBMASTERTCP (*MODBUS Master TC.. =
= e N T MBSLAVEIDENT (*Set MODBUS Slave
= I3 N, MBSLAVELASTREQ
%, MBSLAVERTU (*MODBUS Slave RTU (
Y £ MBSLAVERTUEX ('MODBUS Slave R

n

MBSLAVETCP | 5 WMBSLAYERTUERD (MODEUS Slave
; TRUE 1IN OK Output (T
| 502 1Port I MBSLAVETCPEX *MODBUS TCP Serv.
EE MBSLAVEUDP MMODBUS Slave on U
(j' I MBSLAVEUDPEX MMODBUS Slave an
FE PWM (PAWM signal generator)
Q

F RAMP (“4nalog ramp™)

- Modbus RTU slave: A Modbus RTU master can access the data block
through one of the serial ports (R5232, RS485, RS422) on which the Win-
GRAF runtime is executing. Add a instance of 'MIBSLAVERTU' function block
to the '‘MbScan’ program. The PORT input need a string of the serial port
('COM1:9600,N,8,1') and the SLV input the Modbus slave number.

-

%[Name | Type | Dirn

> @ Global variables -
i RETAIN variables

P ool

d T MBMASTERRTU (MMODBUS Master R -
"\ T MBMASTERTCP (*40DBUS Master TC.
MBSLAVERTU \ TF MBSLAVEIDENT (*Set MODEUS Slave
TRUE 1IN Q Output
'COM1:9600,N,8,1' 1PORT
1 1SLV

¥

T MBSLAVERTUEXD (*MODBUS Slave
T MBSLAVETCP (WODBUS TCP Server)
T MBSLAVETCPEX (*MODBUS TCP Ser.
T MBSLAVEUDF (*MODEUS Slave anU.
£ MBSLAYEUDPEX (MODBUS Slave on
EE Py (P signal generator)

B ¢ m 3 < > | Blocks,

- Modbus UDP slave: Modbus UDP protocol is nearly identical to Modbus
TCP except that it runs connectionless on UDP/IP. Unlike TCP which is a
guaranteed delivery service, when using UDP the application layer is
responsible for any retries required due to possible loss of frames. The
advantages of ModbusUDP are that it is in most cases faster than a TCP/IP
connection.

»

7| Name | Type | Dim
4 [MbScan (*Modbus Slave*) -
_______ Output BOOL

- ~ Inmt MDC1 A MADClmmTrn
X -~ «] »

Inst_MBSLAVEUDP). {F MBSLAVERTU ("MODBUS Slave RTU (.. =
- MBSLAVEUDP i MBSLAVERTUEX PMODBUS Slave Pi..
TRUE 1N Q Output | £ MBSLAVERTUERD ("MODEUS Siave ..
502 1PORT = ‘\‘ £ MBSLAVETCP (*MODBUS TCP Sernvery
7

A MBSLAVETCPEX MA0DBUS TCP Sery...

- 1 151V
TRUE 1RTU

EF MBSLAVEUDPEX (MODBUS Slave on ...
E P PV signal generator)

EF RAMP (*Analog ramp®)

TF RAND (*Random value®)

T+ SERGETSTRING (*Get string from bingry...
T+ SERIALIZEIN (*Get data from binary fram

B ¢ m » <+ > | Blocks

ICP DAS Page 229 Win-GRAFWorkbench User Manual
Version 1.0

Step 3: Set the time interval at which the slave function block should check the port

(Ethernet or serial buffer) Ethernet port for an incoming Modbus master
request or command.

- Set task cycle time: Right click the task name in the tree view and select
'Settings...". Make sure the cycle time is shorter than the polling time of the

master.
Project settings @
- C:\Users\martin\Documents\WinGRAF 9.2\PC_ECATMB00'vooxModbusHMT\MbDemao\MainTask|
[Name [Value |
Runtime
Compiler |‘; Cycle ime . 50 ms |
Debugging @ Code Generation Release
Advanced [il. Complexwvariehles in a separate segment MNo
(Al = (inling Chanao Clicaplad
Cycle time P
(7)) Fun as fast as possible
Cycle timing 50 ms ¥

Duration of the PLC scan. Value 0 means as fast as possible (never
wait).

- Set execution period: Right click the program name 'MbScan'in the tree,
select 'Properties..." and click the ‘Advance’ tab. Here configure the
execution mode.

Program properties &J

‘ Propemes| Advanced |Descnption | Secunty‘

(@ Enabled: executed inthe cycle
(") Disabled: notincluded in the cycle

Called by other programs

Execution mode
(@ Called on each eycle

() Called periodically

Period 1 (cycles)

Phase 0

l OK] [Cancel I l Help]

1. Example: The Modbus master polling time is 100 ms. If the task cycle
time is 100 ms then the 'MbScan' program should be called in each

ICP DAS Page 230 Win-GRAFWorkbench User Manual
Version 1.0

Note:

task cycle.

2. Example: The Modbus master polling time is 100 ms. If the task cycle
time is 10 ms then the 'MbScan' program should be called
periodically at every 5th task cycle.

It is important that the Modbus slave function block scans the
communication buffer for a master command in a regular time interval.
Make sure that the function block call interval is shorter than the master
polling interval.

If the Modbus master encounters a respond timeout error then it is
necessary to increase the frequency at which the Modbus slave function
block is being called in the PLC program. Another alternative is to increase
the timeout setting of the Modbus master.

The standard Modbus TCP/UDP port is 502. Only one Modbus function
block instance in the PLC program is allowed to use the 502 port. In order
to share Modbus data with other task use the shared memory method. If
the Modbus Master supports more than one port number setting (502,
503, 504, etc.) then different ports number can be used for each task.

10.2.2 Multiple Data Block

Win-GRAF is able to process both Modbus TCP and Modbus RTU communication within
one application. If the device on which the runtime is installed has multiple serial
communication ports, then Win-GRAF allows the programmer to define for each COM
port a separate Modbus RTU slave. In general for each communication port (serial) a
Modbus slave can be created.

The best way to create multiple slaves for an PLC application is to define for each slave a
separated data block in the 'Fieldbus Configuration' area (Figure 140). The Modbus
protocol for each data block is set by adding a Modbus protocol function block (Figure
138) to the programming area and linking the function block to the data block via the

input 'SrviD'.

ICP DAS

Page 231 Win-GRAFWorkbench User Manual
Version 1.0

[E 4 Mg MODBUS Slave

i
"B

I Server- Slave number =1
I @ Serser- Slave number=2
I @ Serser- Slave number = 3

£H
o

*| Slave number | Server |D

B Blo

ck_1

& 2 Block_2
K Block_3

A
Figure 140: Multiple data block definitions

Example:
Multiple data Mat?l g[{ob:lt
block definition yarEseRoesa
block

Syrnbol | Otfset | Mask [Storage 4
MyVarl 0 FFFF Default
My\Var2 1 FFFF Default
MyVar3 2Block 1 FFFF Default
MyVard 3 FFFF Default
MyVars 4 FFFF Default
[Syrabol [Offset [Mask [Storage &
MylnpRegl 0 FFFF Default

[E 4 Mg MODBUS Slave MylnpReg2 1 FFFF Default

& P & Server-Slave number=1 MylnpReg3 2 FFFF Default

"B b & Sewver-Slave number=2 ——— | MylnpRegd sBlock 2 reer Defeult

o b o ‘SENEr-SIs\/enumhel=3\ MylinpRegs 4 FFFF Default
MylinpRegh 5 FFFF Default
Symbol | Offset | Mask [Storage &
MyCaoill 0 FFFF Default
MyCaoil2 1 FFFF Default
MyCoil3 2 FFFF Default
MyCoil4 1Block 3 Free Default
MyCoils 4 FFFF Default
MyCaoilé 5 FFFF Default
MyCoil? b FFFF Default
MyCoil§ 7 FFFF Default

Figure 141: Creating multiple Modbus slaves

Set Modbus
protocol type

Inst MBSLAVETCPEX
MBSLAVETCPEX

In this example (Figure 141) the first block will be assigned to a Modbus TCP slave, which
means only a Modbus TCP master can access the information stored in the Block 1. The
second block will be linked to a Modbus RTU slave which communicates via the serial
COM1 port and the third block will be assigned to a Modbus RTU slave which exchanges
data via the serial COM2. Extended Modbus protocol function blocks (postfix EX) has to

be used to link each data block to a different Modbus protocol.

- Set block 1 as a memory area for Modbus TCP slave:

ICP DAS

Page 232

Win-GRAFWorkbench User Manual

Version 1.0

»

[Name [Type [Dim

e Inst. MBSLAVETCPEX 4 [MbScan (*Modbus Slave®) 4
o MBSLAVETCPEX Output BOOL J
It RADCI A MOClmnT N
B TRUE IN OKp— Output AT »
- 502 Port
T 1 Slave MESLAVERTU fMODBUS Slave .. »
L | ‘Block_1' | SwiD MESLAVERTUEX (*MODEUS Slaw...
'k\ A FEF MBSLAVERTUEXD (*MODBUS Sla...
"~ Wy \\ MESLAVETCF MYMODBUS TCF Se..
labs \ ‘ |
> 9 AN =l .~ e
™ ‘\.\ B e MBSLAVEUDP PMMODBUS Slawve 0. |=
F " Ny - e - MBSLAVEUDPEX (*MODBUS Slaw..
i X RS P Piiid signal generator)
I y FAMP (*Analog ramp®)
(_T L T+ RAND (*Random valug®)
LY I+ SERGETSTRING (*Get string from b...
&
E | _\ 3 o
\
[B 4 Mg MODBUS Slave . [Name | alue
T I f Server- Slave number =1 \-‘ Slave number 1
"B b @ Serser-Slave number=2 |ServerID Block_1 |

b g Server- Slave number=3

=

Figure 142: Configure data block 1 as Modbus TCP server

- Configure data block 2 as a Modbus RTU slave with slave number 1 and

communication via COM1 port (Figure 143):

»

IF
(]
B
» MBSLAVERTUEX
TRUE IN Q Output
. 'COM1:9600,N,8,1' PORT
= 1 SLV

7]
=
(=]

» “\‘ .

. \\ -
[Y -
* R Tt
| L L
& m Y >
[E 4 Mg MODBUS Slave Narme | value
® U @ Server-Slave number =1 .| Slave number 2
"B P 4 Server-Slave number =2 Server D Block_2 |
b @ Server- Slave number =3

Figure 143: Set data block 2 as a Modbus RTU slave

(|

W[Name | Type | Dimn.
4 [MbScan (*Modbus Slave™) 5
‘nl__‘.[_[.[.‘ i PP -

MEMAZTERRTU (MODBUS Mast...
MEMASTERTCP *WODBUS Maste..
TF MESLAVEIDENT (*Set MODBUS 5.
MBESLAVELASTREQ

MBESLAYERTU MMODEUS Slave ..

»

m

R MBSLAYERTUEX (*WODBL

= EE MBSLAVERTUEXD (*MODEUS Sla
MESLAYETCR ("tODBUS TCF Se...
MESLAVETCPEX (*MODBUS TCP ..
MBSLAYEUDP MMODEUS Slave 0. ™
4+ » | DBlocks g 5t Publicvariables

- Configure data block 3 as a Modbus RTU slave with slave number 1 and

communication via COM2 port(Figure 144).

ICP DAS Page 233 Win-GRAFWorkbench User Manual

Version 1.0

It

(-

EY TRUE

. 'COM2:9600N8 1"
1

—

it v

-

'_

3

|

{y , |

[E 4 MsMODBUS Slave

#z P & Server-Slave number=1

B ¢ & Server-Slave number=2
b g Server- Slave number =3

=3

MBSLAVERTUEX
IN Q Output
PORT
SLv
SniD
A"
\\
\"*"l - e s
\ >
Narme [*alue
.| Slave number 3
ServerlD Block_3

Figure 144: Set data block 3 as Modbus RTU slave

-

»

7| Name | Type | Dim

4 [MbScan (*Modbus Slave™) i

P [N

MEMASTERRTU (*MODEBUS Mast.. +
FMEMASTERTCF (*MODEUS Maste. .
11 MBSLAVEIDENT (*Set MODBUS 5.
MBELAVELASTREQ

MBSLAVETCP (*MODBUS TCP Se
MBELAVETCPEX (*MODBUS TCP ..
A FMBELAVEUDF MWMODEBUS Slave o.

Blocks gigsiaEs Publicy les

11 Modbus Master

Win-GRAF Modbus master supports three communication protocols: Modbus TCP,
Modbus RTU and Modbus ASCII. Several Modbus masters can be implemented by the
same PLC application. Only one master (Modbus RTU, Modbus ASCII) can be created per
serial communication port (RS232, RS485, RS422) and several Modbus TCP (Ethernet)

masters.

ICP DAS

Page 234

Win-GRAFWorkbench User Manual
Version 1.0

8 MODEUS Configuration

----- sir Local Server (MODBUS Slave 1)

Eﬁ; RTL: COMI2600,M,8,1 (1100)
=-"B Read Input Reqisters [0..3] - Slave 1 - Periodic: 0 ms

----- 2 0 INWO

----- 2 1: 1w

----- 2 2 w2

----- 2 3 INW3

----- & Stakus: TNW_Status

[=1-"B ‘Write Holding Regiskers [1..3] - Slave 1 - On Change

----- S0 0 Oukbl

----- S 1 oukwz

----- S 2 Oukw3

----- & Stakus: OLUTW_Skakus

[=1-"B Read Input bits [0..3] - Slave 1 - Periodic: 0 ms

----- 2 0: INBO

----- 2 1: INEL

----- 2 z: INE2

----- 2 3 INE3

----- & Stakus: INE_Status

[=1-"B ‘Write Coil Bits [1..3] - Slave 1 - On Call

----- 2 0: OUTEL

----- 2 1: oUTEZ

----- 2 z: OUTES

----- & Status: OUTE_Stakus

----- & Command: bCommand

Figure 145: Modbus RTU master

11.1 Modbus RTU/ASCII Master

The following shows how to create a RTU Modbus RTU master which communicates via
the serial port COM1 to a network of Modbus slaves.

11.1.1 Configure Communication Interface

Step 1: Select Modbus master as the fieldbus:
1. Inthe workspace double click the 'Fieldbus Configurations'item
2. Click the 'Insert Configuration' button on the left of the IO Drivers'
window
Select 'MODBUS Master' from the pop-up window and
4. click 'OK'to select Modbus Master as a fieldbus.

w

ICP DAS Page 235 Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

ICP DAS

Wfa IMT] Win-GRAF 9.3.0 - Tutorial L.wSl

File Edit View Insert Project Tools Window Help
| WE| = %DHaX=x| o | mainTask WEW L A=A
Workspace C:\Usersimartin\Documents\WinGRAF 9.3\FirstProg\Tutorial1\Main Task - 10 Drivers
4 [Z Main task 5] NEM
4 Programs s @ .
I MyProg (hy first program: ‘B il Add Configuration m
Choose a configuration —]
%} Binding Configuration i
£ Profiles = L)]
i yos 4 MODBUS
S wariables MODBUS ar
4 3 Task? B+ MODBUS Slave
4 Programs = b Shared Memory
[My Taskz .
[My Test ‘

% Fieldbus Configurations
¥} Binding Configuration
£ Profiles
i 1vos
L Variables
4] Taska
Programs
% Fieldbus Configurations
%} Binding Configuration

Add a Modbus RTU master to the workbench and configure its communication

port:

1. Click the 'Insert Master/Port' button on the left side to open the

communication port configuration window

5. Select ‘Serial MODBUS-RTU' and set the serial communication COM port
(e.g., 'COM1:9600,N,8,1") . For a Modbus ASCII Master the ASCII key word
has to be added in front of the COM port setting (e.g.
'‘ASCII:COM2:9600,N,8,1'

6. Delay time between a slave responds and next master request
(recommended value: 10 ms, it can be 0 to 10000),

7. An option is provided allowing the master to retry opening the port each
time the communication fails. Another option at the ‘port’ level is to
enable the MODBUS stack to record diagnostic information for each

slave.

8. and then click 'OK".

Page 236

Win-GRAFWorkbench User Manual
Version 1.0

Mg MODBUS Master

-

Eiﬁﬁ

MODBUS Master Port

e

"B
(") MODBUS on Ethernet

el Address: 127.0.0.1

* Fort: 502

B

[#]

o (5

protocol: ERORISI
UDP - MODBUS RTU
UDP - Open MODBUS

(@) Serial MODBUS-RTU

Com. port:

Delay between requests

Delay (ms): 10

COM1:9600,N,8,1

@
&

Try to reconnect after communication error
Manage diagnostic info for slaves
[| pisabled (do not open and manage this port)

The master communication parameters are shown in the property window
and can be modified by either double clicking the master or by directly

modifying the settings in th

[E 4 Mg MODBUS Master

Err s RTU: CORIT:9600,M,8,1
*H

o

&

=

[+

e property window.

Marme

| "alue

tode

Address

Port

Reconnect after error

Slawves diagnostics

Delay between requests (ms)
Disahled

Delay before recannedtion (ms)

Description

RTU
COMT:9600,1M,.8.1
b0z

&

10

0

Step 3: Add a data block to the master which stores input data received from the
slave and output data to be sent to the slave.
1. Click the 'Insert Slave/Data Block' button on the left side to create a data
block.
2. Slave/Unit: Enter the Net-ID of the Slave device. (Example: Remote slave
IDis '1).
3. MODBUS Request: Select the Modbus command type (function code) to
be used for accessing the slave table (Table 27). Example: <2> Read Input
Bits
Type ALl Modbus Request Description
Code
Read 1 Read coil bits Read digital output (DO) data
ICP DAS Page 237 Win-GRAFWorkbench User Manual

Version 1.0

Type Fu::(t’i:n Modbus Request Description
2 Read input bits Read digital input (DI) data
3 Read holding registers Read analog output (AO) data
4 Read input registers Read analog input (Al) data
5 Write single coil bit Write digital output (DO) data
6 Write single holding Write one analog output (AO)
' register data (16-bit)
Write 1s Write coil bits Write multiple digital output
(DO) data.
16 Write Holding Registers :ng;edgl;lt(-ifel;(/es,azns:?sg) output

Table 27: Function code table

9. Configure the data block which holds data from the slave. The data block
setup of the master should be an exact representation of the slave table.
In other word it should be an image of the slave data block in size and
data type. Data read from the slave is being stored to the read section of
the data block and data which has been modified in the write section of
the data block is being sent to the slave.

- Each data block is identified by a MODBUS slave number, a base
address and a number of items/entries (bits or words). The number of
items/entries is limited by MODBUS (2000 bits read, 1968 bits forced,
125 words read or 120 words forced).

- Base address: Starts from '1' by default. It indicates the start address of
the Modbus slave table from which the master starts to read. The data
read from the start address will be copied to the first position of the
master input block data area.

B Note: If you want to change the '‘Base address’, right-click the
'MODBUS Master' and then select the 'MIODBUS Master
Addresses’' to modify the value.

- Nb items: The number of slave table entries to read. (Example: the
number is set to 16).

mw

Master Input Slave Input
Data Block Table

ICP DAS Page 238 Win-GRAFWorkbench User Manual
Version 1.0

Figure 146: Base address set to 9 and Nb to 16

Example:
Figure 147 creates a input data block which holds 16 input bits and start
reading from the slave discrete input table at address 1.

10. Activation: Set how the Modbus request is being triggered by the master.

- Periodic: Sending the request periodically. (Example: send once every
two seconds.) ‘on error' means the next sending time after an Modbus
exception occurred (e.g., 15 seconds).

- On call: The request is activated via a program call by using a variable. If
the variable mapped to ‘Command (one shot)' operation turns from
false to true a Modbus request is being triggered (Figure 150).

- On change: The request is triggered once a variable mapped to the
output area has changed. This option is can only be used for writing and
not reading commands.

11. Timeout: Set a timeout value. If the slave does not respond to the master
request within the timeout period an timeout error will be generated.
(The recommended timeout value for the Modbus RTU/ASCII
communication is between 200 and 1000 ms.).

Nb Trials: If the slave fails to respond or the master receives an invalid
response, the master will then retry for the configured number of retries
before moving on to the next command in the list.

12. Declare variables: This option allows the user to declare new variables
and automatically map them to the Modbus master data block. Enter a
variable name and add the symbol '%' at the end of the name and enter
the start number for the '%' symbol. The workbench replace the ‘%’ with
a number which increases incrementally for each new variable as
indicated at the bottom of the window (Figure 147). The new variables
are automatically mapped to the Modbus master data block (Figure 148).
Disable this option if variables has already been declared in the variable
editor. In this case the variables have to be mapped manually by dragging
the variable from the variable editor and dropping it to the mapping area.

