I-2533 [V2] User Manual

O⊘ Notice ⊘⊘

This manual is for the I-2533 module with [V2] mark on the case. Here shows the picture below. The I-2533 [V2] can works with original I-2533 module as below.

If the users do not use the PC utility for some configuration, they do not need to care about the difference. The main difference between I-2533 [V2] and I-2533 is configuration of the PC utility. Here shows the list of the compatibility.

Function Items	I-2533 with V2 mark
Rotary Definition	Compatible with I-2533
Pin Definition	Compatible with I-2533
LED Definition	Compatible with I-2533
120Ω Resister Switch	Compatible with I-2533
Fiber Communication	Compatible with I-2533
CAN Communication	Compatible with I-2533
PC Utility	Supported but incompatible with I-2533
CAN Filter Configuration	Supported but incompatible with I-2533
Firmware Upgrade	Supported but incompatible with I-2533
CAN User-defined Baud Rate Configuration	Supported but incompatible with I-2533

Warranty

All products manufactured by ICP DAS are under warranty regarding defective materials for a period of one year from the date of delivery to the original purchaser.

Warning

ICP DAS assumes no liability for damages resulting from the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, or for any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copyright 2021 by ICP DAS. All rights are reserved.

Trademark

The names used for identification only may be registered trademarks of their respective companies.

Tables of Content

Tab	les o	f Content	3
1	Intro	oduction	4
	1.1	Specifications	5
	1.2	Features	6
2	Tech	nical data	7
	2.1	Block Diagram	7
	2.2	Appearance	8
	2.3	Pin Assignment	9
	2.4	Rotary Switch	10
	2.5	LED Indicator	11
	2.6	Terminator Resistor Setup	13
	2.7	Wire Connection	15
3	Netv	vork Deployment	16
	3.1	Driving Capability	16
	3.2	Fiber Selection & Fiber Length	17
	3.3	Filter & User's Baud Rate Configuration	18
	3.4	CAN Message Filter Configuration	23
	3.5	Update Firmware	25
4	Dime	ension	26

1 Introduction

I-2533 is a local CAN bridge used to establish a connection between two CAN bus system via fiber optic transmission medium. In order to solve the problem between CAN and fiber transmission medium, I-2533 is specially designed for converting the electrical CAN bus signal to fiber optic cables. Not just like I-2533, I-2533 has three more important features.

First, the transmission distance limitation of the CAN bus system will not reduced because of CAN baud rate. It means that the total network distance can be extended. Second, the bus error on one CAN network will not affect the operation of another CAN network. Finally, the two CAN network can communication with each other by using different CAN baud rate for highly flexibility. Besides, I-2533 provides the utility tool for user-defined baud rate and filter configuration. By using this tool, it is allowed to have user-defined baud rate and message filter. When users use the I-2533 on two CAN network with different CAN baud rate, it may be useful to reduce the bus loading on the network which has low baud rate.

1.1 Specifications

CAN Interface	
Connector	Screwed terminal block (CAN_GND, CAN_L, CAN_H)
Baud Rate (bps)	10 k ~ 1 M
Transmission	Depend on haud rate
Distance (m)	
Isolation	2500 Vrms
Terminator Resistor	Switch for 120Ω terminator resistor
Specification	ISO-11898-2, CAN 2.0A and CAN 2.0B
Fiber Interface	
Connector	ST (Multi-mode)
Wave Length	850 nm
Fiber Cable	50 / 125 μm , 62.5 / 125 μm, 100 / 140 μm (62.5 / 125μm is recommended)
Transmission Distance (m)	2 km max (in 62.5 / 125 µm fiber cable)
UART Interface	
COM 1	RS-232 (configuration only)
COM 1 Connector	Screwed terminal block (RxD, TxD, GND)
Baud Rate (bps)	115200
Data bit	8
Stop bit	1
Parity	None
LED	
Round LED	PWR LED, CAN_Tx LED, CAN_Rx LED, CAN_Err LED, FB_Err LED
Power	
Power supply	Unregulated +10 ~ +30 Vpc
Protection	Power reverse polarity protection, Over-voltage brown-out protection
Power Consumption	3 W
Mechanism	
Installation	DIN-Rail
Dimensions	32.3mm x 77.5mm x 99.0mm (W x L x H)
Environment	
Operating Temp.	-25 ~ 75 ℃
Storage Temp.	-40 ~ 80 °C
Humidity	5 ~ 95% RH, non-condensing