ICP DAS Page 239 Win-GRAFWorkbench User Manual
Version 1.0

ICP DAS

B 4 M MODBUS Master
03

4 3z RTU: COMT:9600,M,.8.1

MODBUS Master Request

Request

Description:
Slave/Unit: 3

MODBUS Request

= O

<1> Read Coil Bits
<2> Read Input Bits
<3> Read Holding Registers

<4~ Rand Tnnut Ranictare

o e e N e

Q)

Data block

Base address: 1

©

MbVarl ... MbVarle

Nb items: 16
Activation
(@) Periodic: 2000 ms 15000
On call (on error)
) On change
Misc.
Timeout: 300 ms
Nb trials: 1
Declare variables
Prefix: MbVars BOOL v
From: 1

O

e

Figure 147: Modbus Master data block setting

Page 240

Win-GRAFWorkbench User Manual
Version 1.0

Step 4:

B 4 Mp MODBUS Master Mame |value

4 @ RTU COMT:9600.M.8.1 Request <2» FRead Input Bits

"B b *B <2> Read Input Bits (1) [1..16] Slawve/Unit 1

= Address 1

B Mb tem 16

A Activation Periodic

o Feriod (ms) 2000

. . Period on errar 15000

B Mapping Area Timeout (ms) 300

[+ Mumber oftrials 1

e Description

* [Symbol | Operation 4 | Offset | Mask | Storage

b Data exchange 0 FFFF Default \
Mkt ar? Data exchange 1 FFFF Default
Mkt ard Data exchange 2 FFFF Default
Mbtard Data exchange 3 FFFF Default
Mkt ars Data exchange 4 FFFF Default
Mkt ark Data exchange 5 FFFF Default
Mkt ar? Data exchange [FFFF Default
Mkt ard Data exchange 7 FFFF Default
Mbtard Data exchange 8 FFFF Default
Mbtarll Data exchange 9 FFFF Default
Mbar! 1 Data exchange 10 FFFF Default
\wa\a’aﬂ 2 Data exchange 1 FFFF Default _/

Figure 148: Variable mapped to the Master data block

This step needs only to be done if the ‘Declare variable' option (Figure 147)
has not been selected. Declare and map variables to the master data block:
1. Declare new variables and drag and drop the variable to the data block

mapping area.

ICP DAS

[E 4 Ma MODBUS Master
W 4 & RTU:COM18B00NS1 Request
B > B <2> Read Input Bits (1) [1.16] SlaveyUnit STEP 1:
= Address Declare new
STEP2: N e variables
5 Click data block A, ;. 2o
—
[Symbol | Operation 4 | Offget | Mask | Storage
E Mbv'arl Data exchange 1} FFFF Default
— MbvarZ Data exchange 1} FFFF Default
Mbvard Data exchange o FFFF Default
T Mbvard Data exchange a FFFF Detfault
b arh Data exchange] FFFF Detault ‘ -
b ark Data exchange] FFFF Default
Mbvar? Data exchange i} FFFF Default
Mbarg Data exchange i} FFFF Default
Mbvard Data exchange 1} FFFF Default
Mbvarl0 Data exchange 1} FFFF Default
Mbar1 Data exchange 1} FFFF Default
Mbari2 Data exchange i} FFFF Default
Mbvart3 Data exchange i} FFFF Default Drag and drop new
bdbart 4 Data exchange] FFFF Default variable to the mappmg
Mbvarls Data exchange i} FFFF

a exchange

area

13. Offset: Set the data block offset of each variable. Each variable should
have a different offset number otherwise memory overlap occurs.

Page 241

Win-GRAFWorkbench User Manual

Version 1.0

ICP DAS

B 4 Mg MODBUS Master —== | value T Name [Type
& 4 & RTU:COMI9B00.MB,1 STEP 1: Read Input Bits - MbVar1 BOOL
b:| b B <2> Readlnout Btz (1) [1..16] Click "Offset" column = MbVar2 BOOL
b= MbVar3 BOOL
STEP 2:
i Click "lterat " Nb ltern 16 MbVar4 BOOL
= ic erate property Activation Perindic il MbVar5 BOOL
" MbVar6 BOOL
Operation [offset ¥ [Mask | Storage P g
Data exchange 0 FFI
Offset -——
Diata exchange 1 FFI
: Data exchange 2 | wame "
o Mbvard Data exchange 3 FFI
MbWars Diata exchange 4 FFi From: =
MbWark Data exchange 5 FFI
Mivar? Data exchange B FFI Rt
hMibWard Diata exchange 7 FFi 0
Mbard Data exchange i FFI 12
Mivarl0 Data exchange 9 FFI 3 M
MaVar!1 Data exchange 10 FRj)| 4 Start "Offset
Mbvarl2 Data exchange 11 PR g iteration from zero “
Mivart3 Data exchange 12 FERll 7
Mivarid Data exchange 13 FFRY
Mb¥arl5 Data exchange 14 FF
Mhvarl g Data exchange 15 FF —
14. Mask:

The mask in the mapping area only has to be set for input and holding
registers and is being ignored for coil and input bits.

A Modbus register has a memory size of 16 bit (same as INT, UINT,
WORD). The mask (hex number) can be used to filter out bits from the
register.

Example:
Register Value Mask (hex) Result
65565 0001 1
65565 OOFF 255
65565 FFFF 65565

15. Storage:

The storage column is only relevant for the input and holding register
setting.

For exchanging 32 bit variables (DINT, REAL...), two consecutive
Modbus register can be mapped to one variable.

For exchanging strings multiple register can be mapped to one string

Page 242 Win-GRAFWorkbench User Manual
Version 1.0

STEP 3:
Drag & drop vanables fo the
mapping area

STEP 2:

STEP 1: S1EF £
Declare 5 UDINT variables

Create a holding register

[B 4 Ma MODBUS Master - [Name [vah \ ¥ Name £ Tvpe
4 3% RTU COMT:9600M.8,1 Request <3» R&, |Holding Registel » MbErrorReport //' INT -
B b B <> Risad Input Bits (1) [1.16] = SlaveyUnit 2 = dwVar0 UDINT
s 4 ['8 <3» Fead Holding Fegisters (2 [1.5] | Address 1 _ [dwvart UDINT
B Q@ +0.7: dwivar Ih tem 5 - [~ |dwVar2 UDINT
el Q +2.3: dwvarl ~ || Activation Periodic) - - dwVar3 UDINT
« | Syrbol | Operatian Dffset | Mask | Stogae® dwVard _ UDINT
= dwvar Diata exchange 0 FFFF BTORD [Low-High) Bl RETAIN variables E
dwvan Data exchangs 2 e & woro tLow-High) v [3 MyProg (*My first program™) -
B chutviar? Data exchange 4 FFFF DWORD (Low - High) < gl D
& dwi/ard Data exchange 3 FFFF ari==sl “| Narme |\/a|ue \T pe
dwiard Data exchange 8 FFFF
j‘l STEP 5.
STEP 4: =2"ET 9.
|ncremant the offset by Select the WORD order
two N S TR

STRING(24)

STRINGOE

Figure 149: Mapping 32 bit variables to holding register

Step 5: This step has only to be done if the 'On call' checkbox has been selected (No. 5
in Figure 147). If the master is in the 'On call' mode the Win-GRAF runtime
does not automatically sent a request to the slave. The logic program of the
PLC has to trigger a request. Two command types are available to initiate a
request:

1. Command (one shot)

- Arequest will be sent once the attached flag (Figure 150: 'ReqTrigger’)
changes from FALSE to TRUE. Each time the PLC logic switches the flag
to TRUE one Modbus command is being sent to the slave. After the
request has been sent the flag will automatically be reset to zero by the
runtime.

2. Command (Enable)

- Once the BOOL variable mapped to the ‘Command (Enable)' operation
is set TRUE by the PLC logic the Modbus master will send requests to
the slave until the variable is set to FALSE. No commands will be sent if
the variable is set to FALSE.

Procedure for implementing the 'On call' procedure:

1. Declare a BOOL variable

2. Drag and drop the new variable to the mapping area

3. Select the '‘Command (one shot)' by double clicking the ‘Operation’ column
next to the new variable. The setting in the offset and storage column is
only relevant for '‘Data exchange' operation and therefore can be ignored.
If the PLC logic sets the '‘RegTrigger' to TRUE one master request will be
sent to the slave and the runtime automatically resets the variable back to
FALSE once the response has been received.

ICP DAS Page 243 Win-GRAFWorkbench User Manual
Version 1.0

[E 4 Mz MODBUS Master - | Walue | R [Type
& 4 & RTU COMIGE00ME1T Read Input Bits BOOL -
o " STEP 2:
B b B <2» Read InputBits (1) [1..18]) STEP 1: Q0L
= Drag&Drop variable oL
; Declare a BOOL
to mapping area g oL
H variable
H| Syrmbol 4 | Operation - | Storage 0oL
5 Mivard Data exchange FFFF Default - BOOL
Mbart 0 Diata exchange El FFFF Default BOOL
Mbvarl 1 Data exchange 10 FFFF Default BOOL
F povarz Diate exchange T e = o T - d BOOL =]
T Mpvarl3 Data E)E)'mng?"— 12 FFFF Default [ReqTrigger BOOL | -
hbvarl 4 pgra‘exchange 13 FFFF Default <[}
Mevarls B bato exchange 14 FFFF Default = 'ﬂ Name | value | Type
Mbvarl 5 e = FFFF Default
e A R r
—— | Enrorreport (Set onby) .
<1 On-going request nw IPuElle

Fail counter

STEP 3:
Select "Command (one shot)"

Resetcounters
Slave: last smor

Slave: last eror date stamp
Slave: last error ime stamp

Slewsa: lnet racat data ctarmn

Figure 150: Create a 'On call' variable

Step 6: Map a variable to the diagnostic and status information of the master.
Information like communication timeout, invalid data address, invalid
command, number of failed request etc. are recorded by the master. In the
following a variable will be mapped to the 'Error report' operation which
records the error of the last request. Table 28 shows all the error codes used
by the ‘Error report' operation.

Error Code Description
0 The communication is OK.
1 MODBUS function not supported.
2 Invalid MODBUS address.
3 Invalid MODBUS value.
4 MODBUS Server failure.
6 Server is busy.
8 Data Parity Error.

10 Invalid gateway path.

11 Gateway target failed.

128 Communication timeout.

129 Bad CRC16.

130 RS-232 communication error.

Table 28: Error code for 'Error report' operation

Procedure for implementing the 'Error report' procedure (Figure 151):

1. Declare a INT variable (e.g. '"MbErrorReport').

2. Drag and drop the new variable to the mapping list.

3. Double click the ‘Operation’ column next to the variable and select 'Error

ICP DAS Page 244 Win-GRAFWorkbench User Manual
Version 1.0

report'. The offset and storage column setting is ignored by this
operation. The variable will show an error code when a Modbus request
error occurs, and will be reset to zero after the next request was
successful.

[E 4 Mp MODBUS Master 7 Harme [Type
4 & RTU COMI:9600,N81 STEP 1: ModbusInfo N -
B b B <2> Read Input Bits (1) [1.16; re—— ~~MbErrorReport INT | =
= RO Declare a INT R RETAIN varabies =
variable AT e
H LT »
Activation -
F 7| Name | \value | Type
« | Symbol | Operation 4 | Offset | Mask |Storage #
MbVard Data exchange 7 FFFF Detfault ’/ -
Mbvarg Data exchange g FFFF Del’aw’ STEP 2:
MbVard Data exchange El FFFF ',%Iaull D &D— iabl
% bbyar 1 Data exchange 10 FFFF—J’ Default r?nga r?ﬁ V::Ieaa e
Mhvar2 Data.exchange n _‘—‘fFFF Default - pPIng
MbEr13 Data exchange - .-GI?" FFFF Detault
Mbi/sr14 Data exchangg wm=""" 13 FFFF Difault |
MbVarls 14 FFFF Detfault 3
Mb\are i FFFF Detault
MbEmorReport FFFF Default o= 2 ‘+| b
[|Erorepon(Eetony)
On-gaing request
Success counter
Fail caunter
Fetry counter
Command (one shot)
Command (enahle) STEP 3:
Fieset counters ["
Sleve: lastewror Select "Error report
Slave: last error date stamp
Slave: lasterror time stamp
Clauie last vac ot dats starn

Figure 151: Error report setting

ICP DAS Page 245 Win-GRAFWorkbench User Manual
Version 1.0

12 Variables

All variables used in programs must be first declared in the variable editor. Each variable
belongs to a group and is must be identified by a unique name within its group.

Groups
A group is a set of variables. A group either refers to a physical class of variables, or

identifies the variables local to a program or user defined function block.

Below are the possible groups:

Group Description
Global Internal variables known by all programs
Retain Non-volatile internal variables known by all programs
Program,u All internal variables local to a program
(The name of the group is the name of the program)
UDFB All internal variables local to a User Define Function Block (UDFB)

plus its IN and OUT parameters
(The name of the group is the name of the program)

Table 29: Groups

Data type and dimension

Each variable must have a valid data type. It can be either a basic data type or a function
block. In that case the variable is an instance of the function block.

If the selected data type is STRING, you must specify a maximum length, that cannot
exceed 255 characters.

Refer to the list of available data types for more information. Refer to the section
describing function blocks for further information about how to use a function instance.

Additionally, you can specify dimension(s) for an internal variable, in order to declare an
array. Arrays have at most 3 dimensions. All indexes are 0 based. For instance, in case of
single dimension array, the first element is always identified by ArrayName[0]. The total
number of items in an array (merging all dimensions) cannot exceed 65535. The possible
range of Arrays reaches from ArrayName 0 until ArrayName 65534.

Naming a variable

A variable must be identified by a unique name within its parent group. The variable
name cannot be a reserved keyword of the programming languages and cannot have
the same name as a function block listed in the function block library. A variable should
not have the same name as a program or a user defined function block.

The name of a variable should begin by a letter or an underscore ('_') mark, followed by
letters, digits or underscore marks. It is not allowed to put two consecutive underscores
within a variable name.

Note:

Naming is case insensitive. Two names with different cases are considered as the same.

Attributes of a variable

For each internal variable, you can select the 'Read Only' option.

Parameters of User Defined Function Blocks and sub-programs are marked as either IN
or OUT.

Parameters of sub-programs and UDFBs

Sub-programs and UDFBs may have input or output parameters. Output parameters
cannot be arrays of data structures but only single data. When an array is passed as an
input parameter to a UDFB, it is considered as INOUT so the UDFB can read and write in
it. The support of complex data types for input parameters may depend on selected
compiling options.

12.1 Create Variables

To increase the readability of the PLC program it is suggested to stick to a naming
convention for the variable names. The Win-GRAF workbench allows you to set the
prefixes for each variable type (e.g. 'b' for BOOL, 'si' for SINT, etc.).

Got to 'Tools/Options..." in the menu and select 'Prefixes' to set the prefixes for each
variable type (Figure 152) and enable the use of prefixes. The enables the workbench
during a variable declaration to automatically selects the type after entering the variable
name with the prefix.

ICP DAS Page 247 Win-GRAFWorkbench User Manual
Version 1.0

W Options ﬁ
B Window Type | Prefix | Description |
A Character fonts Use prefixes | | (\E) &~
Editing BOOL b E
& Colars SINT si N
li Diagrams —— USINT us
b Prefixes |(\9 BYTE by
Tooltips INT i
Extensions UINT u
WORD W
DINT di
JoiNT ud
DWORD v
LINT i
REAL t
LREAL Ir
TIME t il
oo
Co] |

Figure 152: Variable type prefix setting

12.1.1 Declare Variable in the Variable Editor

First determine group in which to declare a global, retain or local variable.
Step 1: Open the variable editor by double clicking the 'Variables' in the
workspace
Step 2: Right click the group (Global, Retain, local) and select 'Add Variables
(Figure 153). A alternative way is to select the group and press the
'Insert’ key on the keyboard. A variable with the name 'NewVar' of
BOOL type is being added to the editor.

!

ICP DAS Page 248 Win-GRAFWorkbench User Manual
Version 1.0

- S—
Wl [MT] Win-GRAF 9.3.0 - Tutorial Lw5l
File Edit View Insert Project Tools Window Help
(WSS L0 %o @ 6| manrask Fg 7 Undo
Workspace C:\Users\martin\Documents\Wii ™ k -
4 13 Main task ¥ [Name]
4 [Programs =) Global variables *
@ MyProg (My first program®) I RETAIN variables |
B MySt 4 [MyProg (*My first prag
“% Fisldbus Configurations Output E %
%} Binding Configuration NewVar1 E ni
€ Profiles NewVar2 E
1l yos — D Myst Cancel Sorting
()
I [E Task? M Enable Changes Space
b [Task3
b [E Taskd
4 B Library > Add Variable Ins
Blocks Add Multi Variables..
§q Global defines o 2
Edit Variables as Text...
b E Types
(All Projects) Select Variables...
ar Rename Variables... I
T] Yariah !

Figure 153: Declare a variable using the variable editor

Y[Mame | Type |Dim. | Public | Attrib. | Init value |
4 (@ Global variables
| NewVar BOOL] |

i RETAIN variables
[MyProg (*My first program®)
O MySt

Step 3: Set variable name:
Double click the variable name, enter a new name in the edit box and
press enter to assign the new name.

[Hare | Type |Dim. | Public | Attrib. | Init value |
o " Clahal vineiahlae
by ‘ 0

i RETAIN variables
[MyProg (*My first program™)
O MySt

Step 4: Set data type:
Double the 'Type' field to open a list of available data types and

function blocks. Select one of the data types.
7| Name | Type |Dim. | Public | Attrib. | Init value
4 (@ Global variables
MyVar
i RETAIN variables
0O MyProg (*My first pi| pworD
O MySt INT

O -~
BYTE B

< | 11 | »

STRING(J:

ICP DAS Page 249 Win-GRAFWorkbench User Manual
Version 1.0

Step 5:

ICP DAS

Set array dimension:
Ignore this step if you do not want to declare an array.

Single dimensional array
Double click the dimension '‘Dim’ field and assign the size of the array.

[Name | Type | Dim. | Public | Attrib. | Init value |
4 (@ Global variables —
MyVar Byte M =

i RETAIN variables
[MyProg (*My first program™)

0 MySt
[Name | Type | Dim. | Public | Attrib. | Init value
4 (@ Global variables
MyVar BYTE [C

i RETAIN variables
[MyProg (*My first program™)
O MySt

All indexes are 0 based. Arrays have at most 3 dimensions. For
instance, in case of single dimension array, the first element is always
identified by MyVar[0]. The total number of items in an array (merging
all dimensions) cannot exceed 65535. The possible range of Arrays
reaches from ArrayName 0 until ArrayName 65534.

Multi-dimensional array:

Using the variable editor, you must enter the number of elements for
each dimensions separated by commas. Note that arrays have at most
three dimension.

For example '3,10,5"is a three dimensional array, the first dimension
has three elements, the second dimension has 10 elements, and the
third dimension has five elements (Figure 154).

[Name | Type | Dim. | Public | Attrib. | Init value

4 (@ Global variables ———
MyVar Byt *10° o

i RETAIN variables
[MyProg (*My first program™)
O MySt

Figure 154: Multi-dimensional array declaration

After the dimension has been edited the variable editor shows the
following dimension information (Figure 155):

7[¥ Name | Type | Dimn. | Public | Attrib. | Init value |
4 (@ Global variables
MyVar BYTE [[0.20090 4] 0

i RETAIN variables
[MyProg (*My first program™)
O MySt

Figure 155':Multi-dimensional array information after declaration

Page 250 Win-GRAFWorkbench User Manual
Version 1.0

Step 6: Setinitial value:
Double click the 'Init value' field and enter a initial value.

?[Name | Type | Dim. | Public | Attrib. | Init value | User Group
4 (@ Global variables
MyVar BYTE 0 0

i RETAIN variables
[MyProg (*My first program™)
[MySt

Initialize an array:

- Double clicking the 'Init value' will open a window which list all
the array element. A value can be assigned to each single element
by double clicking the element line.

- Initialization of multi-dimensional arrays is done in the same
manner as by one-dimensional arrays; first all elements for the
first dimension are initialized (i.e. for example array|[0,0],
array[0,1], array[0,2] to array[0,n]) and then the procedure is
repeated for the other values of the first index.

- To initial all the array element to the same value click the 'Select
All' button on the left top window to select all the elements. Enter
a value via the keyboard which will be shown in a popup edit box.
Press the 'Enter' key of the key board to assign the value to all
array elements.

ICP DAS Page 251 Win-GRAFWorkbench User Manual
Version 1.0

m
—

&S
3

re
&
ra
3
m
*H
=
m
—

ICP DAS Page 252 Win-GRAFWorkbench User Manual
Version 1.0

Step 7: Public variable: If other tasks needs to access the variable then the
checkbox in the 'Public’ field has to be enabled.

[Name | Type | Dim. | Public | Attrib. | Init value |
4 (@ Global variables
MyVar BYTE BYTE#0

i RETAIN variables
[MyProg (*My first program™)
[MySt

Other task has now read and write access to this variable. The access
can be limited to read only if the attribute is set to ‘Read Only'in the

'Attrib.’ column.
7 Name | Tvpe | Dim. | Public | Attrib. | Init value
4 (@ Global variables
MyVar BYTE BYTE#O
i RETAIN variables
[MyProg (*My first program™)
O MySt

12.1.2 Declare Variable as Text

An alternative way for declaring variables is to directly type the variable name with the
data type as an text using the IEC61131-3 format.

Step 1: Openthe IEC61131-3 variable editor: Right click the variable editor area and
select 'Edit Variables as Text..."' from the popup menu.

| Hame | Type | Dim. | Publi
PR Goobal variables &
MyVar BYTE [0..9] ch
bVar BOOL Oy
MyString STRING(255) O x
udVar UDINT O

i RETAIN variables
[MyProg (*My first program®)

O MySt Cancel Sorting
Yy

4 Enable Changes Space

i= Add Variable Ins
Add Multi Variables...
Edit Variables as Text...

Select Variables...

The editor shows all the declared variable of the group:

ICP DAS Page 253 Win-GRAFWorkbench User Manual
Version 1.0

W Global variables — | (O] |-

HE & % XhesX| 20

VAR -
CONSTANT MyVar : ARRAY [0 .. 9] OF BYTE := BYTE#0 ; [3
(*Sprop9=Public¥) i
END VAR
VAR

bvar : BOOL ;
MyString : STRING(255) ;
udvVar : UDINT ;

END VAR

Step 2: Add a new variable declaration and click save to validate the new settings.

rMn Global variables = =] &1
|£|3|(2 [aeX| 2

ONSTANT MyVar : BRRRAY [0 .. 9] OF BYTE := BY
(*SpropS=Public*)
END VAR
VAR
bvar : BOOL ;
MyString : STRING(255) ;
udvar : UDINT ; e

Y
bNewVar : BOOL; | f\i)
END VAR

After the save button has been clicked the Win-GRAF workbench will check
the declaration for any syntax errors. If any error were detected the file will
not be saved and the errors will be shown at the bottom of the window. By

double clicking the error message the workbench will jump to the variable
declaration were the error was detected.

ICP DAS Page 254 Win-GRAFWorkbench User Manual

Version 1.0

Wifa Global variables u@ﬂ—hj

HE = 2 thaX|2

VAR -
CONSTANT MyVar : ARRAY [0 .. 5] OF BYTE := BYTE#0D ; ||
(*Sprop9%=Public¥) B
END VAR
VAR i

bvar : BOOL ;
MyString : STRING(253) ;
udvar : UDINT ;
bNewVar : BOOL
END VAR

<« [»

(Globaly: (10): END_wAR: " expected after variahle declaration
(Glaobal): (1) END_VAR expected

12.1.3 Declare Variable from the Program Editor

12.1.3.1 Declare a simple Variable

Variables can be directly create via the program editor. The following describes the
procedure of adding a variable to the function block diagram (FBD) area. The procedures
for the other ICE 61131 programming languages are very similar.

Step 1: Add a variable box:
The variable box represent a variable in FB and Ladder programming. Click the
'Add variable' button on the left of the program editor and click a location in
the editor where to place the variable box.

W [MT] Win-GRAF 9.3.0 - CreateVariables.w5|

File Edit View Insert Project Tools Window Help
(W 28 %0H X | o2 0| manrask k%o @ e
Workspace
4 [3 Main task
4 Programs
@ MyProg (My first progr.
SRR MySt
“% Fisldbus Configurations
%} Binding Configuration

o a
g ??7? a2
& g

Step 2: Set variable name and type:
Double click the variable box. A popup window shows all the already declared
variables. You can declare a new variable or select one of the available

ICP DAS Page 255 Win-GRAFWorkbench User Manual
Version 1.0

variables from the list. Declare a new variable by entering a new name in the
top text box of the popup window. The name is prefixed by ‘b’ which indicates
that a BOOL type should be declared as defined in the prefix table (Figure
152). After clicking 'OK’ the workbench will automatically declare a variable of
an BOOL type.

-] i
E— =
=
> i 2
a 7?7 o

i o ' a ~

biNewtar
— Variables: (all
- @ ariables: (all)
labs
»
'_
k3
{Iy | Variables: (all) -
q |:| Local variables anly

[|Hide FB instances il

If the variable name (e.g. 'NewVar') does not contain a prefixed character (e.g.
'b’) as defined in the prefix table then a pop up windows appear which enables
you to select the data type, group, array dimension, etc.

i T e ———— oy ™
Wi NewVar M
This symbol does not exist. Possible actions:
Fename variahle
(@) Declare new variahle
MName: ety ar
Type: BOOL v
Where: MyFrog -
Description:
U
Initvalue:
User Group: -
Tag:
Advanced: [Read Only [iNouT Dim.: 0 %
[| Extemal [syh. I
Fewer] [Yes l [Mo] [Cancel] [Help]
ICP DAS Page 256 Win-GRAFWorkbench User Manual

Version 1.0

12.1.3.2 Declare Variable for Function In-and Output

After a function has been added to the programming area variables needs to be
assigned to the in and outputs. Existing variables listed in the variable editor can be
assigned or new variables can be directly declared in the program editor. The procedure
to add a variable to the in- and outputs of a function is as follows:

Step 1:

Step 2:

Step 3:

ICP DAS

After a function has been added to the function block program editor the in
and outputs are marked by '???' which indicates that no variables have been
assigned yet. Hover the mouse over the function block to get information
about the data type of each port. Click the block and press F1 to open the
help file for the function.

SYSSTARTTASK
?2? ATask OKR ???
77 A\Warm

sysotart Task (*start a task™®)
IN

Task:DINT
Warm:BOOL

OUT
OK:BOOL

Declare variable:

Double click a box which contains three question marks ('???’) to open an
editor to enter a variable name (e.g. ‘'MyTasNo'). Click 'OK" to confirm the
name.

SYSSTARTTASK
E 237 E Task OKp 227

by TaskMol

@ Variahles: (all)
B bNew\ar
B bvar

-0 Inst_CTD

B MyString
B Myvar(] =

2]
|
» X|

1

[Variables: (all -

Local variables only
Hide FB instances

The popup editor also list all the declared variables. If the variable to be
assigned to the block port has already been declared previously you just need
to select the variable name from the list and click 'OK’

Set variable type:

If the variable has not been declared before a window pops up which allows
you to directly set the data type, location, initial value, etc. of the variable.
By default the popup editor will set the data type to the type required by the
corresponding function block in- or output port.

Win-GRAFWorkbench User Manual
Version 1.0

Page 257

Wi MyTaskNo @
This symbol does not exist Possible actions:
Fiename variahle
(@) Declare newvariable
MName: My TaskMo
Type DINT -
‘Where MyProg -
Description
Initvalue:
User Group -
Tag
Advanced ["|Read Only [ClinouT Dim: 0 o
[1Extemal [Tsyb
l Fewer] [Yes] l Mo] l Cancel I [Help I

After clicking 'Yes' the variable is added to variable list in the variable editor

and assigned to the function port

s B 06

B |

SYSSTARTTASK
Task
Warm

OKE

fii] >

Inst_CTD CTD

b @ Global variables
il RETAIN variables

< 1

MyTaskNo DINT

¥ Name [Type [D. [[Attrib.
PRL|IMyProg (*My first program®)

12.1.3.3 Assign Variable a Constant Expression

Constant expressions can be used in all five programming languages for assigning a
variable with a value (Figure 156). All constant expressions have a well defined data type
according to their semantics. If you program an operation between variables and
constant expressions having inconsistent data types, it will lead to syntax errors when
the program is compiled.

Y| Name | Type 4 |Dim. |Public |Attib. N\ | Init value

4 [Global variables

bVar BOOL O TRUE
bNew\Var BOOL O FALSE

MyVar BYTE [0.9] O Read Only [BYTE#0

dfval LREAL O LREAL#568 66
MyString STRING(255) O 'Hello World'
udVar UDINT O UDINT#3366
fVal REAL O 22.693

Figure 156: Example of assigning a variable with a value

ICP DAS

Page 258

Win-GRAFWorkbench User Manual
Version 1.0

Below are the syntactic rules for constant expressions according to possible data types:

Type Prefix Description

BOOL Boolean

- There are only two possible Boolean constant expressions. They are
reserved keywords TRUE and FALSE.

SINT SINT# Small (8 bit) Integer

- Small integer constant expressions are valid integer values
(between -128 and 127) and must be prefixed with SINT#.

- Allinteger expressions having no prefix are considered as DINT

integers.
MAX
SINT#127 IN1 0 Q Q
SINT#20 IN2 [
USINT / BYTE USINT# Unsigned 8 bit Integer

- Unsigned small integer constant expressions are valid integer
values (between 0 and 255) and must be prefixed with USINT#.

- Allinteger expressions having no prefix are considered as DINT
integers.

INT INTH# 16 bit integer

- 16 bit integer constant expressions are valid integer values
(between -32768 and 32767) and must be prefixed with INT#.

- Allinteger expressions having no prefix are considered as DINT
integers.

UINT / WORD UINT# Unsigned 16 bit integer

- Unsigned 16 bit integer constant expressions are valid integer
values (between 0 and 255) and must be prefixed with UINT#.

- Allinteger expressions having no prefix are considered as DINT
integers.

DINT 32 bit (default) integer

- 32 bit integer constant expressions must be valid numbers between
-2147483648 to +2147483647.

- DINT is the default size for integers: such constant expressions do
not need any prefix.

- Youcanuse 2#, 84 or 164 prefixes for specifying a number in
respectively binary, octal or hexadecimal basis.

MOD
16#abcd IN i Out
123456 Base e :
UDINT / UDINTH# Unsigned 32 bit integer
DWORD - Unsigned 32 bit integer constant expressions are valid integer
values (between 0 and 4294967295) and must be prefixed with
UDINT#.
- Allinteger expressions having no prefix are considered as DINT
integers.
LINT LINT# Long (64 bit) integer

- Longinteger constant expressions are valid integer values and must
be prefixed with LINT#.
- All integer expressions having no prefix are considered as DINT

ICP DAS Page 259 Win-GRAFWorkbench User Manual
Version 1.0

Type Prefix

Description

integers.

REAL

Single precision floating point value

Real constant expressions must be valid number, and must include
a dot ().

If you need to enter a real expression having an integer value,

add .0 at the end of the number.

You can use F or E separators for specifying the exponent in case of
a scientist representation.

REAL is the default precision for floating points: such expressions do
not need any prefix.

0.0 IN1 o]] Q
55.369 IN2

LREAL LREAL#

Double precision floating point value

Real constant expressions must be valid number, and must include
a dot ('), and must be prefixed with LREAL#.

If you need to enter a real expression having an integer value,

add .0 at the end of the number.

You can use F or E separators for specifying the exponent in case of
a scientist representation.

LREAL#66.33 IN1 Qp Q
LREAL#1E-200 IN2

TIME TIME#
or

T#

Time of day

Time constant expressions represent durations that must be less
than 24 hours. Expressions must be prefixed by either TIME# or TH.
They are expressed as
* anumber of hours followed by h,
* anumber of minutes followed by m,
* anumber of seconds followed by s, and
* anumber of milliseconds followed by ms.
The order of units (hour, minutes, seconds, milliseconds) must be
respected.
You cannot insert blank characters in the time expression. There
must be at least one valid unit letter in the expression.
Example:

T#23h59m595999ms - maximum TIME value

TIME#0s - null TIME value

T#1h123ms - TIME value with some units missing

BLINK
Start RUN mn Q Q

T#1h123ms

ICP DAS

Win-GRAFWorkbench User Manual
Version 1.0

Page 260

Type Prefix Description

STRING Character string

- String expressions must be written between single quote marks.

- The length of the string cannot exceed 255 characters.

- You can use the following sequences to represent a special or not
printable character within a string:

Sequence Description

$S a 'S’ character

$' a single quote

ST a tab stop (ASCII code 9)

SR a carriage return character (ASCIl code 13)

SL a line feed character (ASCIl code 10)

SN carriage return plus line feed characters
(ASCIl codes 13 and 10)

SP a page break character (ASCIl code 12)

SxX any character (xx is the ASCII code
expressed on two hexadecimal digits

- Example:
'hello! - character string
'name$Tage ' - character string with two words
separated by a tab
'I$'m here' -character string with a quote inside (I'm here)
'x$00y"' - character string with two characters
separated by a null character (ASCII code 0)

FIND
‘name$Tage' In Poshi Out
'age’ Pat

Table 30: Prefixes for constant expressions

Below are some examples of typical errors in constant expressions:

Expression Error-Description

la2b basis prefix ('16#') omitted

1E-200 'LREAL#' prefix omitted for a double precision float
TH12 Time unit missing

'I'm here' quote within a string with 'S’ mark omitted

hello quotes omitted around a character string

Table 31: Constant expressions syntax errors

ICP DAS Page 261 Win-GRAFWorkbench User Manual
Version 1.0

12.2 Retain Variables

A retain variable is a PLC variable which:

- is non-volatile and is stored in a normal disk file.

- is known by all programs (when its content is changed, the change is propagated to
all equations in which this variable is used)

- normally does not contain real-time critical data.

Retain variables are declared in the same way as a volatile variable. In the variable
editor retain variables have to be declared in the 'RETAIN variables' section (Figure 157).
Function blocks instances can not be set as retain variables.

7| Name | Type | Di... |Public | Atftib. | Syb. | Initvalue | User Group | Tag | Description
@ Global variables
4 [RETAIN variables
uiVar1 UDINT O O UDINT#0
flgVar1 BOOL O O FALSE
strName STRING(255) O O "
Va1 REAL O O 0.0
dfVal LREAL O O LREAL#0..
» [Prog1
[Prog2

Figure 157: Retain variable declaration

Retain variables are saved when Win-GRAF runtimes shuts down. The retain variables of
each task are stored in a separated file (Main task: 't5_1.ret’; Task 2: 't5_2.ret'; Task3:
't5 3.ret’, etc.). The next time the runtime is started the retain variables are initialized
with the value stored.

When using the workbench to start the PLC application the user can select whether the

retain value are initialized with the default value or with the with the value stored in the

file (Figure 158):

- On an application 'Cold start - Don't load RETAIN variables', the workbench initializes
the retain variables with their default value. Default values are values entered in the
'Init value' column of the variable editor.

- On an application ‘Cold start - Load RETAIN variables', the workbench initializes the
retain variables with the value stored in the disk file.

Start mode
| |
@ Cold start- Don't load RETAIN variables
(7) Cold start-Load RETAIN variablas Eaucs
*) Hot restart
[T cycle to cycle

Figure 158: Workbench

ICP DAS Page 262 Win-GRAFWorkbench User Manual
Version 1.0

12.2.1 Programmatically Save/Load Retain Variables

The runtime will automatically store the retain variables to file once the runtime is
stopped. The files of the ".ret' format are located in the directory of the runtime
execution file.

Win-GRAF provides functions which allows the user to programmatically save and load
retain variables. Retain variables can be written to the file with the 'F_SAVERETAIN'
function and be loaded by the 'F_LOADRETAIN' function (Table 32). By using these two
functions the user can within the PLC program implement the time interval or a trigger
event at which the retain variables are saved or loaded.

Function Description
F_SAVERETAIN (Path) Save retain variable data to a file at the specified path
F_SAVERETAIN every time the function is being called.
Path OK
F_LOADERETAIN (Path) Load retain variable data from a file at the specified
F_LOADRETAIN path.
Path OK

Table 32: Functions for saving and loading retain variables

Note:

- F_SAVERETAIN and F_LOADRETAIN will not automatically create a folder if it does
not exist. Table 33 shows the different path names supported by the functions.

- Do not change the retain variable declaration after a retain variable file has been
created otherwise a variable mismatch may occur when the PLC application starts
running and initializing the retain variable by loading the stored values from the disk.
It is strongly suggested to delete the retain file (".ret’) from the disk before changing
the retain variable declaration.

The following actions will reset retained value(s) to their Init value(s):
= Changing the type of a retain variable

= Changing the length of a string retain variable

= Changing the size of an array variable

= Changing any element of a structure variable

| Path Description

ICP DAS Page 263 Win-GRAFWorkbench User Manual
Version 1.0

FileName.ret File will be in the directory of the runtime
execution file

Folder/FileName.ret File will be in the subdirectory 'Folder' of the
.JFolder/FileName.ret runtime execution file directory
/Folder/FileName.ret File will be in the directory 'Local Disk\Folder',

whereby the 'Local Disk' is the disk of the
runtime execution (e.g. D: \Folder\
FileName.ret)

Table 33: Path name definition

Figure 159 shows an example of how to programmatically use the F_SAVERETAIN and
F_LOADRETAIN functions. Saving/loading data takes some time and slows down the
system and therefore it is not suggested to call these function in a short time interval. In
order to prevent the retain data to be save in every cycle flags (flgSave, flgLoad) are
being used to trigger a save or load action.

o 5 « ¥ Name [Type 4 [Di.. | Initvalue
i3 4] IF flgSave = true Then figSave BOOL false -
[1 IsSaved := F_SARVERETRIN(Save Path); I1sSaved BOOL false
= flgSave := false; flgload BOOL false
5 EAE IsLoaded BOOL false
[BE1 11 IF flgLoad = trus Then divart DINT 0 - -
12 IsLoaded := F LOARDRETAIN(Load Path) = Save_Path STRING(255) 'Rela!nfRela!m ret’
2o 13 flgload := false; - Load_Path STRING(255) 'Retain/Retaini.ret
= 14 END IF; @ Global vanables L
= 15 - 4 Bl RETAIN variables i
= figVar1 BOOL FALSE
dfval LREAL LREAL#0.0
fVal1 REAL 0.0
strName STRING(255) "
uiVar1 UDINT UDINT#0 g
< 1 s

Figure 159: Programmatically saving and loading retain variable values

13 Derived Data Type

Derived types are data types specified by manufacturer or by user and can be declared
by means of textual structure TYPE...END_TYPE. The names of new types, their data
types, possible with their initial values, are given within this textual structure. These
derived data types can be further used together with the elementary data types in
declarations of variables. The definition of the derived data type is global, i.e. can be
used in any PLC program part. The derived data type takes adopts the type features
from which it was derived from.

ICP DAS Page 264 Win-GRAFWorkbench User Manual
Version 1.0

13.1 Structures

A structure is a user defined data type. A structure can be derived from elementary as
well as from derived data types. Structures can be used like other data types to declare
variables.

According to IC61133 the definition of a new structure data type is done using the
keywords STRUCT and END STRUCT. Data types of individual members of a structure
and their names are stated inside STRUCT ... END STRUCT. It is possible to initialize
structures by stating member values behind the sign ': =' (Figure 160). Member of a
structure can have an initial value. In that case, corresponding members of all declared

variables having this structure type will be initialized with the initial value of the
member.

Use the name of the structure instance followed by a dot and member name to access
individual structure members: 'instanceName.memberName'

Wi MyFirstStruct - =R X

-
EB = B YhHo X
STRUCT
udvar : UDINT := UDINT#0 ;

] »

bvar : BOOL := FALSE ;

divar : DINT := 0 ;

siVar : SINT := SINT#0 ;
END STRUCT

< (I »

Figure 160: Structure definition

A structure can be created hierarchical which means that an already defined structure
can be an member of another structure. A structure must be defined before it can be
used as a member of another structure.

13.1.1 Define a Structure

13.1.1.1 Define a Structure from the Editors

ICP DAS Page 265 Win-GRAFWorkbench User Manual
Version 1.0

Step 1:

Step 2:

Step 3:

ICP DAS

Open the structure editor:

Go to the 'Library' node in the workspace and double click the 'Structures’
item in the 'Types'tree to open the editor. If the 'Types'tree is not visible
then enable it by right clicking the 'Library' node and selecting ‘Shortcuts\

Types' from the popup menu.

Workspace
4[5 Main task
4 Frograms
E MyFirstProgram

% Fieldbus Configurations
%} Binding Configuration
W os
{uf Wariables

b IE Task?

b Bl Task3

b IE Taskd

4 I3 Library

4 2 Library

Blocks

4 F Types
% BitFields
“E.Enumerated Data Types

E. Structures <
(Al Projects)

(All Projects)

Insert New Folder
) Insert New Program...

Insert New Item. % Binding Configuration

X Delete ol 5=
g et §9. GlObal Defines.

(& Variables

E Types

Click the 'Insert Type' button on the top left to add a new structure
| Name . & |Type | Dimn. | Init value

: €

E
o

Make sure that the icon with the superscripted 'S’ is active which indicates

that structure types are being displayed.

Icon Data Type

e Structure

e Enumeration
e’ Bitfield

Double click the newly added structure ‘NewStructure' to rename it (e.g.

MyFirstStruct)

Page 266

Win-GRAFWorkbench User Manual
Version 1.0

& [Name

4 [Type [Dirn.

[Init value [User]

i | E MewStructure |

f/
(1

Wifa Edit Structure

Name MyF\rstStrucd
Comment

Description

. -
| [cancel || el

Step 4:

Add a variable to the structure:
Click the structure name and press the ‘Insert’ key or click 'Insert Variable'
button

| Dimn.

| Init value

Step 5:

Set structure member:

1. Rename the variable by double clicking the variable name.
2. Reset the data type by double clicking the type field.
3. Setinitial value by double clicking the 'Init value' field

L] S T

& [Name & |[Type | Dirn. [Initvalue |
<7 4 F MyFirstStruct
=1)l ar UDINT LIDINT#0

(2)

(3)

Step 6: Repeat step 4 and 5 to add variables to the structure

= | Mame & [Type | Dirn. [Initvalue |
4 EMyFirstStruct
ac, = bvar BOOL FALSE
E§= = divar DINT 0
_ = sivar SINT SINT#O
i = ydvar UDINT UDINT#0
E.B
E.E
E.s
ICP DAS Page 267 Win-GRAFWorkbench User Manual

Version 1.0

Step 7:

Close the structure editor.

It is important to close the structure editor before the structure can be
used. Closing the editor causes the workbench to store the structure
definition and make it available for declaring structure instances.

E | Name

| Type & | Dim

| Init value

4 F MyFirstStuct
= hvar
= divar
= sivar

= udvar

| g

mv\ mm mm

BOOL
DINT
SINT
UDINT

FALSE

i}

SINT#0
UDINT#0

| User Group | Tag | Description /

13.1.1.2 Define a Structure as Text

The workbench provides a text editor for directly adding members to the structure
without using the edit function provided by the user interface (Figure 161).

Step 1:
Step 2:

Add a new structure (follow the steps 1 to 3) described in chapter 13.1.1.1.
Open the text editor for the structure by right clicking the structure name

and selecting 'Edit Variable as Text...'

& |Type | Dim

[Initvalue |

B | lame
b E

| B g

mw\ mm mm

= Insert Type
= Add Variable

Edit
¥ Clear
[Copy

= Group Types

= Ungroup Types

Expand
Collapse
Expand All
Collapse All

Ins

Edit Variables as Text...

Bit Fields

Enumerated Data Types

mw\ mrn mm

Structures

Step 3:

closing the window.

ICP DAS

Page 268

Edit member variables and initialization values. Save the structure before

Win-GRAFWorkbench User Manual
Version 1.0

13.1.2 Declare Instance of a Structure

W MyFirstStruct

4 |l

HE| = 1 X0

STRUCT
udvar : UDINT := UDINT#0 ;
bvar : BOOL := FALSE ;
divar : DINT := 0 ;
sivar : SINT := SINT#0 ;
END STRUCT

»

Figure 161: Edit structure members as text

If the workbench encounters a structure syntax error the save process will
be aborted and the error type will be listed at the bottom. By double
clicking the error message the workbench will jump to the line of the

structure where the errors was detected.