1.2 Features

- Fiber Port: ST (Multi-mode)
- Maximum transmission distance up to 2 km at any CAN baud rate
- TCAN1042 CAN transceiver
- 2500 Vrms isolation on the CAN side
- Support both CAN 2.0A and CAN 2.0B
- Fully compatible with the ISO 11898-2 standard
- Rotary switch for CAN baud rate configuration
- Build-in switch for 120 Ω terminator resistor
- Up to 100 CAN nodes on each channel
- Removable terminal block, Mount easily on DIN-Rail
- Allow user-defined baud rate
- Fiber cable broken detection
- Utility tool for message filter configuration.
 (V2 version has different filter configuration from the original module).

2 Technical data

2.1 Block Diagram

The following figure is the block diagram illustrating the functions of the I-2533 module.

Figure 2-1 Block Diagram of I-2533

2.2 Appearance

Figure 2-2 Appearance of I-2533

2.3 Pin Assignment

The pin assignments of COM port, CAN port, fiber port and power connector of I-2533 are shown in the following tables.

Port	Name	Description
	TXD	TXD pin of RS-232 port.
COM	RXD	RXD pin of RS-232 port.
	GND	SG (or GND) pin of RS-232 port.
	CAN_L	CAN_Low, signal line of CAN port.
CAN	CAN_H	CAN_High, signal line of CAN port.
	CAN_GND	CAN_Ground, ground voltage level of CAN port.
Fibor	TXD	Transmit optic data.
Fiber	RXD	Receive optic data.
	+VS	Voltage Source Input. +10 V_{DC} ~ +30V V_{DC} .
Power	GND	Power Ground.
	F.G.	Frame Ground.

Table 2-1 Pin Assignment

Sometimes, the CAN_GND voltage level of different CAN devices on a CAN bus system are not equal. In this case, it could cause some problems and derogate the system stability. There is one way to relieve this situation; users can connect the CAN_GND of different CAN devices with each other to balance the voltage level of CAN_GND.

Electronic circuits are always influenced by different levels of Electro-Static Discharge (ESD), which become worse in a continental climate area. F.G. provides a path for conducting the ESD to the earth ground. Therefore, connecting the F.G correctly can enhance the capability of the ESD protection and improve the module's reliability.

Wiring of CAN_GND and F.G. is not necessary; users can modify the configuration of wiring according to real applications.

2.4 Rotary Switch

When users would like to set the CAN baud rate or message filter of I-2533, use the rotary swich on the upper of the power connector to archieve this purpose. Users can find it on the top of the power connector.

Figure 2-3 Location of Rotary Switch

There are 16 sections on the rotary switch. They are descripted on the following table.

Switch Value	Description
0	Set baud rate to 10 kbps
1	Set baud rate to 20 kbps
2	Set baud rate to 50 kbps
3	Set baud rate to 80 kbps
4	Set baud rate to 100 kbps
5	Set baud rate to 125 kbps
6	Set baud rate to 250 kbps
7	Set baud rate to 500 kbps
8	Set baud rate to 800 kbps
9	Set baud rate to 1 Mbps
А	Set baud rate to user-defined baud rate which is configured
	by I-2533 utility.
B~D	Not-available
E	Firmware update mode.
F	Set I-2533 into configuration mode.

Table 2.2	Docori	ntion	of D	otony	Switch
	Descri	ριιοπ		olary	Switch

2.5 LED Indicator

There are 5 LEDs on the I-2533. One for power indication, three for CAN bus indication and one for fiber indication. The LED assignment and description are shown as follows.