The instance of a structure is declared in the same way as a new variable or a instance
of a function block.

Step 1:

ICP DAS

Declare a new variable:
Open the variable editor by double clicking the ‘Variable' item in the

1.

workspace

Right click the group to which the instance should be added and select
'Add Variable'. An alternative way is to click a group and press the

'Insert' key of the keyboard.

Page 269

Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

Step 4:

ICP DAS

W [MT] Win-GRAF 9.3.0 - CreateVariables.wS5|

File Edit View Insert Project Tools Window Help

[WE B %0 o X o oD 6 minask o 7 Undo
Workspace
4 [Z Main task 7| Name ‘TX e
4 L Programs O] Clobal variables I8
B MyProg (My first progr. i RETAIN variables [N}
Myt » [MyProg (*My first program™) =
%5 Fieldbus Configurations [MySt X

i Binding Configuration

2 Profiles

i yos —

2 Variables (\9
b [E Task? <y
b [E Task3
v 3 Tacka
3

(Al Projects)

Vﬂ[iﬂh'ES‘

—= = |

Expand

Cancel Sorting

Enable Changes

B Library = Add Variable Ins
Add Multi Variables...

Edit Variables as Text...

Select Variables...

Rename Variables...

i

| Init value

Space

Change variable name and data type:

1. Double click the name to rename the structure instance (e.g.

InstMyStruct)
2. Double click the 'Type' field to select the name of the structure type
(‘MyFirstStruct’).
[Name | Type 4 | Dim. |Public | Aftrib. | Init value |
4 (@ Global variables
bVar BOOL O TRUE
bNewVar BOOL O FALSE
MyVar BYTE [0.9,.. O Read Only BYTE#0
dfval LREAL O LREAL#568.66
fval REAL O 22 693
MyString (/1') STRING(255) O 'Hello World'
udVar \ HnInT O UDINT#3366
mg_ngotsition |‘ U
i RETAIN variables MC:StDp

[MyProg (*My first p1
[MySt

MC_TRANSITION_MODE
MC_UngroupAllaxis
MC_WWriteBoolParameter
MC_WriteDigitalOutput
MC_\WriteFarametar

My FirstStruct |
FID
FLS

Phivhd
Varia | < | il

I

STRING(J: i

The structure instance can now be used in the PLC program like any
variable. For accessing a member of a structured variable use the following

notation:
VariableName .MemberName

Example:

Page 270

Win-GRAFWorkbench User Manual
Version 1.0

InstMyStruct.bVar

InstMyStruct.diVar
InstMyStruct.siVar
InstMyStruct.udVar

13.2 Enums

The enumerated data type also belongs to simple derived data types. It is usually used
for naming features or versions instead of using a number code to each version which
makes the program easier to read. The initialization value of the enumerated data type
is always the value of the first element stated in the enumeration.

You can define some new data types that are a enumeration of named values. For

example:
type: LIGHT
values: GREEN, ORANGE, RED

Then in programs, you can use one of the enumerated values, prefixed by the type

name:
Lightl := LIGHT#RED;

Variables having enumerated data types can only be used for assignment, comparison,
and SEL/MUX functions.

= | Type 4 |value

E TColor RED.GREEMN.BLUE.BLACK
o=, E TDayOfheek MOMNDAY TUESDAY WEDMESDAY, THURSDAY FRIDAY, SATURDAY . SUNDAY
i= . Thdaterial WOODMETALPLASTIC

Figure 162: Defined enumerate data types

13.2.1 Define a Enumerate Type
An enumerate data type is created as follows:

Step 1: Open the enum editor:
Go to the 'Library' node in the workspace and double click the 'Enumerated

ICP DAS Page 271 Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

Step 3:

ICP DAS

Data Types'item in the 'Types' tree to open the editor. If the Types' tree is not
visible then enable it by right clicking the ‘Library’ node and selecting

'Shortcuts\Types' from the popup menu.

Workspace
4[5 Main task
4 Frograms
B MyFirstProgram

% Fieldbus Configurations
%} Binding Configuration
W os
{uf Wariables

b IE Task?

b IE Task3

b IE Taskd

4 I3 Library

4 B Library

Blocks
4 F Types
% BitFields

&
Structures

(Al Projects)

(All Projects)

v

Enumerated Data Types |

Rename

Insert New Folder

{1 Insert New Program.

Insert New Item...

X Delete

% Binding Configuration
1 10s

§g Global Defines

() Variables

E Types

Click the 'Insert Type' button on the top left or press the ‘Insert’ key to add a

new enum type.

B 4 [Value
*_'—'—-—-

t

T
!
6\

Make sure that the icon with the superscripted 'E'is active which indicates
that only enum data types can be edited.

Icon Data Type

e Structure

= Enumeration
e Bitfield

Rename the type and assign type a number of named values:

1. Double click the type field to rename it (e.g. enumTrafficLight) and press
enter

2. Double click the 'Value' field to add named values. An editor pops up

which allows you to enter the names. Each name must be edited in a new
line.

3. Click the button with the check sign to confirm the setting

Page 272 Win-GRAFWorkbench User Manual

Version 1.0

Step 4:

ICP DAS

Note:
- An enum must contain at least two named values.
- An enum should not contain special characters such as #, @, etc.

& | Type 4 [value
 F enumTrafficLight &

RED -
VELLOWY 5
GREEN

ﬂlm_ﬂlm_fﬂlm | i
y

The named values are listed in the 'Value' field.
= | Type 4 |value
<+ E enumTrafficlight [Si=BS =00

The new enum data type is automatically added to the 'Enum’ tab of the
information window

Er_CSW_FILE_MODE
Etd_CvCLE_TIME
EM_FILE_MODE
enumTrafficLight

GREEM

RED

WELLOWY
WMC_BUFFER_MODE
MC_CIRC_MODE
MC_CIRC_PATHCHOICE

[S

= v v v

Close the editor after the enum type has been defined. The new enum type
only take effect after the editor has been closed.

Type 4 |Value
E enumTrafficLight RED.YELLOW GREEN

m W W | 1y | L | L

13.2.2 Declare an Enumerate Variable

Page 273 Win-GRAFWorkbench User Manual
Version 1.0

Enumerate variables are declared in the same way as basic type variables.

Step 1:

Step 2:

Step 3:

ICP DAS

Add
key.

a new variable by opening the variable editor and pressing the ‘Insert’
Alternatively you can right click the variable editor and select ‘Add

Variable' from the popup menu.
Configure the variable:

1. Rename the variable by double clicking the name
2. Select the enum data type from the popup list (e.g. ‘'enumTrafficLigth")
by double clicking the 'Type' field
3. Set the initial value by double clicking the 'Init value' field and selecting
one of the named values.
7| Hame | Type 4 | Dim | Public | Attrib. | Init value
4 (@ Global variables
bVar BOOL O TRUE
bNewVar BOOL O FALSE
MyVar BYTE [0..9,0..2,0..4] O Read Only BYTE#0
dfval LREAL O LREAL#568.66
InstMyStruct MyFirstStruct O
fVal REAL i 22693
MyString [STRING(255) O "Hello Wop ™,
O UDINT \2 O UDINT#33_ 2
TrafficLight ”emmTrafficLig"r, | O
i RETAIN variables EM_GrpMovelncPath P RED—
EM_Hal
EM_HeartBeat SYELLOW
EM_IncPathLoadFileCsy = GREEM

EM_Inithdaster
EM_ReadlLocalDiall
EM_ReadSdo
EM_ReadSerialMo
EM_WriteCrdTimeout
EM_riteSdao
enumTrafficLight

F TRIG
<

1 3
STRING():

Use of enum variable:

1.

Add the new variable name (e.g.'TrafficLight') to the programming editor
(e.g. Structured Text) either by typing the name or by drag and drop from
the variable editor.

Click the 'Insert Variable' button on the top left to open the variable list
Select #define' form the drop box. All the enumerate entries are stored
in the '#define’ category.

Scroll to the corresponding enumerate entry and select one entry.
Confirm the setting by clicking 'OK".

Page 274 Win-GRAFWorkbench User Manual
Version 1.0

enumTraficLigh#GREEN

--§ EM_FILE_MODE#Claarrite -
= -§ EM_FILE_MODE#Read

= -§ EM_FILE_MODE#Readvrite

-§ EM_FILE_MODE#Feserved —. = |

-4 cnum TrafficLight#GREEN \ 4
o, |8 enumTraficLight#RED \

i= < 1 3

= [#define | (3} v
[| Local variables anly
[|Hide FBinstances

[ST S TR Y

= 1 TrafficLight:= enumTrafficLight#GREEN;
i 2

IF
THEH

13.3 Bit Field

A bit field is a data structure which consists of a number of adjacent memory locations
which have been allocated to hold a sequence of bits, stored so that any single bit or
group of bits within the set can be addressed. A bit field is most commonly used to
represent integral types of known, fixed bit-width (e.g. SINT, USINT etc.).

The meaning of the individual bits within the field is determined by the programmer. For
example a bit can represent a state of a digital input.

= | Type 4 |value |
4 F btAsisState USINT
*

Emergency
Lirnit

Home

Jog
Serso

Errar

[’m

Error

r.n[’rn
st B = L& 5 I SR T

* 0+ O+ O »

== Errar

Figure 163: Bit field definition

You can define new bit field data types derived from integer data types and assign each
bit or a group of bit a name (Figure 163). The single bit can be accessed in the program

by using the variable name followed by a dot and the bit name:
VarName.BitName

ICP DAS Page 275 Win-GRAFWorkbench User Manual
Version 1.0

Example:

Example refers to Figure 163.
//Declare bit field variable
VAR
AxisStatus : bfAxisState := USINT#0 ;
END_ VAR

//Use bit field variable
AxisStatus.Emergency = TRUE;
AxisStatus.Limit = TRUE;
AxisStatus.Home = TRUE;

13.3.1 Define a Bit Field Type

An enumerate data type is created as follows:

Step 1: Open the bit field editor:
Go to the 'Library' node in the workspace and double click the 'Bit Fields' item
in the 'Types'tree to open the editor. If the 'Types' tree is not visible then
enable it by right clicking the 'Library’ node and selecting 'Shortcuts\Types'

from the popup menu.
Workspace
4[5 Main task
4 Frograms
F MyFirstProgram
% Fieldbus Configurations
%} Binding Configuration
W os
{uf Wariables
12 Taske
B Task3
12l Task4

E Library 4 2 Library
Blocks e -]

(Al Projects)
4 F Types
| 0 Insert New Program.

| E BitFields [Sonas] & Feldous Conrigurarions

%. Enumerated Data TypE!S Insert New Item.. %3 Binding Configuration
9. Structures ¥ o i 1os
g § g Global Defines

(Al Projects) @ Variables
F_Iypes

[S

Insert New Folder

Step 2: Click the ‘Insert Type' button on the top left or press the ‘Insert' key to add a
new bit field type. By default a bit field with the name 'BitField1’ of the INT
type is being create.

ICP DAS Page 276 Win-GRAFWorkbench User Manual
Version 1.0

B | Type 4 |value
s ()
I=e—(1)

E.E

E.S

Make sure that the icon with the superscripted 'B'is active which indicates
that only bit field data types can be edited.

Icon Data Type

e Structure

e Enumeration
e Bitfield

Step 3: Rename the bit field and assign a integer type:
1. Double click the type field to rename it (e.g. bfAxisState) and press enter
2. Double click the 'Value' field to select an integral type which represents
the bit field length.

= [Tpe) —

=y N\ * 0 BYTE —

= *e WORD

= *3 DINT

£ 4 UDINT

o DWORD

= +h

= 6

=° .7

Step 4: Enter a name next to each bit in order to identify the bit in the program. A

name can represent a single bit (e.g. Emergency) or a bit field (e.g.'Error’).

= | Type 4 |value |

4 F bféxisState USINT

oa +0 Emergency

= + 1 Limit

_ + 2 Home

i + 3 Jog

- + 4 Servo

= +5h Error

= 5 Error

=t + 7 Error
The USINT is 8 bit long. The bit field is divided into 6 subfields:

ICP DAS Page 277 Win-GRAFWorkbench User Manual

Version 1.0

1 bit 1 bit 1 bit 1 bit 1 bit 3 bit

Step 5: Close the editor after the bit field type has been defined. The new bit field
type can only be used after the bit field editor has been closed.

| Type 4+ |value E

1 4 F biAxisState USINT
e, +0 Emergency
F *1 Lirnit

+2 Home
+3 Jog
+ 4 Servo

B B By [o | B

+5 Error
*E Error
.

13.3.2 Declare Bit Field Variable
Bit field variables are declared in the same way as basic type variables.

Step 1: Add a new variable by opening the variable editor and pressing the ‘Insert’
key. Alternatively you can right click the variable editor and select 'Add
Variable' from the popup menu.

Step 2: Configure the variable:
1. Rename the variable by double clicking the name
2. Select a bit field data type from the popup list (e.g. 'bfAxisState') by

double clicking the 'Type' field

3. Set the initial value by double clicking the 'Init value' field and editing a

value.
[Hame | Type 4 [Dim [Public | Attrib | Init value
4 @ Global variables
bNewVar BOOL O FALSE
MyVar BYTE [0.9,0.2,0 4] O ReadOnly BYTE#0
TrafficLight enumTrafficLight O RED
dfval LREAL O LREAL#568.66
InstMyStruct MyFirstStruct O
fval REAL O 22693
MyString STRING(259) O 'Hello World'
AxisStatus biAxisState O

Step 3: Use of bit field variable:
1. Add the new variable name to the programming editor (Structured Text)
either by typing the name or by drag and drop from the variable editor.
2. Add a dot after the variable name which causes the variable list to pop

up.

ICP DAS Page 278 Win-GRAFWorkbench User Manual
Version 1.0

3. Select one of the bit name from the variable list and click 'OK".

5| o, | ~
Then (i‘jf/' Aodis Status
= @ arishles: (all ~
= P [=Hy. tetus
m \ 2 i -¢ Emergency
-¢ Limit
o -¢ Home P 3
- o Jog l (3)|
= ¢ Sera
...... B dfval i
...... B fv'al
FH-00 Inst_CTD
ol B InethduSteort =
| Varisbles: (all -
[| Local variables only
[T |Hide FB instances
‘al 2 kxisStatus.Limit := TRUE;
2

IF
THEH

13.4 Function and Function Block

According to the IEC 61131-3 standard, there is a difference between a function and a
function block in PLC programming. The main difference involves internal memory. The
main difference is that a function block has a permanent internal memory whereas a
function memory is only temporary and is being released after the function call so that
all internal data are lost. A instance of a function block has to be creates before it can
be called whereas a function can be directly called.

Function Block Function

Memory to store internal data Temporary memory, no internal data
are stored

Function block call requires an function block | Function can be directly called

instance

Supports multiple output parameters Only one output parameter

A function blocks has very often its own, Functions are synchronous, which

internal machine state and an output to means the calling program waits until

indicate when the function blocks execution is | the function finishes before executing

ICP DAS Page 279 Win-GRAFWorkbench User Manual
Version 1.0

done. A FB is most likely to be asynchronous. | the next command.
Table 34: Function block and function comparison

A function can be described as something like an equation or formula that accepts
inputs and calculates an output value. Moreover, it always returns the same output
value for the same inputs. In contrast, a function block relies on internal memory. So it
is possible to have a different output value with the same inputs because there is
another value stored in memory that has an impact on the final output value. Function
blocks normally need multiple task cycle to execute. A input triggers the execution of
the function block, the output shows the status of execution in each cycle until it has
finished. Often, you will have to use the same piece of code in your PLC program
multiple times. It could be a function for controlling a valve, a motor etc. With function
blocks you can make a function block specific for a motor and use it several times.

Win-GRAF comes with many standard function blocks in the library. The workbench
allows you to create your own function blocks (User Defined Function Blocks, UDFB) and
it can be programmed in one of the five PLC programming languages.

Example:

By default adding a function block to the programming editor via drag and drop causes
the workbench to automatically declare a function block instance in the variable editor
and show the instance name in the title bar of the block (Figure 164). In contrary no
instance is being generated when a function is added to programming editor.

« %[Narne [Type |
4 [Demo
([Inst_EM_GrpHait EM_GrpHalt |

@ Global variables
B RETAIN variables

. \-::—’-?
‘ Function Block

Command... =

Error (" Instance of
the Function
\ Block

m

ErrorlD

—

- W
‘ Function — ghe L
\ J le Q

Figure 164: Function block and function

Note:

During PLC logic programming it is important to remember that after deleting a function
block from the programming editor to also manually remove its instance from the
variable editor. The workbench can be configured to remove any unreferenced variables
(Figure 165).

ICP DAS Page 280 Win-GRAFWorkbench User Manual
Version 1.0

W Options I ﬁ
R Window Mame |"alue N
A Character fonts Copy bitmap to clipboard -
Editing o Ask for declaration when new wariable inserted
£ Caolors | Enable pulse far contact and cails
| li Diagrams Prampt forwar name after insert |
b Prefixes Afteringert instance Auto declare local instance /7
Tooltips | Remove unused local instances when sawving the program I 2)
Extensions Use the extended variable creation dialog E
4 FBD
Festore Selection mode in FBD toolbar after insert |
Default infarmations for variables MName
Default width for variahles I
Default width for function blocks 16
Auto insertvariables when insert function block
Auto connectwvariables when dropped near function block i
| R " : |
Defines which actions should be done after inserting a new instance.
oo

Figure 165: Automatically remove a unreferenced instance from the variable editor

The Win-GRAF workbench handles all private variables declared inside a function block
as statically allocated in memory. Each time a function block is initiated, its private
variables are duplicated for the declare instance, which means for each function block
instance a memory for the private variables will be allocated. The private variables of a
function block instance are independent of private variables of other instances and just
store internal data of their instance and no data exchange takes place between private
variables across different instances. From outside, only input and output parameters of
a function block are accessible, that is, the private variables of a function block are
hidden to the user of the function block. A privates data for example may represent the
state of the function block state machine. The state of the state machine of each
instance of a function block differs depending on when the instance has been activated
and the device it is representing (e.g. servo motor).

Insi_M}r'UDFm J/" ™
MyUDFB 1 — Memory
|I'1DUT1 "dew‘Ia:l : DWORD ;- DUTDUH a::'lc:;;g::]icé f“?r
Input2 uivar2 : UINT : OmDUtz
Input3 END VAR Output3 h
- -,
Insill:'M}rUDFB 2 L J/ M emory
YUDFB llocated for
Inputt 'dewaﬂ : DWORD : Outputl ainstance 2
Input2 uivar? : UINT ; OUIDUQ W
Input3 END VAR Output3
ICP DAS Page 281 Win-GRAFWorkbench User Manual

Version 1.0

Figure 166: Two instance of the same function block

13.4.1 Define Function Block

13.4.1.1 Function Block Input and Output Parameters

Function blocks three type of external variables:
1. Input variables (IN):

- Input parameters can only be read by the function block and data is passed by
the calling program to function block.

- The input variables are listed on the left side of the function block in a graphical
representation.

- Exception: Complex parameters (array, structures) should always be declared as
input parameters (IN). Internally complex parameters can be read and modified
by the function block

- A maximum of 32 input parameters are allowed

2. Output variables (OUT)

- The function block writes data to the output. Output variables are provided by
the function block to the calling program. The calling program can only read this
output and can not directly modify its data value.

- In a graphical representation output parameters are shown on the right hand
sight of the function block.

- Only simple data types can be output parameters (Table 30). If the user needs to
create a function block with a complex structure (array or structure) as an
output parameter then this structure has to be declared as input parameter. In
this case internally the function block has read/write access to the parameter.

- A maximum of 32 output parameters are allowed

3. Input/output variables (IN_OUT)

- The function block can read and directly modify the IN_OUT variables

- In a graphical representation IN_OUT parameters are shown on the left hand
sight of the function block. The IN_OUT parameter is indicated by the '@’
symbol in front of name.

- Only simple data types can be declared as input/output parameters.

Function Block Description
Input parameter is an SINT array
Inst_MyUDFBArray [Wame | Type | Dim | Attri
J MyUDFBAay L ‘|nur:|iurg§BAnay UDINT [0.2] IN
Input_Array Qutput Output BOOL ouT
Input parameter is a user define structure type

ICP DAS Page 282 Win-GRAFWorkbench User Manual
Version 1.0

Inst_MyUDFBStruct [Name [Type [Tim [&trib_]
o 4 B MyUDFBStruct
J_@Jn ut_Struct TR Outputl Input_Struct MyFirstStruct IN
P P Output BOOL ouT
Input parameter is IN_OUT of a simple data type
Inst_MyUDFBInQut Narme [Type | Dim.__| Attrib |
T 4 A MyUDFBInOut
MyUDFBInOut
J@Jn utOutput Y " Outouth InputOutput INT INOUT
BTN L Output BOOL ouT

Table 35: Function block with different input parameter type

This section explains how to use the wizard to create a new function block.

Step 1: Add empty function block program editor:
1. Right click the '‘Blocks'in the 'Library' tree of the workspace and select
'Insert New Program..’. A dialog for selecting the program type pops up.
2. Enter the name of the function block
3. Enter the programming language to be use for programming the function
block body code
4. Select UDFB (User Defined Function Block)
5. Click 'OK'. A dialog for editing the function block parameters pops up.
\:Vogls;:?: task New program — S :—;1“ &
4 Programs Properties |Advanced | Descnpnon‘
L] MyFirstPragram Pragram -
B omirs oo (2)
1l 10s Description o
(i Wariables
b Bl Task?
b B Tasks Programming language
b 5 Taskd - SFC - Sequential Function Chart - Grid editor —
4 B Lbra ‘_:1 SFC :Sir?cu‘eonrzla\gsnm\gn :;h;n'Freefmm editor l 3
0 35 S) 2)
iy
Rename... F2 IL - Instruction List (deprecated)
PACKML - PACKML State Machine
Insert New Folder
||J Insert New Program... | Execulion mode
Shortcuts .
Insert New Item... Li /Main program
() Sub program —
X Delete |;@-uDFE | l 4
Child SFC program \)
Child of |
[0K l [Cancel] l Help] IJ
Step 2: Declare the input and output parameters for the function block. The input and
output variables can also be declared in the variable editor of the function
block program after it has been created.
ICP DAS Page 283

Win-GRAFWorkbench User Manual

Version 1.0

ICP DAS

-
Program properties

Parameters
Inputs
Inputl : BOOL Edit
Input2 : BOOL
Move down

>IN
Qutputs:
Qutput1 : BOOL
Output2 : BOOL
Quiputd : BOOL

0K] l Cancel I [Help I

E

dit input parameter:

1. Clickthe ".."in the input area
2. Click 'Edit' or double click the entry "..."in the input area
3. Enter the name and data type for the input parameter and click 'OK’

Program properties

=)

Parameters >
(\2)7
Inputs:
Remove
Move up
Mave down
ouTt
™
Parameters (3\ ﬁ
= (o 5 | cance |
[iN_ouT
Dimension:
Description:
\ ==
oK] I Cancel] I Help

Note:
If the 'IN_OUT' check box is not checked, the input can be only read by the

function block. If checked, then the block can change the value of the input.
An 'IN_OUT' parameter must be a single data type therefore can neither be

an array nor a structure.

Page 284

Win-GRAFWorkbench User Manual

Version 1.0

Step 3:

ICP DAS

Parameters being arrays of structu

res must always be declared as INPUTSs.
However, they are always considered implicitly as IN_OUT, which means

the function block can read data from and write data to the array or
structure. Declaring complex parameters for a function block can have

some limitations if the '‘Complex variables in a separate segment' option is

not enabled in the project settings

Edit output parameter:

1.
2.
3.

Enter the name and data type for the output parameter and click 'OK’

Qutput]

BOOL Cancel

o
e |

IN_OUT

Click the ".."in the output area
Click 'Edit' or double click the entry "..."in the output area
Program properties lﬁ
Parameters o
Inputs:
Inputl : BOOL
Input2 : BOOL
Input3: DINT
>IN
Parameters
Qutputs:
N, | T
Dimension
Description

ok |[camcal ||

Help

The input and output parameter list can be modified after they have been

edited.

Button Description

Edit Click this button to change the
parameter name or its data type

Remove Press this button to remove a the
selected parameter from the list

Move up This button moves a parameter
entry in the list one position up

Move down This button moves a parameter in
the list one line down

>IN Moves am output parameter from
the output area to the input area

Page 285

Win-GRAFWorkbench User Manual
Version 1.0

>0UT

Moves a input parameter from the
input area to the output area

All used defined function blocks are automatically added to the 'Library’ category in the
'‘Blocks' window (Figure 167). It is necessary to close the programming editor of the
function block (Window with the green frame) in order for it to be listed in the 'Library'
category. The used defined function blocks can be used in the same way as the standard
function blocks provided by the Workbench by drag and drop to the programming

editor.

Comparisons
Cornversions
Counters
Files

12C

| v v = «

Library
2 MyUDFB

I haths
I Miscellaneous
MyFaolder

Blocks

Figure 167: User defined function block

Publicwariables

In the library manager of Win-GRAF the user defined function blocks are indicated by a
special icon which makes it more easier to distinguish from the standard function blocks
(Table 36). In addition the user defined function blocks are shown in the function block
diagram as a different color (Table 37).

Function Block Icon Description
Win-GRAF preinstalled function block
Eis Indicates user defined function block

Table 36: Function block icons

Function Block

Description

Win-GRAF preinstalled function block

User defined function block (UDFB)

Inst_MyUDFB1
MyUDFB
Inpuit1 Output1
Input2 Quiput2
Input3 Quiputd

Table 37: Function block

ICP DAS

Win-GRAFWorkbench User Manual
Version 1.0

Page 286

13.4.1.2 Define Function Block Variables

A function block has three types of variables: Input, output and local variables.

The previous section describes the declaration of the input and output variables of a
function block by using the function block wizard. The variable editor of the workbench
allows the user to directly declare new input and output variables or remove existing
after the function blocks wizard has been closed. Local variables can only be declared via
the variable editor.

The following procedure shows how to add a private, input or output variable to the
function block:

Step 1: Open the function block program editor:

Double click the function block name in the workspace.
Workspace
[@ Main task
b5 Task?
b2 Task3
I
F

El Task4

B Library
4 Blocks
by UDFE

FoE Types
(Al Frojects)

Step 2: Add a new variable:
Click on the variable editor and press the ‘Insert’ to add a new variable. A
window pops up which allows you to select the type of variable to enter:
Input, output or private variable.

Y| Harne | Type || Attrib.
4 MyUDFB

Input1 BOOL IN
Input2 BOOL IN
Input3 DINT IN
Output1 BOOL ouTt
Qutput2 BOOL ouT
Output3 BOOL ouT
dw\Var1 DWORD

Input Parameter

Output Parameter

Private Variable

The attribute column ‘Attrib." indicates the type of variable:

ICP DAS Page 287 Win-GRAFWorkbench User Manual
Version 1.0

- 'IN'-input variable

- 'OUT'- output variable

- Empty attribute indicates a private variable

Y| Name [Type T2t |
- MyUDFB

Input1 BOOL IN
Input2 BOOL IN
Input3 DINT IN
Qutput1 BOOL ouT
QOutput2 BOOL ouT
Qutput3 BOOL ouT
dwVar1 DWORD
uiVar2 UINT
New\ar BOOL IN

The basic setting of the attribute field can not be changed via the variable

editor. This has to be done by using

1. the class wizard (right click the class name in the workspace tree and
select 'Parameters...' from the popup menu)

2. the variable text editor (right click the variable in the variable editor and
select 'Edit Variable as Text...")

Step 3: Set variable name and type:
1. Set name: Double click the 'Name field' and enter a new name
2. Setvariable type: Double click the 'Type' field and select a type from the

drop list

3. Setthe attribute: Only the 'IN' attribute can be changed to INOUT".
Double click the ‘Attrib.’ field to change the attribute from 'IN' to 'INOUT'
or vice versa.

| Name | Type || Attrib. | Ir
I Inputt BOOL IN

Input2 BOOL IN

Input3 DINT IN

Output1 BOOL ouT

Output2 ~ BOOL ouT

Output3 ~ BOOL ouT

(1) f2)° {'\9

byVar N

The variables can now be used inside the user defined function block in the same way as
in a normal PLC program.

13.4.1.3 Implementing Function Block Logic

ICP DAS

Page 288 Win-GRAFWorkbench User Manual
Version 1.0

Programming a function block is very much the same as writing a normal PLC program.
The programming can be done in one of the five programming language defined by IEC
61131.

It is important to pay attention to a few point:

- Do not write or change input data if it is of a simple data type. Only the calling
program has write access to it.

- Input parameters of complex structure types (e.g. arrays, structure) are regarded by
the workbench as an input/output type and therefore the function block body and
the calling program has read and write access to it.

- Only the function block body has write access to a output parameter of a simple data
type. The calling program has only read access.

- Use the private data to store some information from the current cycle which is
needed by the function block for the next cycle (e.g. state of state machine, previous
input, etc.)

- Declare a parameter of a simple data type as input/output when both the calling
program and the function block body has write access to it.

- A maximum of 32 input and 32 output parameters are supported for a function block

Example:
In the following a function block is being implemented which triggers an output when a
rising edge is being detected at its input (Figure 168).

Inst_MyR_Trig
MyR_Trig L
Q

Signal JSignaI Output

Figure 168: Rising edge function block

Three parameter are being declared for the function block body (Figure 169):

- One input parameter which shows the active level of the signal,

- One output parameter which indicates to the calling program when a rising input
signal has been detected

- One private variable which records the signal level of the current cycle.

[¥ Name | Type || Attrib. | Init value |
4 MyR_Trig

Signal BOOL IN

Q BOOL ouTt

PrevSignal BOOL FALSE

Figure 169: Variable declaration

Function body logic description (Figure 170):

- If the signal level of the previous cycle was off (PrevSignal := FALSE) and the input
signal of the current signal is active (Signal := TRUE), then a rising edge has been
detected and the output variable will be activate (Q := TRUE).

ICP DAS Page 289 Win-GRAFWorkbench User Manual
Version 1.0

- If the input signal was active in the previous cycle (PrevSignal := TRUE) and is still
active in the current cycle (Signal := TRUE) then no rising edge has been detected
with the result that the output is to false (Q := FALSE).

- If the input signal for the previous and current cycle is inactive (PrevSignal := FALSE ;
Signal := TRUE) then the output will be set to false (Q := FALSE).

1

2 //Check whether the signal has changed from FALSE to TRUE;

3 if signal = TRUE then

4 if PrevSignal = FALSE then

5 Qg := TRUE;

6 PrevSignal := Signal; // Store the signal lewel of this cycle
7 return; // leave the function block

a end if;

9 end if;

10

11 //No rising edge detected:

12 PrevSignal := Signal; // Store the signal lewvel of this cycle
13 @ := FALSE;

14

15

Figure 170: Function block body

Creating an instance of the function block

The user defined function block is automatically being added to the library category of
the 'Blocks' tab. By simple dragging and dropping the function block over the program
editor an instance of the function block is being created. Next the input and output have
to be linked to variables. This can be done by simple dragging a variable from the
variable editor to the input or output area of the function block (Figure 171).

o » ¥ Name | Tvpe [Di. [Pu_ |,

O 3 + [DemoProgram

= @ Global variables

= i RETAIN variables

— Inst_MyR_Trig

MyR_Trig
Signal RSignal ap

'i5;

labs

>

'_

B3 3 Comparisons -

| I Cornversions

{} I Counters

- b Files o
b l2C [
4 Libral
-

» 4 MyLUDFB

<, F5 WyUDFBAMay

(] ¢ m » 4 b

ICP DAS Page 290 Win-GRAFWorkbench User Manual

Version 1.0

Figure 171: Creating a function block instance

13.4.2 Define Function

13.4.2.1 Function Input and Output Parameters

A function is defined as a program organization unit which, when called, yields exactly
one result and arbitrarily many additional output elements (the function result can be
multi-valued, e.g., an array or structure). Functions contain no internal state
information, therefore a function execution with the same input parameters shall
always yield the same output values .

The preinstalled Win-GRAF functions has one or more input parameters but only one
output parameter. The Win-GRAF workbench allows the user to defined functions with
multiple in- and outputs.

The procedure of defining a function is very similar to a function block definition.
Therefore this section only describes very briefly the procedure. For more information
read the description of the function block definition procedure.

The steps explains how to use the wizard to create a new function.

Step 1: Add empty function block program editor:
1. Rightclick the 'Blocks'in the 'Library' tree of the workspace and select
'Insert New Program...". A dialog box pops up.
2. Enter the name of the function
3. Select the programming language to be use for programming the
function code
Select 'Sub program’
5. Click 'OK". A window will pop up which allows you to define the input and
output parameters of the function.

A

ICP DAS Page 291 Win-GRAFWorkbench User Manual
Version 1.0

Step 2:

Step 3:

ICP DAS

Workspace
[@ Main task
b 3 Taske
b [E Taska
& Task4
Pl

Rename..

Insert New Folder

2 Libra
[soae (1)

F2

gl Insert New Program...

Shortcuts

Insert New Item...

¥ Delete

New program

|

Properties |Advanced | Descriptiun|

Program

. O

Description:

Programming language

SFC - Sequential Function Chart - Grid editor
SFC - Sequential Function Chart - Free form editor

FBD - Function Block Diagram (CFC)
LD - Ladder Diagram
ST - Structured Text

IL - Instruction List (deprecated)
PACKML - PACKML State Machine

% Stuctures
(Al Projects)

Execution mode

() Main program

(@) Sub program

(7)UDFB

©

Child SFC program

4

Child of:

[oK] l Cancel I l Help

Define the input and output parameters for the function in the function
parameter editor. The input and output variables can also be defined in the
variable editor of the function program after it has been created. Refer to the
function block section to get more information about the function parameter

editor.

Click 'OK’ after the parameters have been edited.

r N
Program properties _u M.
Parameters
Inputs
Inputl : LREAL Edit
Input2 : LREAL
Move down
>IN
Qutputs:
Qutputl : LREAL
Quiput? : BOOL
i
. I
oK] I Cancel l [Help

Edit the source code for the function body (see function block description).

Page 292

Win-GRAFWorkbench User Manual

Version 1.0

The new function will be also automatically added to the 'Library' node in the workspace
and to the category in the 'Blocks’ window after the programming editor for the
function body has been closed (Figure 172).

Workspace b Counters
b [Zl Main task b Filas
b B Task? I 12C
b [Taski 4 P L e
b 3 Taskd
4 B Library . MyP_Trig
] Blocks
ke MyUDFE
b Maths
=] MyPR_Trig I Miscellaneous
MyUDFE MyFalder
§g Global defines 3 On Line Prograrming with scripts
b E Types L
il Projects) 0 I Blocks Public wvariables

Figure 172: User defined function added to the library directory

The library manager of Win-GRAF assign different icons and diagram colors to the
preinstalled and user defined functions (Table 38, Table 39).

Function Block Icon Description
1 Win-GRAF preinstalled function
=3 User defined function

Table 38: Function icons

Function Block Description
J‘N ABS ok Win-GRAF preinstalled function
User defined function
MyFunc
Input1 Output1 @
Input2 Output2 i

Table 39: Preinstalled and user define function diagrams

14 Backup Management

ICP DAS Page 293 Win-GRAFWorkbench User Manual
Version 1.0

14.1 Save Project Backup to Local PC

It is suggested to regularly make a backup of your project to prevent any accidental loss
of data. The workbench allows you to save the project as a zip file to memory (Figure
173). The project zip file can be directly loaded by the workbench. During the loading
process the zip file will be automatically unzipped.

Edit View Insert Project Tools Window Help View Tools Window Help
i New Project List.. [| mainTask ¥ New Project List... i | % | Hil 5
Open Project List » | Open Project List | B Erom Disk...
Save Project List As...) | From Zip... |
g Add New Project..
T Close Project List B ToZip.. o i
Add Existing Project 4
B3 To Zip and Mail...
New L4 .
Print Setup...
B Save Ctrl+S
1 DAPLO\MyApp1\MyAppl.w5I
Close
[+ Exit
il Save All
= Print... Ctrl+P
= Print Project...
Print Setup...
Display Folios

1 DAPLC\MyAppl\MyAppl.w5l

[+ Exit

Figure 173: Saving (left) and open (right) a backup file

14.2 Save Project to Runtime Target

The workbench enables you to embed on the target runtime the source code of the
project, so that it can be uploaded later. Source code is filtered and zipped in order to
reduce backup memory requirements. As sending source to the target may involve a
significant download time, it is up to you to explicitly activate the download command.

Note:

The project can only be save to the runtime if it has been created in single-tasking
environment (chapter: Single-Tasking). Projects created in a multi-tasking environment
(chapter: Multi-Tasking) can not be saved to the runtime.

Those commands are available from the contextual popup menu in the workspace
window:

- Save Project to Target: zip project source files and send them to the target.

- Open project from Target: upload zipped source file from the target and rebuild the

ICP DAS Page 294 Win-GRAFWorkbench User Manual
Version 1.0

project.

When saving the project to the target you have to specify the address and
communication parameters of the remote runtime system. The following options enable
you to send more or less optional information with project source code:

* Symbol table: the symbol table will be required after upload for monitoring variables.
If you do not embed the symbol table, you will have to recompile the uploaded
application for reading or writing variables.

* Debug information: this file will be required after upload for step by step debugging
and use of breakpoints. If you do not embed the symbol table, you will have to
recompile the uploaded application for stepping the application.

* Spy lists: these are all files created with the Watch Window, such as lists and recipes.

* Wizard settings: these are current settings of wizards such as the Monitoring
Application Builder.

* Project history: this is the list of modifications entered in the project.

* Comment texts: all comments entered for variables, programs. Comments within the
programs are always saved.

* Bitmaps and icons: these are all BMP, GIF, JPG or ICO files stored in the project folder
and possibly used in monitoring views.

* Referenced OEM library elements: definition of all the library elements ('C’ functions
and blocks, 1/0s, profiles) actually used in the project.

In addition to standard files, you can specify some extra files to be downloaded. In that

case, all of them will be located in the loaded project folder after upload, even if they

are originally located in other folders.

Removing some options enables you to reduce the size of embedded source code.

15 Target Runtime Configuration

The variable types, functions and function blocks provided by the workbench are not all
supported by every Win-GRAF runtime versions. It is therefore suggested to first upload
the target runtime configuration before compiling the application, to enable the
compiler to check for any unsupported data types. The runtime configuration list all the
supported data types and the runtime type and version number. The compiler uses this
configuration information for the compiling process to determine whether the source

ICP DAS Page 295 Win-GRAFWorkbench User Manual
Version 1.0

code meets the specifications of the target runtime.

After the configuration has been uploaded the variable types, functions and function
blocks not supported by the runtime are marked in red (Figure 174). The compiler will

output an error if it encounters an unsupported data types.

Configurations lﬁ

| Selectl Description | Data types| Standard |OEM |

Standard blocks and functions

i expt (* Exponent®)

Ei F_AOPEN (* Openfile in append mode *)
EiF_CLOSE (* Close file ®)

OF_COPY (" Copy file ™)

OF_DELETE (* Remove file)

EiF_EOF (* Testfor end offile)

OF_EXIST (* Check iffile exist®)

OF_FLUSH (* Update file data on disk ™)

(1 OF_GETSIZE (* Getfile size *)

EiF_ISREADY (" Check iffile is ready for readjwrite ™)
FiF_LOADRETAIN (* Load RETAIN variables from file *)
OF_RENAME (* Rename file *)

FiF_ROPEN (* Openfile for reading *)

i F_SAVERETAIN (* Save RETAIN variables to file *)
[OF_SEEK (* Change current position in file)

i FE TRIG (* Fallina nulse datactinn *1

-

r [ok [cancel |[Heb]I

Figure 174: Target system configuration

Procedure for uploading the configuration data of the target platform:

Step 1: Make sure the runtime is executing.

Step 2: Open the configuration dialog

The dialog can be opened in the following two ways:
1. Right click any task in the workspace and select 'Target System

Configuration..." from the popup

[RRE:] ain task
b B Taskz
b R .
b B Librany *& Simulate
Al Projects) Insert New Folder
{1 Insert New Program...
[=3 Insert HMI Device.
Shorteuts 4
Insert New Item...
= Print Project.
© Project Description..
& Lock Project
& Compare Project with...
[Cycle...
Tasks.
[Call Tree /
| Target System Configuration... |
Libraries.
Update Tasks with Library
ICP DAS Page 296

Win-GRAFWorkbench User Manual
Version 1.0

2.

Double-click on third section of the status bar entry.

|Ready | Full [Defautt | | | offLine 192.168.2.59:1100

Hint: If no configuration is set, ‘Default’ will be displayed in the status bar.
If there is no open project, nothing will be displayed.

Step 3: Upload the configuration of the target runtime.

1.
2.

4.

ICP DAS

Click the 'Upload' button in the 'Select’ tab.

In the communication window enter the IP address and port number of
the target runtime

Click 'OK' to start the upload process. It will take a few seconds. Once the

[~

Configurations

data has been uploaded a ‘Save As' dialog pops up
e oS |

Select |iDescnption | Data types | Standard | OEM |

Communication Settings fS\ lé

St

[TE Funtime v] |
&)

192166.2581100 | (2 D
Visibility in the Engineering Tool: _
["] show supported functions and data
OK
i —

Configurations

Save the configuration as a ".cfg' format to the following 'CONFIG'
directory of the workbench:

'C:\Users\Public\Documents\Win-GRAF Workbench\Win-GRAF Wb xx.xx\CONFIG'

The user can assign any name for the configuration file. It is best to select
a name which is related to the target system for easier identification.
After the file has been saved its name will be listed in the configuration
list. Configuration files from many different runtime platforms can be
added to the list.

Page 297 Win-GRAFWorkbench User Manual
Version 1.0

Step 4:

ICP DAS

Click the different tabs to get more information of the target system. Data
types which are not supported are indicated in red.

Tab Name Description

Select Win-GRAF preinstalled function

Description Shows detailed information about the selected Target
System Configuration according to the Select tab

Select| Description | Data types | Standard | OEM |

T5 Multithreaded VM under Windows (not real time)
ICPDAS (ECAT-M300)

Version=931

OEM=ICPD

Data type Shows all data types available on the selected target system.

| Selectl Description| Data types | Standard | OEM

Data types

HBO0L
HBYTE

@ DINT

7 DWORD
= INT
FLINT

i LREAL
OLWORD

Standard Shows all standard blocks and functions available on the
target system.