Figure 2-4 LED Assignment of I-2533

LED Name	Color	Description
PWR	Red	When power on the I-2533, this LED is turned on.
CAN_Tx	Green	When the I-2533 sends one CAN message to CAN
		bus, this LED flashes once. Therefore, if bus loading
		is heavy, the LED will be always on.
CAN_Rx	Green	When the I-2533 receives one CAN message from
		CAN bus, this LED flashes once. Therefore, if bus
		loading is heavy, the LED will be always on.
CAN Err	Red	1. If the I-2533 detects the bus-off status on the CAN
		bus, this LED is always on. At this moment, the
		I-2533 clear all CAN messages stored in the
		I-2533 transmission buffer. When the I-2533 can
		receive or transmit one CAN message
		successfully, the error status is clear and the LED
		is turned off if there is no error happened.
		2. If the I-2533 can't send CAN messages
		successfully because the bus connector is off or
		some errors happen, this LED flashes five times
		per second. In this case, the I-2533 will keep all
		CAN messages in the transmission buffer until the
		buffer is overflow ${\scriptstyle \circ}$ When the I-2533 can receive or
		transmit one CAN message successfully, the error
		status is clear and the LED is turned off if there is
		no error happened.

		3. If the CAN transmission buffer is overflow, this
		LED flashes once per second. If the I-2533 sents
		all the CAN messages sotred in the transmission
		buffer in to the CAN network, the LED is turned off
		if there is no error happened.
Fiber Err	Red	1. If the I-2533 detects the RXD line of the fiber is off,
		this LED is always on.
		2. If the fiber data buffer is overflow, this LED flashes
		once per second. If the I-2533 sents all the data
		sotred in the fiber data buffer, the LED is turned off
		if there is no error happened.

Table 2-3 LED Description

2.6 Terminator Resistor Setup

In order to minimize the reflection effects on the CAN bus line, the CAN bus line has to be terminated at both ends by two terminator resistors as in the following figure. According to the ISO 11898-2 spec, each terminator resistor is 120Ω (or between 108Ω ~ 132Ω). The bus topology and the positions of these terminator resistors are shown as following figure.

Figure 2.5 CAN bus network topology

Each I-2533 includes one build-in 120Ω termintor resistor, users can decide if it is enabled or not. The DIP switch for terminator resistor is under the power connector.

Figure 2-6 Location of Terminator Resistor DIP Switch

The following DIP switch statuses present the condition if the terminator resistor is active (default) or inactive.

Figure 2-7 Adjustment of Terminal Resistance

Generally, if your application is as follows, we recommend you to enable the terminator resistor.

Figure 2-8 Application 1

If your application is like the structure as follows, the terminator resistor is not needed.

2.7 Wire Connection

The wire connection of I-2533 is displayed below.

Figure 2-10 Wire Connection of I-2533

The I-2533 has a metallic board attached to the back of the plastic basket. This metallic board and the F.G. pin of power connector are interconnected inside the I-2533. When users mount the I-2533 onto a metal DIN-Rail, users can connect the DIN-Rail to Earth Ground to replace connecting the F.G. pin of power connector.

Figure 2-11 Metallic Board at Back of I-2533

3 Network Deployment

3.1 Driving Capability

Before introducing the driving capability of I-2533, some characteristics of copper cable must be assumed. The AC parameters are 120Ω impedance and 5 ns/m line delay, and the DC parameter follows the table shown below.

Wire Cross-Section [mm ²]	Resistance [Ω/km]
~0.25 (AWG23)	< 90
~0.5 (AWG20)	< 50
~0.8 (AWG18)	< 33
~1.3 (AWG16)	< 20

Table 3-1 Recommended DC parameters for CAN Bus Line

Under the conditions described above, users can refer to the following table to know the maximum node numbers in each segment following ISO 11898-2 and the maximum segment length when using different type of wire.