Page 298 Win-GRAFWorkbench User Manual
Version 1.0

Wi Save As ﬁ]
O@ﬁ‘l « Win-GRAF Workbench » Win-GRAF Wb 9.4 » CONFIG Configurations &
A A-dES e __________—
Organize ~ New folder Select ‘Dascr\phun | Data types | Standard | 0OEM |
| Win-GRAFWb 94 * name & Configurations
| AUTOMATION <Default- Import
5 No it TargetRuntime
— = i
| CONFIG (5 |
@
A& EDS
& EPL
FONT N
| Graphic it i I
| GSDML E
). HMI
). HwDef
10D Visibility in th ineering Tool:
11DC | [l 7(I:‘Sho supported functions and datatypes only
4
File name:| MyTargetRuntime.cfg 3 I
OK c | Hel
Save as type: [Ccnfiguratinn files (*.cfg) [J [AREE] [5 I
J
|
* Hide Folders |I Save] [Cancel I J
L 41

| Selectl Description | Data types| Standard |OEM |

Standard blocks and functions

7 any_to_string (* Convert to string)

i any_to_time (* Convert to time)

i any_to_udint (* Convertto unsigned 32 bit integer *)

i any_to_uint (* Convertto unsigned 16 bit integer *)

Oany_to_ulint(* Convertto unsigned 64 bitinteger™)

i any_to_usint (" Conwvert to unsigned small integer *)

F ApplyRecipeColumn (* Apply values of a column from a recipe file)
O ArCreate (* Create dynamic array of integers *)

OEM Shows all OEM specific blocks and functions available on the
target system.

Step 5: After selecting the target configuration from the 'Configurations' dialog and
clicking 'OK' the unsupported functions/function blocks are shown in a red
color. The compiler will generate an error if it encounters one of the
unsupported functions/function blocks or data type.

= 1 var0 := varl +1; =~ [¥[Name | Type [Di... | Pu.. | Attrib.
i E [=) 4 [MyCounter ~
[3 B IF Var0 > Varl THEN VarQ DINT ‘:‘
— ‘_1 | Varl := Varl +1; Vari DINT m
E é : ELSEVarl = Varl +10; var2 DINT
bt 7 - END IF; Vvar3 DINT
8 - Var4 DINT ki
e 9 B IF Varl > Var2 THEN P m
= 10 | Var2 := Var2 +1;
— 11 | ELSE £ CTUDR (*UR/DOMN counter - with rising edge dete -
=) 12 | Var? := Var2 +100; CTUR (*UP counter - with rising edge detection®)
13 - END_IF; £ CURVELIN (*Curve linearization®) |E|
14 1+ CYCLESTOP *stop in cycle stepping mode®)
15 MyFunction, Tt DAY _TIME (*Get current day and time [STRING)*)
16 Inst_MyUD Functions/Function blocks @' D&Y _TIME_LOCAL MGet operating system lime@
17 marked in red are not 11 DELETE (*Delete characters®)
12 Inst_DTCU supported DERIVATE [Derivats signaP)
- TF DTZUNIE (*Converts date and time into & unix time*)
; ‘1 DTAT (Pulse &l a dalefime")
L It DTCURDATE (#*Get current date stamp®) L
< |m » < > 5 Fublicvariables Define ENUK

16 Basic Operations

Below are the language features for basic data manipulation:
- Variable assignment
- Bitaccess

ICP DAS Page 299 Win-GRAFWorkbench User Manual
Version 1.0

- Parenthesis

- Calling a function

- Calling a function block

- Calling a sub-program

- MOVEBLOCK: Copying/moving array items
- COUNTOF: Number of items in an array

- INC: Increase a variable

- DEC: decrease a variable

Below are the language features for controlling the execution of a program:
- Labels

- Jumps

- RETURN

Below are the structured statements for controlling the execution of a program (Table
40):

Statement Description

IF Conditional execution of statements.

WHILE Repeat statements while a condition is TRUE.
REPEAT Repeat statements until a condition is TRUE.
FOR Execute iterations of statements.

CASE Switch to one of various possible statements.
EXIT Exit from a loop instruction.

WAIT Delay program execution

ON Conditional execution

Table 40: Program execution statements

16.1 Variable assignment

An assignment statement consists of a variable reference on the left-hand side, followed
by the assignment operator ":=', followed by the expression to be evaluated. The output
variable and the input expression must have the same type.

Operator =

The assignment statement can be used to assign

- asimple variable:
INT 1 := INT 2;

ICP DAS Page 300 Win-GRAFWorkbench User Manual
Version 1.0

- awhole data structure (multi-element variables)
Struct 1 := Struct 2;

- areturn value of a function

Example:

ST Language
//Copy IN to variable Q:

QO := IN;

//Assign the result of a complex expression
Q := (IN1 + (IN2 / IN 3)) * IN4;

//Assign a variable with the result of a
//function
result := SIN (angle);

//Assign a variable with an output parameter
// of a function block
time := MyTon.ET;

FBD Language In LD FBD languages, the 1 block is available to perform a '1 gain’
data copy.

1
IN— —a

LD Language In LD the 1 block is available to perform a '1 gain' data copy.
In LD language, the input rung (EN) enables the assignment, and the
output rung keeps the state of the input rung.
The copy is executed only if EN is TRUE.
ENO has the same value as EN.
ENOC

EM
F— — 1 —1 11—
I— 2

16.2 Access to bits of an integer

You can directly specify a bit within an integer variable in expressions and diagrams,
using the following notation:

Variable.BitNo

ICP DAS Page 301 Win-GRAFWorkbench User Manual
Version 1.0

- Variable: is the name of an integer variable.
- BitNo: is the number of the bit in the integer. 0 always represents the less significant
bit.

Example:
//Variables 'Bool 0', 'Bool 1', 'Bool 2', 'Bool 3' are
//declared as BOOL
//Variable 'USINT 1' is declared as USINT

Bool 0 := USINT 1.0;
Bool 1 := USINT 1.1;
Bool 2 := USINT 1.2;
Bool 3 := USINT 1.3;

The variable can have one of the following data types:
- SINT, USINT, BYTE (8 bits from .0 to .7)

- INT, UINT, WORD (16 bits from .0 to .15)

- DINT, UDINT, DWORD (32 bits from .0 to 31)

- LINT (from 0 to 63)

16.3 Parenthesis

The parenthesis operator forces the evaluation order in a complex expression.

| Operator ()

Parenthesis are used in ST and IL language for changing the default evaluation order of
various operations within a complex expression.

For instance, the default evaluation of 2 * 3 + 4" expression in ST language gives a result
of 10 as '*' operator has highest priority. Changing the expressionas 2 * (3 + 4)' gives a
result of 14. Parenthesis can be nested in a complex expression.

Below is the default evaluation order for ST language operations (first is highest
priority):

Precedence Operator Description

1 - NOT Unary operators

2 */ Multiply/Divide

3 + - Add/Subtract

4 <><=>==<> Comparisons

5 & AND Boolean And

6 OR Boolean Or

7 XOR Exclusive OR

ICP DAS Page 302 Win-GRAFWorkbench User Manual

Version 1.0

Table 41: Operator Precedence

Example:
Q := (IN1 + (IN2 / IN 3)) * IN4;

16.4 Calling a function

A function calculates a result according to the current value of its inputs. Unlike a
function block, a function has no internal data and is not linked to declared instances. A
function has only one output: the result of the function. A function can be:

- Astandard function (SHL, SIN...).

- A function written in 'C' language and embedded on the target.

ST Language To call a function block in ST, you have to enter its name, followed
by the input parameters written between parenthesis and
separated by comas. The function call may be inserted into any
complex expression. A function call can be used as an input
parameter of another function call. The following example
demonstrates a call to ODD and SEL functions:

(*

The following statement converts any odd
integer value into the nearest even integer:
The return value of the ODD function call is

being used as an input parameter for the SEL

function call
*)

iEvenVal := SEL (ODD(iValue), iValue,
ivValue+1l) ;

FBD Language To call a function block in FBD or LD languages, you just need to

and insert the function in the diagram and to connect its inputs and
LD Language output.
IL Language To call a function block in IL language, you must load its first input

parameter before the call, and then use the function name as an
instruction, followed by the other input parameters, separated by
comas. The result of the function is then the current result. The

following Example demonstrates a call to ODD and SEL functions:
(* The following statement converts any odd
integer into 0: *)

Opl: LD iValue ODD SEL iValue, 0 ST iResult

ICP DAS Page 303 Win-GRAFWorkbench User Manual
Version 1.0

Table 42: Function call syntax

16.5 Calling a function block

A function block groups an algorithm and a set of private data. It has inputs and outputs.
A function block can be:

- Astandard function block (RS, TON...).

- Ablock written in 'C' language and embedded on the target.

- A User Defined Function Block (UDFB) written in ST, FBD, LD or IL.

To use a function block, you have to declare an instance of the block as a variable,
identified by a unique name. Each instance of a function block as its own set of private
data and can be called separately. A call to a function block instance processes the block
algorithm on the private data of the instance, using the specified input parameters.

ST Language - To call a function block in ST, you have to specify the name of
the instance, followed by the input parameters written between
parenthesis and separated by comas.

- To have access to an output parameter, use the name of the
instance followed by a dot '." and the name of the wished
parameter.

- The following example demonstrates a call to an instance of
TON function block (MyTimer is declared as an instance of TON):

MyTimer (bTrig, t#2s);
TimerOutput := MyTimer.Q;
ElapsedTime := MyTimer.ET;

FBD Language To call a function block in FBD or LD languages, you just need to

and insert the block in the diagram and to connect its inputs and

LD Language outputs. The name of the instance must be specified upon the
rectangle of the block.

IL Language To call a function block in IL language, you must use the CAL

instruction, and use a declared instance of the function block. The
instance name is the operand of the CAL instruction, followed by
the input parameters written between parenthesis and separated
by comas. Alternatively the CALC, CALCN or CALNC conditional
instructions can be used:

- CAL Calls the function block.

ICP DAS Page 304 Win-GRAFWorkbench User Manual
Version 1.0

- CALC Calls the function block if the current result is TRUE.
- CALNC Calls the function block if the current result is FALSE.
- CALCN same as CALNC.

The following Example demonstrates a call to an instance of TON

function block

(MyTimer is declared as an instance of TON):
Opl: CAL MyTimer (bTrig, t#2s)
LD MyTimer.Q

ST TimerOutput

LD MyTimer.ET

ST ElapsedTimer

Op2: LD bCond
CALC MyTimer (bTrig, t#2s) (* called only if
bCond is TRUE *)

Op3: LD bCond
CALNC MyTimer (bTrig, t#2s) (* called only
if bCond is FALSE *)

Table 43: Function block call syntax

16.6 Calling a sub-program

A sub-program is called by another program. Unlike function blocks, local variables of a
sub-program are not instantiated, and thus you do not need to declare instances. A call
to a sub-program processes the block algorithm using the specified input parameters.
Output parameters can then be accessed.

ST Language -

ICP DAS

To call a sub-program in ST, you have to specify its name,
followed by the input parameters written between parenthesis
and separated by comas.

To have access to an output parameter, use the name of the
sub-program followed by a dot '."' and the name of the wished
parameter:

(* calls the sub-program *)
MySubProg (il, 1i2);

Resl := MySubProg.Ql;
Res2 := MySubProg.Q2;
Page 305 Win-GRAFWorkbench User Manual

Version 1.0

- Alternatively, if a sub-program has one and only one output

parameter, it can be called as a function in ST language:
Res := MySubProg (il, 1i2);

FBD Language To call a sub-program in FBD or LD languages, you just need to

and insert the block in the diagram and to connect its inputs and
LD Language outputs.
IL Language To call a sub-program in IL language, you must use the CAL

instruction with the name of the sub-program, followed by the input
parameters written between parenthesis and separated by comas.
Alternatively the CALC, CALCN or CALNC conditional instructions can
be used:

- CAL Calls the sub-program.

- CALC Calls the sub-program if the current result is TRUE.

- CALNC Calls the sub-program if the current result is FALSE.

- CALCN same as CALNC.

Opl: CAL MySubProg (il, i2)
LD MySubProg.Ql

ST Resl

LD MySubProg.Q2

ST Res?

Table 44: Sub-program call syntax

16.7 MOVEBLOCK - Move/Copy items of an array

The function copies a number of consecutive items starting at the index of the source
array to a position in destination array. Source and destination can be the same array. In
that case, the function avoids lost items when source and destination areas overlap.
Arrays of string are not supported by this function.

ICP DAS Page 306 Win-GRAFWorkbench User Manual
Version 1.0

MOVEBLOCK
Srcf] OKR
Dst[]
PosSrc Eh
PosDst
NB

Para Name Data Type | Description

Src ANY Array containing the source of the copy.
Can not be a string.

Dst ANY Array containing the destination of the copy.
Input Can not be a string

PosSrc DINT Index of the first character in SRC

PosDst DINT Index of the destination in DST

NB DINT Number of items to be copied
Output OK BOOL TRUE if successful

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
function is not available in IL Closed language.

The function copies a number (NB) of consecutive items starting at the PosSrc index in
Src array to PosDst position in Dst array. Src and Dst can be the same array. In
that case, the function avoids lost items when source and destination areas overlap.

This function checks array bounds and is always safe. The function returns TRUE if
successful. It returns FALSE if input positions and number do not fit the bounds of SRC
and DST arrays.

ST Language
OK := MOVEBLOCK (SRC, DST, PosSRS, PosDST,
NB) ;
FBD Language MoveE Lock
3ro— oK
Dist—
Pos3ro—
PosDhst—
Th—
LD Language In LD language, the operation is executed only if the input rung (EN)
is TRUE.
ICP DAS Page 307 Win-GRAFWorkbench User Manual

Version 1.0

EN MowveEBlock oK
F—1 [— —i 11—
Sroc—
DL=t—
Fossro—
PosDhst—
Nh_
IL Language Not supported.

16.8 CountOf - Count Items in an Array

Returns the number of items in an array.

COUNTOF
Arr(] Q

Para Name Data Type | Description
Input Arr ANY Declared array
Output Q DINT Total number of items in the array

The input must be an array and can have any data type. This function is particularly
useful to avoid writing directly the actual size of an array in a program, and thus keep
the program independent from the declaration.

ST Language
FOR 1 := 1 TO CountOf (MyArray) DO
MyArray[i-1] := 0;
END FOR;
FBD Language COUNTOF
Arr[] Q
LD Language In LD language, the operation is executed only if the input rung (EN)
is TRUE. The output rung (ENO) keeps the same value as the input
rung.
EN Countof ENC
—1 1— —() —
LRR— —0
ICP DAS Page 308 Win-GRAFWorkbench User Manual

Version 1.0

IL Language Not supported.

Example:
Array Size
Arr1[0.9] 10
Arr2[0..4,0.9] 50

16.9 INC - Increment Numerical Variable
This function increases a numerical variable by one. For REAL data type the variable is
increased by 1.0 and for TIME data type the variable is increased by 1ms. All data types
are supported except BOOL and STRING: for these types, the output is the copy of IN.

INC
@IN Q

Para Name Data Type | Description

@IN ANY Numerical variable (will increased after function call).
Input The '@’ character indicates that the variable is a in
and output variable.
Output Q ANY Increased value.

When the function is called, the variable connected to the IN input is increased and
copied to output Q. The IN input must be directly connected to a variable, and cannot
be a constant or complex expression.

This function is particularly designed for ST language. It allows simplified writing as
assigning the result of the function is not mandatory.

ST Language

FBD Language INC

IN— —0
LD Language In LD language, the operation is executed only if the input rung (EN)
ICP DAS Page 309 Win-GRAFWorkbench User Manual

Version 1.0

IL Language

is TRUE. The output rung (ENO) keeps the same value as the input
rung.

EN Countof ENO
—1 [— —() —
ARR—| 0

Not available.

16.10 DEC - Decrement Numerical Variable

This function decreases a numerical variable by one. For REAL data type the variable is
decreased by 1.0 and for TIME data type the variable is decreased by 1ms. All data types
are supported except BOOL and STRING: for these types, the output is the copy of IN.

DEC
@IN Q
Para Name Data Type | Description
@IN ANY Numerical variable (will decreased after function call).
Input The '@’ character indicates that the variable is a in-
and output variable.
Output Q ANY Decreased value.

When the function is called, the variable connected to the IN input is first decreased
and then copied to output Q. The IN input must be directly connected to a variable, and
cannot be a constant or complex expression.

This function is particularly designed for ST language. It allows simplified writing as
assigning the result of the function is not mandatory.

ST Language

FBD Language

LD Language

ICP DAS

DEC
IN— -}

In LD language, the operation is executed only if the input rung (EN)
is TRUE. The output rung (ENO) keeps the same value as the input

Page 310 Win-GRAFWorkbench User Manual
Version 1.0

rung.

EN DEC ENO
—1 1— () —]

IN— e}

IL Language Not available.

16.11 Labels

Labels are used as a destination of a jump instruction in FDB, LD or IL language. Labels
and jumps cannot be used in structured ST language. A label must be represented by a
unique name, followed by a colon (":’). In FBD language, labels can be inserted anywhere
in the diagram, and are connected to nothing. In LD language, a label must identify a
rung, and is shown on the left side of the rung.

ST Language Not available.
FBD Language In this example the TON block will not be called if bEnable is

TRUE:
hEnshle —>>|TheEnd|
TON
IN— 0
PT— —ET

LD Language In this example the second rung will be skipped if IN1 is TRUE: rung.
IM1

B S e

INZ

o2
F—1 — ToM ——1 1 —
PT— —ET

INz o3
— ———
IL Language
(* unused label - just for readability *)
Start: LD INI1
(* Jump to 'TheRest' if IN1 is TRUE *)
JMPC TheRest
ICP DAS Page 311 Win-GRAFWorkbench User Manual

Version 1.0

LD IN2 (* these two instructions are not
executed *) ST Q2 (* if IN1 is

TRUE *)

TheRest: LD IN3 (* label used as the jump
destination *) ST Q3

16.12 Jumps

A jump to a label branches the execution of the program after the specified label. Labels
and jumps cannot be used in structured ST language. In FBD language, a jump is
represented by the >> symbol followed by the label name. The input of the >> symbol
must be connected to a valid boolean signal. The jump is performed only if the input is
TRUE. In LD language, the >> symbol, followed by the target label name, is used as a coil
at the end of a rung. The jump is performed only if the rung state is TRUE.

Attention

Backward jumps may lead to infinite loops that block the target cycle.

ST Language
FBD Language

LD Language

IL Language

ICP DAS

Not available.
In this example the TON block will not be called if bEnable is

TRUE:
hEnshle —>>|TheEnd|

TON
IN— 0
PT— —ET

In this example the second rung will be skipped if IN1 is TRUE: rung.
IM1

ol

INZ

o2
F—1 — ToM ——1 1 —
PT— —ET

INZ

Q3
o [R

Below is the meaning of possible jump instructions:
- JMP Jump always

- JMPC Jump if the current result is TRUE

- JMPNC Jump if the current result is FALSE

Page 312 Win-GRAFWorkbench User Manual
Version 1.0

Start: LD INI1
JMPC TheRest (* Jump to 'TheRest' if IN1 is TRUE *)
LD IN2 (* these three instructions are not executed *)
ST Q2 (* if IN1 is TRUE *)
JMP TheEnd (* unconditional jump to 'TheEnd' *)
TheRest: LD IN3
ST Q3
TheEnd:

16.13 RETURN - Jump to the End of the POU

The RETURN statement jumps to the end of the POU and therefore provides early exit
from a function, function block or program. The program of the POU following the
RETURN statements will not be executed.

The RETURN instruction can be used inside a function and function block to exit it when

a condition has been met.

- When a RETURN statement is used inside a function, the function output variable has
to be set before the RETURN statement is executed otherwise the output value is
undefined.

- When a RETURN statement is used inside a function block, the output variables of
the function blocks has to be set before the statement is executed otherwise the
outputs may contain either the initialization values or the value set in the preceding
function block invocation.

When used within an action block of a SFC step, the RETURN statement jumps to the
end of the action block.

ST Language
IF NOT bEnable THEN
RETURN ;
END IF;

The rest of the program will not be executed if bEnabled is FALSE.
FBD Language In FBD language, the return statement is represented by the

'SRETURN>' symbol. The input of the symbol must be connected to a
valid boolean signal. The jump is performed only if the input is TRUE.

ICP DAS Page 313 Win-GRAFWorkbench User Manual
Version 1.0

In this example the TON block will not be called if bIgnore is
TRUE:

bIgnore <RETURN.

TCH
In— —
FT— —ET

LD Language In LD language, the '<RETURN>' symbol is used as a coil at the end
of a rung. The jump is performed only if the rung state is TRUE.

In this example the second rung will be skipped if IN1 is TRUE: rung.
ENLELE

—1/[—————— 1 <RETURN:

INz

o2
1 — Ton ——1 1 —

FT— —ET

IL Language Below is the meaning of possible instructions:
- RET Jump to the end always.
- RETC Jump to the end if the current result is TRUE.
- RETNC Jump to the end if the current result is FALSE.
- RETCN Same as RETNC.

Start: LD IN1
RETC (* Jump to the end if IN1 is TRUE *)
LD IN2 (* these instructions are not executed *)
ST Q2 (* if IN1 is TRUE *)
RET (* Jump to the end unconditionally *)

LD IN3 (* these instructions are never executed *)

ST Q3

16.14 IF - Statement

The IF statement is available in ST only. The IF statement specifies that a group of
statements following the IF line is to be executed only if the associated Boolean
expression evaluates to be true (TRUE). If the condition is false, then either no
statement is to be executed, or the statement group following the ELSE keyword (or the
ELSIF keyword if its associated Boolean condition is true) is to be executed.

ICP DAS Page 314 Win-GRAFWorkbench User Manual
Version 1.0

Both ELSIF and ELSE are optional in a IF statement. There can be several ELSIF
statements. You can use the ELSIF and ELSE keywords for multiple conditions in the
same |F statement. The ELSE statement works as a default option for your IF statement.
If all the IF and ELSIF boolean expressions are evaluated to FALSE, the statements after
the ELSE keyword will be executed.