Wire Cross-	The maxin case of sp	mum segmer ecific node r	nt length [m] number in thi	under the s segment
Section [mm2]	16 Nodes	32 Nodes	64 Nodes	100 Nodes
~0.25 (AWG23)	< 220	< 200	< 170	< 150
~0.5 (AWG20)	< 390	< 360	< 310	< 270
~0.8 (AWG18)	< 590	< 550	< 470	< 410
~1.3 (AWG16)	< 980	< 900	< 780	< 670

Table 3-2 Driving Capability

3.2 Fiber Selection & Fiber Length

The specification of fiber used to connect I-2533 is shown as following table.

Туре	Diameter [µm] (Core/Cladding)	Operating Wavelength [nm]
	50/125	
Multi-Mode	62.5/125	850
	100/140	

|--|

I-2533 allows maximum 2 km fiber length for each kind of CAN baud. Alought the maximum fiber length has no relationship with the CAN baud rate, but the some attributions of fiber still influence it. Higher attenuation of fiber will reduce the transmission distance. Users can use following table to know the relationship between those two.

Table 3-4 The relationship between CAN baud rate and ideal fiber length

CAN Baud Rate [bit/sec]	Ideal Fiber Length [m]
1 M ~ 10 k	2000

Table 3-5 Attenuation & Fiber Length

Attenuation [dB/km]	Fiber Length [m]
2.8	< 2000
4	< 1500

By the way, when users use I-2533 in their application, they need to use one pair of I-2533 for communication. The general application architecture may look like as follows.

I-2533 [V2] User Manual (ver. 2.0, 2021/10/21) -----17

3.3 Filter & User's Baud Rate Configuration

When users want to use user's baud rate or set the message filter, I-2533 utility tool may be needed. It can be free downloaded from the following web site or get it in the product CD (path: CAN/Converter/I-2533 /Software): https://www.icpdas.com/en/product/I-2533

After getting the utility tool, please follow the following steps to set the baud rate and message filter.

Step0: Power off the I-2533. Set the rotary switch to "F", and connect the PC available COM port with the COM port of the I-2533. Users can find the communication cable in the product box. When connecting to the COM port of I-2533, the TxD pin of the cable is connected to the TXD pin of the COM port, RXD pin of the cable is connected to the RXD pin of the COM port, and GND pin of the cable is connected to the GND pin of the COM port. Then, power on the I-2533.

Step1: Execute the I2533_Utility.exe(v2.00), the dialog of the I-2533 utility(v2.00) will be poped up. Select the PC COM port which is connected with the COM port of the I-2533. Then, click "Connect" button.

Step2: After connecting the I-2533 successfully, the parameters stored in the I-2533 will be shown on the dialog.

I2533_U	Utility v2.00				_	
COM Port N	No. Prolific USB-to-	Serial Comm Po	ort (COM8)	∼ Cor	mect	Disconnect
User's Bau	d Rate 1000000	bps	T2_SamplePoint	3.\$₽=62.5% ∨	Firmware	Ver: 2.00
No.	CAN Mode	ACC (Accept	ance Code)(Hex)	Mask (Acceptance M	fask)(Hex)	
	~					
03	~					
04	~					
05	~					
	~					
	~					
09	~					
10	~					
11	~					
12	~					
	~					
	~					
16	~					
17	~					
10	~		Lood Error Eile	Sour To Ella	Serie	To L 2522
			LOSA FIOM File	Save to File	Save	101-2000

Step3: Users can set the baud rate on the "User's Baud Rate" field. Here, fill "250000" for 250 kbps or "83333" for 83.333kbps. The I-2533 supports the sample-point configuration. This is useful for users to adjust the sampling point of the CAN signal waveform. The "T2_SamplePoint" provides 7 items which are 25%~87.5%.