Syntax
IF <BOOL expression> THEN
<statements>
ELSIF <BOOL expression> THEN
<statements>
ELSE
<statements>
END IF;
ST Language
(* simple condition *)
IF bCond THEN
Q1 := IN1;
Q2 := TRUE;
END IF;
(* binary selection *)
IF bCond THEN
Q1 := IN1;
Q2 := TRUE;
ELSE
Q1 := IN2;
Q2 := FALSE;
END IF;
(* enumerated conditions *)
IF bCondl THEN
Q1 := IN1;
ELSIF bCond2 THEN
Q1 := IN2;
ELSIF bCond3 THEN
Q1 := IN3;
ELSE
Q1 := IN4;
END IF;
The rest of the program will not be executed if bEnabled is FALSE.
ICP DAS Page 315 Win-GRAFWorkbench User Manual

Version 1.0

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.15 WHILE - Statement

The WHILE statement causes a group of statements between the DO and the
END_WHILE keyword to be executed repeatedly until the associated Boolean expression
is false. If the expression is initially false, then the group of statements is not executed at
all.

Syntax
WHILE <BOOL expression> DO
<statements>
END WHILE;

Attention
Loop instructions may lead to infinite loops that block the target cycle. Never test the
state of an input in 'While' loop as the input may not be refreshed before the next cycle.

ST Language

iMax := 10;

WHILE iPos < iMax DO
MyArray[iPos] := O;
iPos +:=1;

END WHILE;

The group of statement will not execute if the condition
'i Pos<iMax'is FALSE.

FBD Language Not available.

LD Language Not available.
IL Language Not available.

16.16 REPEAT - Statement

ICP DAS Page 316 Win-GRAFWorkbench User Manual
Version 1.0

Similar to the WHILE statement the REPEAT statement causes a group of statements up

to the UNTIL keyword to be executed repeatedly (and at least once) until the associated

Boolean condition is true.

The difference between the WHILE and REPEAT statement:

- the REPEAT statement will execute at least once independent of the Boolean
condition

- the REPEAT statement will execute until the Boolean condition turns true

- the WHILE state the group of statement will only be executed if the Boolean
condition is true

Syntax
REPEAT
<statements>
UNTIL <BOOL expression> END REPEAT;

Attention

Loop instructions may lead to infinite loops that block the target cycle. Never test the
state of an input in this condition as the input will not be refreshed before the next
cycle.

ST Language
iPos := 0;
REPEAT
MyArray[iPos] := O0;
iNbCleared := iNbCleared + 1;
iPos := iPos + 1;

UNTIL iPos = iMax END REPEAT;

The group of statement will execute until the condition
'i Pos=1Max'turns true.

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.17 FOR - Statement

The FOR loop is used to execute a group of statements between the DO and the
END_FOR keyword with a certain number of repetitions.
The FOR statement increments the control variable <variable> up or down from an

ICP DAS Page 317 Win-GRAFWorkbench User Manual
Version 1.0

initial value <start value> toafinalvalue <end value> inincrements
determined by the step value <step> (this value defaults to 1).

Syntax

FOR <variable> := <start value> TO <end value> BY <step> DO
<statements>

END_FOR;

- variable = DINT control variable.

- start value = DINT expression: initial value for index.

- end value =DINT expression: maximum allowed value for index.

- step = DINT expression: increasing step of index after each iteration (default is 1).

Remarks

- The BY <step> statement can be omitted. The default value for the step is 1.
- The <statements> are executed as long as the counter <variable> is not
greater than the <end value>. This is checked before executing the
<statements> sothat the <statements> are never executed if
<start value>isgreaterthan <end value>. When <statements> are
executed, <index> is always increased by <step>.

ST Language

FBD Language
LD Language
IL Language

ICP DAS

iArrayDim := 10;

(* resets all items of the array to 0 ¥*)

FOR iPos := 0 TO (iArrayDim - 1) DO
MyArray[iPos] := O0;
END FOR;

(* set all items with odd index to 1 *)

FOR iPos := 1 TO 9 BY 2 DO
MyArray[ipos] := 1;
END FOR;

Not available.
Not available.
Not available.

Page 318 Win-GRAFWorkbench User Manual
Version 1.0

16.18 CASE - Statement

The CASE statement executes a block of statements based on a selector value. With the
CASE instructions one can combine several conditioned instructions with the same
selector variable in one construct.

Syntax
CASE <DINT selector> OF
<label>:
<statements>
<label>:
<statements>;
<label>:
<statements>;
<label> , <label>:
<statements>;
<label> .. <label>:
<statements>;
ELSE
<statements>
END CASE;

Remarks
- All enumerated values correspond to the evaluation of the DINT expression and are
possible cases in the execution of the statements.
- The statements specified after the ELSE keyword are executed if the expression
takes a value that is not enumerated in the switch.
- For each case, you must specify either
* avalue, or
* alist of possible values separated by comas (',’) or
* arange of values specified by a ‘'min .. max' interval. You must enter space
characters before and after the '.." separator.

ST Language This example checks the first prime numbers:

CASE iNumber OF

0 :
Alarm := TRUE;
AlarmText := '0O gives no result';
1..3,5
ICP DAS Page 319 Win-GRAFWorkbench User Manual

Version 1.0

bPrime := TRUE;
4, 6

bPrime := FALSE;
ELSE

Alarm := TRUE;

AlarmText := 'T don't know after 6 !';
END CASE;

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.19 EXIT - Statement

The EXIT statement is used to terminate the current loop before it has completed.
- AFOR Loop is stopped before the loop variable reaches its target value.

- A WHILE Loop is stopped before the condition becomes false.

- A REPEAT Loop is stopped before the condition becomes true.

The execution continues after the END_WHILE, END_REPEAT or END_FOR keyword or
the loop where the EXIT is. When the EXIT statement is located within nested loops, it
only exits the loop in which the EXIT is located, and control is passed to the next
statement of the outer loop. EXIT quits only one loop and cannot be used to exit at the
same time several levels of nested loops.

ST Language
(*This program searches for the first non null
item of an array:*)
iFound = -1; (* means: not found *)
FOR iPos := 0 TO (iArrayDim - 1) DO
IF iPos <> 0 THEN
iFound := iPos;
EXIT;
END IF;
END FOR;

For Index:= 0 To 10 Do
If Item[Index] '= 0 Then

ICP DAS Page 320 Win-GRAFWorkbench User Manual
Version 1.0

Exit;
End If;
End For;

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.20 WAIT- Statement

The WATT statement checks the attached Boolean expression and does the following:

- If the expression is TRUE, the program continues normally.

- If the expression is FALSE, then the execution of the program is suspended up to the
next PLC cycle. The boolean expression will be checked again during next cycles until
it becomes TRUE. The execution of other programs is not affected.

The WAIT TIME statement suspends the execution of the program for the specified

duration. The execution of other programs is not affected.

These instructions are available in ST language only and has no correspondence in other
languages. These instructions cannot be called in a User Defined Function Block (UDFB).
The use of WAIT or WAIT_TIME in a UDFB provokes a compile error.

WAIT and WAIT_TIME instructions can be called in a sub-program. However, this may
lead to some unsafe situation if the same sub program is called from various programs.
Re-entrance is not supported by WAIT and WAIT_TIME instructions. Avoiding this
situation is the responsibility of the programmer. The compiler outputs some warning
messages if a sub-program containing a WAIT or WAIT_TIME instruction is called from
more than one program.

These instructions should not be called from ST parts of SFC programs. This makes no
sense as SFC is already a state machine. The use of WAIT or WAIT_TME in SFCor in a
sub-program called from SFC provokes a compile error.

These instructions are not available when the code is compiled through a 'C’' compiler.
Using 'C' code generation with a program containing a WAIT or WAIT_TIME instruction

provokes an error during post-compiling.

These statement are extensions to the standard and are not IEC61131-3 compliant.

ICP DAS Page 321 Win-GRAFWorkbench User Manual
Version 1.0

ST Language
(* use of WAIT with different kinds of BOOL

expressions *)
WAIT BoolVariable;
WAIT (diLevel > 100) AND NOT bAlarm;

WAIT SubProgCall ()

(* use of WAIT TIME with different kinds of
TIME expressions *)

WAIT TIME t#2s;

WAIT TIME TimeVariable;

FBD Language Not available.
LD Language Not available.
IL Language Not available.

16.21 ON - Statement

Statements within the ON structure are executed only when the boolean expression
rises from FALSE to TRUE. The ON instruction avoids systematic use of the R_TRIG
function block or other 'last state' flags.

The ON syntax is available in any program, sub-program or UDFB. It is available in both
T5 p-code or native code compilation modes.

This statement is an extension to the standard and is not IEC61131-3 compliant.

Syntax
ON <BOOL expression> DO
<statements>
END_DO

ST Language

(* This example counts the rising edges of
variable DbIN *)

ICP DAS Page 322 Win-GRAFWorkbench User Manual
Version 1.0

ON bIN DO
diCount := diCount + 1;
END DO;

FBD Language Not available.
LD Language Not available.
IL Language Not available.

ICP DAS Page 323 Win-GRAFWorkbench User Manual
Version 1.0

17 Standard Function/Function Blocks

Library

Get more information about the standard function/function blocks library by entering
the function name in the search box of the workbench (Figure 175).

(0 1EC 61131-3 A

& 2 fa E
Hide Locate Back Forward Refresh Home Print Opl
Contents | Search | Favorites

Type in the word(s) to search for:

-

Selecttopic: Found: 23
Title Location Rank
Type conversion functions IEC 61131-3 1
ANY_TO_BOOL IEC 61131-3 2
ANY_TO_LREAL IEC 61131-3 3
ANY_TO_REAL IEC 61131-3 4
ANY_TO_DINT JANY_TO_U.. IEC61131-3 5
ANY_TO_TIME IEC 61131-3 6
ANY_TO_SINT IEC 61131-3 7
ANY_TO_INT JANY_TO_UIL.. IEC6E1131-3 8
ANY_TO_LINT IEC 61131-3 9
ANY_TO_STRING IEC 61131-3 10

Figure 175: Workbench help search
17.1 Boolean Operations
ICP DAS Page 324 Win-GRAFWorkbench User Manual

Version 1.0

Operator Block Diagram Description
AND . Performs a boolean AND operation.
IN1— —a Performs a logical AND of all inputs.
INz=—
IH3—
ST Language
Q := IN1 AND INZ;
Q := IN1 & IN2 & IN3;
OR - Performs a logical OR of all inputs.
IN1— 2
INz=—
T3] ST Language
Q := IN1 OR IN2;
Q := IN1 OR IN2 OR IN3;
XOR -1 Performs an exclusive OR of all inputs.
IH1— —0Q
INz=—
el ST Language
Q := IN1 XOR INZ;
Q := IN1 XOR IN2 XOR IN3;
NOT NOT Performs a boolean negation of the input.
IN— 2
ST Language
Q := NOT IN;
Q := NOT (IN1 OR IN2);
S SET Q Force a boolean output to TRUE
=1t 5)— Only supported by LD Language.
RESET Q
R Eii R —] Force a boolean output to FALSE.
Only supported by LD Language.
QOR QOR Count the number of TRUE inputs.
IN1I— —0Q
INZ—
IN3—

Table 45: Operators for managing booleans

Function Block Diagram Description
RS e Reset dominant bistable
SET. —o1
RESET1— The output is unchanged when both inputs are

FALSE. When both inputs are TRUE, the output is
forced to FALSE (reset dominant).

ST Language

MyRS is declared as an instance of RS function
block:

MyRS (SET, RESETI1);

Ql := MyRS.Q1;

ICP DAS Page 325 Win-GRAFWorkbench User Manual
Version 1.0

Function Block Diagram Description

SR . Set dominant bistable.

SET1—| o1 The output is unchanged when both inputs are
RESETH FALSE. When both inputs are TRUE, the output is
forced to TRUE (set dominant).

ST Language

MySR is declared as an instance of SR function
block:

MySR (SET1, RESET) ;

Ql := MySR.Q1;

R_TRIG S Rising pulse detection.
CLE—] 2 RISING EDGE (R_TRIG)

= Ul 1

Function Diagram for R_TRIG Block

ST Language

MyTrigger is declared as an instance of R_TRIG
function block:

MyTrigger (CLK) ;

Q := MyTrigger.Q;

F_TRIG F_TRIG Falling pulse detection.
CLE— —i FALLING EDGE (F_TRIG)

=_| U 1_

Function Diagram for F_TRIG Block

ST Language

MyTrigger is declared as an instance of F_TRIG
function block:

MyTrigger (CLK) ;

Q := MyTrigger.Q;

SEMA SEMR Semaphore

CLATHNH —EBUSY
RELEALSE—

ST Language

MySema is a declared instance of SEMA function
block:

MySema (CLAIM, RELEASE) ;

BUSY := MySema.BUSY;

ICP DAS Page 326 Win-GRAFWorkbench User Manual
Version 1.0

Function Block Diagram Description
FLIPFLOP . Flipflop~bistable
FlipFlop . . .
TH— | | - Theoutput is systematically reset to FALSE if
RST— RST is TRUE.

- The output changes on each rising edge of the
IN input, if RST is FALSE

ST Language

MyFlipFlop is declared as an instance of FLIPFLOP
function block:

MyFlipFlop (IN, RST);

Q := MyFlipFlop.Q;

Table 46: Blocks for managing boolean signals

17.2

Arithmetic operations

Operator

Block Diagram

Description

+

Performs an addition of all inputs.
- Allinputs and the output must have the same type.

IH1— —0
INz— - In FBD language, the block may have up to 16 inputs. (Set
number of inputs: Double click the function block and enter the number
of inputs in the scroll box (see description below))
+ - In LD language, the input rung (EN) enables the operation,
iﬂ;: < and the output rung keeps the same value as the input rung.
+ I3 — The addition can be used with strings. The result is the
concatenation of the input strings.
ST Language:
Q := IN1 + INZ2;
(* MyString is equal to 'Hello' *)
MyString := 'He' + '11 ' + 'o';
B Performs a subtraction of inputs
IH1— L a - Allinputs and the output must have the same type.
IHz— - In LD language, the input rung (EN) enables the operation,
) and the output rung keeps the same value as the input rung.
ST Language:
Q := IN1 - INZ2;
ICP DAS Page 327 Win-GRAFWorkbench User Manual

Version 1.0

Operator

Block Diagram

*

IN1— —
INE—

IN1— —
INzZ—
IN3—

IN1i— 2
INZ—

NEG
IN— 2

Description
Performs a multiplication of all inputs.
- All inputs and the output must have the same type.

- In FBD language, the block may have up to 16 inputs. (Set
number of inputs: Double click the function block and enter the number
of inputs in the scroll box (see description below))

- In LD language, the input rung (EN) enables the operation,
and the output rung keeps the same value as the input rung.

ST Language:
Q := IN1 * IN2;

Performs a division of inputs.

- All inputs and the output must have the same type.

- In LD language, the input rung (EN) enables the operation,
and the output rung keeps the same value as the input rung.

ST Language:
Q := IN1 / IN2;

Integer negation (unary operator)

- Performs an integer negation of the input.

- In FBD and LD language, the block NEG can be used.

- In LD language, the operation is executed only if the input
rung (EN) is TRUE. The output rung (ENO) keeps the same
value as the input rung.

- In ST language, "-' can be followed by a complex boolean
expression between parenthesis.

Truth table (examples):

IN Q
0 0
1 -1
-123 123

ST Language:
Q := -IN;
Q - (IN1 + IN2);

Table 47: Standard arithmetic operators

Operator
MIN

ICP DAS

Block Diagram

Description
Get the minimum of two values.
In/ Data type
Output

Page 328 Win-GRAFWorkbench User Manual
Version 1.0

Operator

Block Diagram

Description

IN1i—
INz—

NIN
—2

IN1 ANY
IN2 ANY
Q ANY

ST Language:
Q := MIN (IN1, IN2);

LD Language:
- In LD language, the input rung (EN) enables the operation,
and the output rung keeps the state of the input rung.
- The comparison is executed only if EN is TRUE.
- ENO has the same value as EN.
EN ENOC

1 — MmN ——1 1 —
IM1— —2
INz—

MAX

IN1i—
INZ—

MAZ

Get the maximum of two values
In/ Data type
Output
IN1 ANY
IN2 ANY
Q ANY

ST Language:
Q := MAX (IN1l, IN2);

LD Language:

- In LD language, the input rung (EN) enables the operation,
and the output rung keeps the state of the input rung.

- The comparison is executed only if EN is TRUE.

- ENO has the same value as EN.
EN ENG

—1 — maz —10 1—

IMN1— i

INzZ—

LIMIT

IHMIN—
IN—
IMAK—

LINIT

Bounds an integer to low and high limits
- IMINif IN < IMIN;

- IMAXif IN > IMAX;

- IN otherwise

In/ Data type
Output
IMIN DINT
IN DINT
IMAX DINT

ICP DAS

Page 329 Win-GRAFWorkbench User Manual
Version 1.0

Operator | Block Diagram Description
e ADINT
Al
THMA -
IMIN X i
: : > IN
IMIN THA
ST Language:
Q := LIMIT (IMIN, IN, IMAX);
LD Language:
- In LD language, the input rung (EN) enables the operation,
and the output rung keeps the state of the input rung.
- The comparison is executed only if EN is TRUE.
- ENO has the same value as EN.
EN ENOC
—1 [— LINIT ——1{ |—]
IMIN— —Q
IN—
THMLAZE—
MOD - Calculation of modulo.
IH—] 0 - The result of the function is -1 if the argument BASE is less
BASE— than or equal to 0.
In/ Data type Description
Output
IN1 DINT/REAL/ Input value.
LREAL
BASE DINT/REAL/ Base of the
LREAL modulo.
Q DINT/REAL/ Modulo: rest of
LREAL the integer
division (IN /
BASE).
ST Language:
Q := MOD (IN, BASE);
LD Language:
- In LD language, the input rung (EN) enables the operation,
and the output rung keeps the state of the input rung.
ICP DAS Page 330 Win-GRAFWorkbench User Manual

Version 1.0

Operator | Block Diagram Description
- The comparison is executed only if EN is TRUE.
- ENO has the same value as EN.
EN ENO
F—1 — mop —1(1—]
IN— 2
BAsE—
oDD Test if an integer is odd
IH— = In/ Data type Description
Output
IN1 DINT Input value.
Q BOOL TRUE if IN is odd.
FALSE if IN is even.
ST Language:
Q := ODD (IN);
OoDD
LD Language:
- In LD language, the input rung (EN) enables the operation,
and the output rung is the result of the function.
- The function is executed only if EN is TRUE
EN o]
F—1 t— oo —1 1—]
IN—
SetWithin SETWITHIN Force a value when inside an interval
IN Q - The output is forced to VAL when the IN value is within
the [MIN .. MAX] interval.
MIN - Itis set to IN when outside the interval.
MAX
VAL In/ Data Description
Output type
IN ANY Input value.
MIN ANY Low limit of the interval.
MAX ANY High limit of the interval.
VAL ANY Value to apply when
inside the interval.
Q ANY Result.
Truth table:
IN Q
IN < MIN IN
IN > MAX IN
MIN < IN < MAX VAL
ICP DAS Page 331 Win-GRAFWorkbench User Manual

Version 1.0

Operator

Block Diagram Description

Table 48: Standard functions for performing arithmetic operations

17.2.1 Set Number of Input Parameters

For certain functions in the library the workbench allows user to set number of function
input parameter of the block diagram:

Step 1:

Step 2:

Step 3:

ICP DAS

Drag and drop the block diagram from the 'Block’ library to the program editor

- ~——
-

7?7?
777

7?

3

r]

5

Advanced -
Arithrnetic

Sa 1D * (*Multiply®) ‘

* - (*Subtraction®)

I (“Divide®)

s\
¥
L

+ i+

.

I} LIMIT (*Truncate a value®)
TF MAX (*Maximum*)

Double click the block diagram and set the number of inputs (example: 8

inputs). Confirm the setting by clicking OK.

Select

E3

t. & (*Boolean AND*®)
2 * (*Multiply*)
i+ (*Addition*®)
ubtraction™)
i/ (*Divide®)

2 1 {*copy (1 gain)*)
i < (*Less than*)

+

ii <= (*Less or equal*)

L <> (*Is not equal®)

. = (*Is equal®)

2 > (*Greater than®)

ii »= (*Greater or equal)

i >» [LJ.K] (*Put array item (3 dim)*)
12 33 [LJ] (*Put array item {2 dim)*)
i 3> [I] (*Put array item (1 dim)*)

i [LJ.K] > (*Get array item (3 dim)*)

i [LJ] »> (*Get array item (iﬂ?y
+7 I s o it 1 o Y

+'

-

-

Inputs: 8 = Help [OK

o]

The '+' block diagram shows 8 inputs now. Assign variable to the new inputs

Page 332

Win-GRAFWorkbench User Manual
Version 1.0

?77?
?77?

+
?77?

s N e Y Y s Y s N o |

17.3

Comparison Operations

Below are the standard operators and blocks that perform comparisons:

Operator Meaning

< less than

> greater than

<= less or equal

>= greater or equal

= is equal

<> is not equal

CMP detailed comparison

Table 49: Standard comparison operators

17.3.1 Less Than (< LT)

Operator

Block Diagram

Description

<

IN1i—

INz—

<

2

Test if first input is less than second input.

In/ Data Description
Output type

IN1 ANY First input.

IN2 ANY Second input.

Q BOOL TRUE if IN1 < IN2.

- Both inputs must have the same type.

- Comparisons can be used with strings. In that case, the
lexical order is used for comparing the input strings. For
instance, 'ABC"is less than 'ZX'; 'ABCD' is greater than 'ABC'.