🔝 I2533	_Utility v2.00				_		×
COM Port	No. Prolific USB-to)-Serial Comm Poi	rt (COM8)	\sim	Connect	Disconnec	ct
Ilser's Ba	ud Rate 1000000	hns	T2 SamplePoin	+ 13. SP=62.5%	- Firmwar	e Ver: 2.00	^
Call'S Do		ope	12_0011011011	1.SP=87.5%		0 101.2.00	
No.	CAN Mode	ACC (Accepta	nce Code)(Hex)	3. SP=62.5%	Masl.)(Hex)	
01	~			4. SP=50.0% 5. SP=37.5%			
02	\sim			6. SP=25.0% 7. SP=70.8%			
03	~						

Step4: The default CAN filters are all disable. It means that I-2533 will receive all CAN messages and those CAN messages will be transfer to the fiber port. The filter configuration is uesed to block certain CAN messages which would not be transfered to the fiber. The filter configuration including the "CAN Mode", "ACC" field and "Mask" field. The "CAN Mode" has "11-bit CAN ID" and "29-bit CAN ID". The "11-bit CAN ID" means CAN 2.0A specification. And The "29-bit CAN ID" means CAN 2.0B specification. Refer to the CH 3.4 for how to set "ACC" and "Mask" filed.

() 12533_Utility v2.00	– 🗆 X
COM Port No. Prolific USB-to-Serial Comm Port (COM8)	✓ Connect Disconnect
User's Baud Rate 1000000 bps T2_SamplePoint 3	SP=62.5% V Firmware Ver: 2.00
No. CAN Mode ACC (Acceptance Code)(Hex) M 01 11-bit CANID 02 03 03	Aask (Acceptance Mask)(Hex)

Step5:After finishing all of the configurations, click "Save To I-2533" to store the configuration into the I-2533.

12	29-bit CANID 🛛 🗸	000BCDFE		0064DFBA	
🔽 13	11-bit CANID 🛛 🗸	7FD		6FB	
✓ 14	29-bit CANID 🛛 🗸	038CBAED		00A32D4F	
✓ 15	29-bit CANID 🛛 🗸	00AD4C6B		001FDECB	
☑ 16	11-bit CANID 🛛 🗸	1DE		02B	
17	11-bit CANID 🛛 🗸	002		002	
FA 10	20-1-14 C & MID 💦 🗸	DODEEA23		NDA48BC8	~
			Load From File	Save To File	Save To I-2533

Step6: When the procedure is successful, the following message will be shown.

×
Save configuration OK!!
確定

Step7: Then, Users can save the configurations into .xml file. Click "Save to File" to archieve this purpose.

12	29-bit CANID 🛛 🗸	000BCDFE	0064DFBA	
🔽 13	11-bit CANID 🛛 🗸	7FD	6FB	
14	29-bit CANID 🛛 🗸	038CBAED	00A32D4F	
☑ 15	29-bit CANID 🛛 🗸	00AD4C6B	001FDECB	
🗹 16	11-bit CANID 🛛 🗸	1DE	02B	
17	11-bit CANID 🛛 🗸	002	002	
F7 10	20-bit C é MID 🚽	000555423		
		Load From File	Save To File Save To I-2533	

Step8: Of course, users can load the configurations from .xml file, and "Save To I-2533" to store them into the I-2533.

12	29-bit CANID 🛛 🗸	000BCDFE	0064DFBA	
🗹 13	11-bit CANID 🛛 🗸	7FD	6FB	
14	29-bit CANID 🛛 🗸	038CBAED	00A32D4F	
🗹 15	29-bit CANID 🛛 🗸	00AD4C6B	001FDECB	
16	11-bit CANID 🛛 🗸	1DE	02B	
17	11-bit CANID 🛛 🗸	002	002	
FR 10	20-1-14 C & MID 🚽	000766423		×
		Load From File	Save To File Save 1	To I-2533

Step9. After finishing the configuration, set the rotary switch value to "0" ~ "A" and reboot the I-2533. The CAN message filter will be applied automatically in the value "0" ~ "A" of the rotary switch. The CAN baud rate set by utility is only appled when the rotary switch is set to "A".

3.4 CAN Message Filter Configuration

The I-2533 supports the CAN message filter configuration. By using the filter, the I-2533 will not receive unwanted CAN messages. The filter configuration has "Acceptance Code" and "Acceptance Mask" filed. It can filter useless CAN messages by combining these two setting.

Acceptance Code: The CAN ID bits that you want to get.

Acceptance Mask: The CAN ID bits that will be checked and need to the same with the Acceptance Code bits.