ST Language:

ICP DAS

Page 333 Win-GRAFWorkbench User Manual
Version 1.0

Operator

Block Diagram

Description

Q := IN1 < IN2;

LD Language:
- In LD language, the input rung (EN) enables the operation,
and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:
EN

Q
F—1 — < —1 11—
N1+
IN=2—

17.3.2 Greater Than (> GT)

Operator | Block Diagram Description
N Test if first input is greater than second input.
IN1— —Q
T2 In/ Data Description
Output type
IN1 ANY First input.
IN2 ANY Second input.
Q BOOL TRUE if IN1 > IN2.
- Both inputs must have the same type.
- Comparisons can be used with strings. In that case, the
S lexical order is used for comparing the input strings. For

instance, 'ABC' is less than 'ZX'; 'ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 > IN2;

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:

EN o
— — > 11—

IMN1—

TNz —

17.3.3 Less Than or Equal (<= LE)

ICP DAS

Page 334 Win-GRAFWorkbench User Manual
Version 1.0

Operator

Block Diagram

IN1—
INzZ—

o=

—2

Description
Test if first input is less than or equal to second input.

In/ Data Description
Output type

IN1 ANY First input.

IN2 ANY Second input.

Q BOOL TRUE if IN1<= IN2.

- Both inputs must have the same type.

- Comparisons can be used with strings. In that case, the
lexical order is used for comparing the input strings. For
instance, 'ABC' is less than 'ZX'; 'ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 <= IN2;

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:
EN

Q

— — <= F—1t1—
IN1i—
INZ—

17.3.4 Greater Than or Equal (<= LE)

Operator
>=

ICP DAS

Block Diagram

IN1—
INZ—

5=

—Q

Description
Test if first input is greater than or equal to second input.

In/ Data Description
Output type

IN1 ANY First input.

IN2 ANY Second input.

Q BOOL TRUE if IN1<=IN2.

- Both inputs must have the same type.

- Comparisons can be used with strings. In that case, the
lexical order is used for comparing the input strings. For
instance, 'ABC' is less than 'ZX'; '"ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 <= IN2;

Page 335 Win-GRAFWorkbench User Manual
Version 1.0

Operator | Block Diagram Description

LD Language:
- In LD language, the input rung (EN) enables the operation,
and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:
EN

Q

F—1 — »= —11—
IN1—
INzZ—

17.3.5 Equal (= EQ)

Operator | Block Diagram Description
Test if first input is equal to second input.

IN1— —Q
IHz—) In/ Data Description
Output type
IN1 ANY First input.
IN2 ANY Second input.
Q BOOL TRUE if IN1= IN2.

- Both inputs must have the same type.

- Comparisons can be used with strings. In that case, the
lexical order is used for comparing the input strings. For

= instance, 'ABC'is less than 'ZX'; 'ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 = IN2;

LD Language:
- In LD language, the input rung (EN) enables the operation,

and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:

EN Q
—t— = —t1—

IN1i—

INz—

17.3.6 Not Equal (<> NE)

ICP DAS Page 336 Win-GRAFWorkbench User Manual
Version 1.0

Operator | Block Diagram Description

- Test if first input is not equal to second input.
IN1— —2
Hz— In/ Data Description
Output type
IN1 ANY First input.
IN2 ANY Second input.
Q BOOL TRUE if IN1<> IN2.

- Both inputs must have the same type.
- Comparisons can be used with strings. In that case, the
lexical order is used for comparing the input strings. For

<> instance, 'ABC' is less than 'ZX'; 'ABCD' is greater than 'ABC'.

ST Language:
Q := IN1 <> IN2Z;

LD Language:
- In LD language, the input rung (EN) enables the operation,
and the output rung is the result of the comparison.
- The comparison is executed only if EN is TRUE:
EN

Q

—1 — < —1 1—
IM1—
IN=2—

17.3.7 Detailed Comparison

Operator | Block Diagram Description

CmP CHP Function Block - Comparison with detailed outputs for integer
IN1— —LT | inputs.
INZ— —EQ
—GT

In/ Data Description
Output type
IN1 DINT First input.
IN2 DINT Second input.
LT BOOL TRUE if IN1 < IN2.
EQ BOOL TRUE if IN1=IN2.
GT BOOL TRUE if IN1> IN2.

ST Language:
MyCMP (IN1, INZ2);

ICP DAS Page 337 Win-GRAFWorkbench User Manual
Version 1.0

Operator | Block Diagram

Description

bLT := MyCmp.LT;
bEQ := MyCmp.EQ;
bGT := MyCmp.GT;

17.4 Data Type Conversion Functions

For arithmetic, mathematic and comparison operations all the operands need to be of
the same data type. Use the typecasting functions (Table 50) to convert a data type.

In Win-GRAF all data type conversion has to be done explicitly as it does not support
implicit conversion of data. That means the compiler will not automatically convert a
'smaller' data type to a 'larger' data type (e.g. from INT to DINT; or from BYTE to WORD)
and it will generate an error if it encounters an expressions or assignments with a
mismatch of data types.

Function
ANY_TO_BOOL

ANY_TO_SINT

ANY_TO_INT

ANY_TO_DINT

ANY_TO_LINT

ANY_TO_REAL

ICP DAS

Block Diagram

IN—

ANY TO BOOL

IN—|

ANY_TO_SINT

ANY_TO_INT

—

ANY_TO_DINT

IN—|

ANY_TO_LINT

IN—

ANY_TO_RELL

Page 338

Description
Converts the input variable into boolean
value.

Converts the input into a short integer (8 bit)
value.

Converts the input into a 16 bit integer
value.

Convert to Long Integer (32-bit — Default)

Convert to Long Integer (64-bit)

Convert to real value (floating point)

- For BOOL input data types, the output is
0.0or 1.0.

- For DINT input data type, the output is
the same number.

- For TIME input data types, the result is
the number of milliseconds.

- For STRING inputs, the output is the
number represented by the string, or 0.0

Win-GRAFWorkbench User Manual
Version 1.0

Function

ANY_TO_LREAL

ANY_TO_TIME

ANY_TO_STRING

NUM_TO_STRING

ICP DAS

Block Diagram

ANY TO LREAL
IN— —0

ANY TO TIME

ANY TO STRING
IH— —Q

NUM_TO_STRING
IN e] |
\Width o-a
Digits
Page 339

Description

if the string does not represent a valid
number.

Converts the input into double precision real
value.

For BOOL input data types, the output is
0.0 or 1.0.

For DINT input data type, the output is
the same number.

For TIME input data types, the result is
the number of milliseconds.

For STRING inputs, the output is the
number represented by the string, or 0.0
if the string does not represent a valid
number.

Convert the input to Timer value

For BOOL input data types, the output is
tHOms or tH1ms.

For DINT or REAL input data type, the
output is the time represented by the
input number as a number of
milliseconds.

For STRING inputs, the output is the time
represented by the string, or tHOms if the
string does not represent a valid time.

converts to character string

For BOOL input data types, the output is
1 or O for TRUE and FALSE respectively.
For DINT, REAL or TIME input data types,
the output is the string representation of
the input number.

This is a number of milliseconds for TIME
inputs.

Convert Number to String.

Can set the decimal digital number after
converting

This function converts any numerical
value to a string. Unlike the
ANY_TO_STRING function, it allows you
to specify a wished length and a number
of digits after the decimal points.

If WIDTH is O, the string is formatted with
the necessary length.

If WIDTH is greater than 0, the string is
completed with heading blank characters
in order to match the value of WIDTH.

If WIDTH is lower than 0, the string is

Win-GRAFWorkbench User Manual
Version 1.0

Function Block Diagram Description

completed with trailing blank characters
in order to match the absolute value of
WIDTH.

- If DIGITS is lower or equal to 0, then
neither decimal part nor point are added.

- If DIGITS is greater than O, the
corresponding number of decimal digits
are added. ‘0’ digits are added if
necessary

- If the value is too long for the specified
width, then the string is filled with '*'
characters.

Examples

Q := NUM TO STRING(123.4, 8, 2);
(* Q is " 123.40'" *)

Q := NUM TO STRING(123.4, -8, 2);
(* Q is '123.40 ' *)

Q :=NUM _TO STRING(1.333333, 0,2);
(* Q is '1.33'" *)

Q := NUM TO STRING (1234, 3, 0);
(* Q i !"H*EAHFT *)

ATOH HTOL Convert hexadecimal string to integer.

TH— —Q Converts integer to string using hexadecimal
basis.

HTOA LTOH Convert integer to hexadecimal string

IH— —Q Converts string to integer using hexadecimal
basis.

Table 50: Typecasting function

Example:
In the following floating point calculation the DINT variable is first explicit converted to a

REAL type before the calculation is being done:
REAL Val 1 := ANY TO REAL (DINT Val 1) * 3.5 + 4.8 ;

17.5 Bit Operation

The tables below list the standard functions for executing bit operations on 8 bit to 32
bit variables.

ICP DAS Page 340 Win-GRAFWorkbench User Manual
Version 1.0

Function | Block Diagram

SHL S HL
IHN—| —0
NES—
SHR SHE
IH—| —
NEBS—
ROL ROL
IHN—| —0
NER—
IH—| —
NER—

Table 51: Bitshift operators

Function | Block Diagram
MBSHIFT

Description Diagram
Shift bits of a operand to the left. . MBS
I
Shift bits of a operand to the right. MBS ,
R
Rotate bits of a operand to the left. - MBR
LT IT Tk
Rotate bits of a operand to the right. NER

Description
Multibyte shift / rotate

Buffer—
Po=—
NbEyte—
MhShifr—
ToRight—
FRotate—
InBit—

MEShift

Table 52: Byte shift operator

Bitmask operators are used for bitwise operations, particularly in a bit field. Using a
mask, multiple bits in a byte, word, integer etc. can be set either on, off or inverted from
on to off (or vice versa) (Table 53).

Function Block Diagram Description
AND_MASK AND_MASK Performs a bit to bit AND between two integer
I - values
M3F—
OR_MASK J—— Performs a bit to bit OR between two integer
m—{ — values.
M3F—
XOR_MASK YOR MASE Performs a bit to bit exclusive OR between two
N - —Q integer values.
HM3FK—
NOT_MASK NOT MASE Performs a bit to bit negation of an integer value.
IN—| - 0
ICP DAS Page 341 Win-GRAFWorkbench User Manual

Version 1.0

Table 53: Bitmask operator

Function Block Diagram Description
LOBYTE LoByte Get the lowest byte of a word.
N L 9 Get the less significant byte of a word.
HIBYTE HiByte Get the highest byte of a word.
TN L 9 Get the most significant byte of a word
LOWORD LoWord Get the lowest word of a double word.
TN L o Get the less significant word of a double word.
HIWORD HiWord Get the highest word of a double word.
IN— o Get the most significant word of a double word.
MAKEWORD M keHord Pack bytes to a word.
BT ueor Builds a word as the concatenation of two bytes.
LO— -0
MAKEDWORD MakeDWord Pack words to a double word.
HT_ Builds a double word as the concatenation of two
LOo— —0 words.
PACK8 Pack bits in a byte.
Pack® . . .
TH0— o Builds a byte with bits.
IN1—
INZ2—
IN3—
IN4—
INS—
INE—
INT—
UNPACKS8 Extract bits of a byte.
Unpack?
N | o0 Structure Text example:
01 MyUnpack (IN) ;
oo Q0 := MyUnpack.QO;
| 1 Q1 := MyUnpack.Ql;
—QE Q2 := MyUnpack.Q2;
| o5 Q3 := MyUnpack.Q3;
—Q’:ﬁ Q4 := MyUnpack.Q4;
e Q5 := MyUnpack.Q5;
Q6 := MyUnpack.Q6;
Q7 := MyUnpack.Q7;
SWAB SWAB Swap the bytes of a integer
IN Q Supported data types are INT, UINT, WORD, DINT,
UDINT and DWORD.

Table 54: Pack/unpack 8, 16 and 32 bit registers

ICP DAS Page 342 Win-GRAFWorkbench User Manual
Version 1.0

A single bit in a 8 bit to 32 bit integer can be directly turn on or off. It is also possible to
directly check whether a certain bit in a particular bit field has been set (Table 55).

Function Block Diagram Description
SETBIT SetBit Set a bit in an integer register.
IN—] -0
BIT—
VAL
TESTBIT TestBit Test a bit of an integer register. Indicates whether
IN— o a bit at a certain position in an integer value is set
BIT— or not.

Table 55: Bit access in 8 bit to 32 bit integers

17.5.1 Examples

17.5.1.1 Extract Bits from a Byte

This section shows how to extract single bits from a BYTE, USINT and INT data type by
using the UNPACKS function:

- Unpack one BYTE (or USINT, range: 0 to 255) to 8 Booleans by using the 'UNPACK8'

function.
EnUNPACKS)... | e JEnUNPACKS ... |
Bool_1
USINT 1 i @] USINT_1 =128{iIn (e e

Bool_2

Q2 1] Q2]
Bool_3

& ' — a3f—O—
Bool_4

G4 L] (e | |
Bool_5

Q5 o Q5]
Bool_&

Q6 —t [l
Bool_7 Bool_7 = TRUE

Q7 - ar

In Structure Text each bit of a integer data type can be individually addressed by
adding " and then the bit number:

Bool 0 := USINT 1.0;
Bool 1 := USINT 1.1;
ICP DAS Page 343 Win-GRAFWorkbench User Manual

Version 1.0

Bool 2 := USINT 1.2;
Bool 3 := USINT 1.3;
Bool 4 := USINT 1.4;
Bool 5 := USINT 1.5;
Bool 6 := USINT 1.6;
Bool 7 := USINT 1.7;

- To unpack one SINT to 8 Booleans, the data type first has to be converted into a BYTE
type by calling the '"ANY_TO_BYTE ()' function:

Inzt_UNPACKS Biool_0
En UMPACKS Q0
Bool_1
ANY_TO_BYTE(SINT_YAL_1) l® 1 L]
Bool_2
Q2]
Bool_3
Q3 ']
oo Bool_4
Q4]
Bool_5
Q5]
Bool_&
Q6]
Bool_7
Q7 ']

17.5.1.2 Pack Bits in a Byte
The 'PACK8' function extract single bits from a BYTE, USINT and INT data type:

- Use the 'PACK8' function to pack 8 Booleans into one BYTE (or USINT, range: 0 to
255):

Ladder:

ICP DAS Page 344 Win-GRAFWorkbench User Manual
Version 1.0

Biool_0 ouT
TNO PACKE Eno |
Bool_1
' I afusinT_1
Bool_2
' N2 Boal_0 = TRUE T = TRLE
Bool_3 | 1 [0 PACKS Eno
' BE Bool_1 = TRUE
Boal_4 —] | Jr afUsnT_1=15
' I Bool_2 = TRUE
Bool_5 —] | [
' s [:> S
Bool_B —] | [}
' NG
Bool_7 . Jinia
' N7
. Jinis
[} {InE
. [

Structure Text:

Method 1:

USINT 1 := PACK8 (Bool 0, I Bool 1, Bool 2, Bool 3,
Bool 4, Bool 5, Bool 6, Bool 7);

Method 2:

USINT 1.0 := Bool 0;
USINT 1.1 := Bool 1;
USINT 1.2 := Bool 2;
USINT 1.3 := Bool 3;
USINT 1.4 := Bool 4;
USINT 1.5 := Bool 5;
USINT 1.6 := Bool 6;
USINT 1.7 := Bool 7;

- Pack 8 Booleans into one SINT type: The 'PACK8’' function can only pack Booleans into a
USINT type, it is therefore necessary to convert the 'PACK8’ output into a SINT type by
calling the '"ANY_TO_SINT' function:

ICP DAS Page 345 Win-GRAFWorkbench User Manual
Version 1.0

Bool_0

I ING: PACKE Eno En ANY_TO_SINTE...
Bool_1 L=
— INA af-Usint_1 Usint_1 {1 al-sint_1
Bool_2
- INZ
Bool_3
- IN3
Bool_4 ARLRAN)
- N4
Bool &
— INS
Bool_&
[INE
Bool 7
- INT
Page 346 Win-GRAFWorkbench User Manual

ICP DAS

Version 1.0

	1 Product Overview
	1.1 Introduction

	2 Workbench and Runtime Installation
	2.1 Installing Win-GRAF Workbench
	2.2 Run Win-GRAF Workbench
	2.3 Win-GRAF Runtime Platforms

	3 Workbench
	3.1 Customize Toolbar and Menus
	3.2 Main Window
	3.3 The Workspace Window
	3.4 Program Editor
	3.5 Variable Editor
	3.6 Output Window View
	3.6.1 Build Output
	3.6.2 Cross References
	3.6.3 Task Status Output
	3.6.4 Runtime Messages
	3.6.5 Call Stack View
	3.6.6 Call Tree View
	3.6.7 Digital Sampling Trace
	3.6.8 Code Checker

	3.7 Status Bar

	4 Single-Tasking
	4.1 Create a Project
	4.2 Edit a Program
	4.3 Create a Program
	4.4 Task Configuration
	4.4.1 Task Cycle Time
	4.4.2 Program Execution Sequence

	4.5 Build/Compile Application
	4.6 Download Application
	4.7 Debugging

	5 Multi-Tasking
	5.1 Create a Project
	5.2 Create and Edit a Program
	5.3 Task Setting
	5.4 Data Sharing between Tasks
	5.5 Get System Information
	5.6 Build/Compile Application
	5.7 Download Application
	5.8 Debugging

	6 Editing Programs
	6.1 Structured Text (ST) and Instruction List (IL) Editor
	6.1.1 ST / IL Language Selection
	6.1.2 ST / IL Syntax Coloring
	6.1.3 Tooltips in the ST / IL Editor
	6.1.4 Shortcuts for ST and IL Editor

	6.2 Function Block Diagram (FDB) Editor
	6.2.1 Using the FBD toolbar
	6.2.2 Drawing FBD connection lines
	6.2.3 Selecting FBD Variables and Instances
	6.2.4 Viewing FBD Diagrams
	6.2.5 Moving or Copying FBD Objects
	6.2.6 Inserting FBD Objects on a Line
	6.2.7 Resizing FBD objects

	6.3 Ladder Diagram (LD) Editor
	6.3.1 Using the LD Toolbar
	6.3.2 Managing Rungs
	6.3.3 Contacts
	6.3.4 Coils
	6.3.5 Power Rails
	6.3.6 Calling a Function or Function Block
	6.3.7 Jumps - Labels
	6.3.8 Use of ST Expressions
	6.3.9 Comments in LD Diagrams
	6.3.10 Viewing LD diagrams
	6.3.11 Moving and Copying LD Objects

	6.4 Converting a Program to Another Language
	6.5 Some Tips
	6.5.1 Bookmarks
	6.5.2 Handling Exceptions

	7 Variable Monitoring (Debugging Tools)
	7.1 Monitoring Variable Values
	7.1.1 Inline Monitoring
	7.1.2 Monitoring in the Variable Editor

	7.2 SpyList
	7.2.1 Local SpyList
	7.2.2 Task-SpyList
	7.2.3 Multi-SpyList

	7.3 Soft Oscilloscope
	7.4 Control Panel for Debugging
	7.4.1 Create Control Panel
	7.4.2 Exporting Control Panel to X5Viewer

	7.5 Recipe Control
	7.6 Test Sequences
	7.7 Debug Message (PRINTF)
	7.8 Breakpoints - Step by Step Debugging
	7.8.1 Add a Breakpoint
	7.8.2 Example

	7.9 W5Monitoring Utility
	7.9.1 Create Monitoring Application File
	7.9.2 Running Monitoring Application

	8 Online Program Change
	8.1 Online Changes Limitations
	8.2 Using Online Change

	9 Modbus Networking
	10 Modbus Slave
	10.1 Slave Data Block Configuration
	10.1.1 Selecting Slave
	10.1.2 Define Slave Register

	10.2 Slave Type Configuration
	10.2.1 Single Data Block
	10.2.2 Multiple Data Block

	11 Modbus Master
	11.1 Modbus RTU/ASCII Master
	11.1.1 Configure Communication Interface

	12 Variables
	12.1 Create Variables
	12.1.1 Declare Variable in the Variable Editor
	12.1.2 Declare Variable as Text
	12.1.3 Declare Variable from the Program Editor

	12.2 Retain Variables
	12.2.1 Programmatically Save/Load Retain Variables

	13 Derived Data Type
	13.1 Structures
	13.1.1 Define a Structure
	13.1.2 Declare Instance of a Structure

	13.2 Enums
	13.2.1 Define a Enumerate Type
	13.2.2 Declare an Enumerate Variable

	13.3 Bit Field
	13.3.1 Define a Bit Field Type
	13.3.2 Declare Bit Field Variable

	13.4 Function and Function Block
	13.4.1 Define Function Block
	13.4.2 Define Function

	14 Backup Management
	14.1 Save Project Backup to Local PC
	14.2 Save Project to Runtime Target

	15 Target Runtime Configuration
	16 Basic Operations
	16.1 Variable assignment
	16.2 Access to bits of an integer
	16.3 Parenthesis
	16.4 Calling a function
	16.5 Calling a function block
	16.6 Calling a sub-program
	16.7 MOVEBLOCK - Move/Copy items of an array
	16.8 CountOf - Count Items in an Array
	16.9 INC - Increment Numerical Variable
	16.10 DEC - Decrement Numerical Variable
	16.11 Labels
	16.12 Jumps
	16.13 RETURN - Jump to the End of the POU
	16.14 IF - Statement
	16.15 WHILE - Statement
	16.16 REPEAT - Statement
	16.17 FOR - Statement
	16.18 CASE - Statement
	16.19 EXIT - Statement
	16.20 WAIT- Statement
	16.21 ON - Statement

	17 Standard Function/Function Blocks Library
	17.1 Boolean Operations
	17.2 Arithmetic operations
	17.2.1 Set Number of Input Parameters

	17.3 Comparison Operations
	17.3.1 Less Than (< LT)
	17.3.2 Greater Than (> GT)
	17.3.3 Less Than or Equal (<= LE)
	17.3.4 Greater Than or Equal (<= LE)
	17.3.5 Equal (= EQ)
	17.3.6 Not Equal (<> NE)
	17.3.7 Detailed Comparison

	17.4 Data Type Conversion Functions
	17.5 Bit Operation
	17.5.1 Examples