In the "Acceptance Mask", the bit value '1' means that the received CAN ID bit must the same with the corresponding CAN ID bit of the "Acceptance Code". If the two CAN ID bit are not the same, the incoming CAN message will be droped. If the bit value is '0' in the "Acceptance Mask", it means that the received CAN ID bit will not be check.

For Examples:

 If users want to receive all the incoming messages on the CAN bus, the setting must be as follow:

In CAN 2.0A(11-bit CAN-ID): Acceptance Code: Don't care Acceptance Mask: 000(Hex).

In CAN 2.0B(29-bit CAN-ID): Acceptance Code: Don't care Acceptance Mask: 0000000(Hex).

(2) If users want to only receive the message of CAN ID "123" (Hex) and drop all the other CAN message, the setting must be as follow: In CAN 2.0A(11-bit CAN-ID):

Acceptance Code: 123 (001 0010 0011 bit) Acceptance Mask: 7FF (111 1111 1111 bit)

In CAN 2.0B(29-bit CAN-ID):

(3) If users want to receive the message of CAN ID from "300" to "33F" (Hex) and drop all the other CAN message, the setting must be as follow: In CAN 2.0A(11-bit CAN-ID):

Acceptance Code: 30X (011 00XX XXXX bit) (X: don't care) Acceptance Mask: 7C0 (111 1100 0000 bit) In CAN 2.0B(29-bit CAN-ID):

 Acceptance Code:
 00000030X (0 0000 0000 0000
 0000 0011 00xx xxxx bit)

 Acceptance Mask:
 1FFFFFF (1 1111 1111 1111
 1111 1111 1111 1111
 1111 1111 1111

There are 30 filter settings. The incoming CAN message pass one of the filtering rule. The I-2533 will receive this message. Here shows the example (2) and (3) above.

12533	_Utility v2.00					—		×
COM Port	t No. Prolific US	SB-to	-Serial Comm Port (COM8)	\sim	Conne	ect	Disconnec	t
User's Ba	aud Rate 100000	00	bps T2_SamplePoin	t 3. SP=62.5%	~]	Firmware	Ver: 2.00	î
No.	CAN Mode		ACC (Acceptance Code)(Hex)	Mask (Accep	tance Ma	sk)(Hex)	_	
01	11-bit CANID	\sim	123	7FF				
02	11-bit CANID	\sim	300	7C0				
0 3	29-bit CANID	\sim	300	1FFFF7C0				
04		\sim						
05		\sim						
06		\sim						
07		\sim						
08		\sim						
09		\sim						
10		\sim						
11		\sim						
12		\sim						
13		\sim						
14		\sim						
15		\sim						
16		\sim						
17		\sim						
II 10		~						~
			Load From File	Save To	o File	Save	To I-2533	:

3.5 Update Firmware

When users would like to update the I-2533 firmeware, please prepare the tool FW_Update_Tool.exe, and the firmware .fw file which would be downloaded into the I-2533. You can get these files from the following website https://www.icpdas.com/en/download/index.php?model=I-2533

- Step 1: Power off the I-2533, set the rotary switch to 'E', and power on the I-2533. If the I-2533 is in the firmware update mode, the CAN_Tx, CAN_Rx, CAN_Err, FB_Err will flash once per second simulationously.
- Step 2: Download the FirmwareUpdateTool.zip and extract the compressed file. Then execute the FW_Updatae_Tool.exe. Select the PC COM port which is connected to the I-2533 COM port, and find the firmware by using Browser button. Then click the Firmware Update button.

FW_Update_Tool v1.08 X
1. Download Interface COM Port : C USB COM1 www.icpdas.com
2. Firmware Path
D:\1-2533\FW\TI_M4\V2UU\Bootloader\FW_Update_Too\firmware.fw
Browser
- 3. Firmware Update
Click "Firmware Update" button to start firmware updating !!
Firmware Update
Exit

Step 3: When finishing the firmware update, you can see the information as follows.

Firmware Update Success ! Please	Reboot Module !
	Einmunge Lindate

4 Dimension

