

Powerful Function Call & Easy Programming

The format of Function Call P180X_AddToScan (N, G, AF, H, L, A)

Scan Sequence Programming example 1

//Reset MagicScan controller

P180X_ClearScan();

//scan CH:1, Gain code:3, Average factor:1

//set High Alarm: 0.5V, set low alarm: -0.5V, Alarm Type:4
P180X_AddToScan(1,3,1,0.5,-0.5,4);

//scan ordinal number 0, the second data be stored in //wBuf1

P180X_SaveScan(0,wBuf1);

//scan CH:3, Gain code:2, Average factor:1,

//set High Alarm: 0.0V,set Low Alarm: -1.5V, Alarm Type:2 P180X_AddToScan(3,2,1,0.0,-1.5,2);

//scan ordinal number 1, the scanned data be stored in //wBuf3

P180X_SaveScan(1,wBuf3);

//scan CH:7, Gain code:0, Averaging factor:1, //set High Alarm: 4.0V, set Low Alarm: 0.0V, Alarm Type:1

P180X_AddToScan(7,0,1,4.0,0.0,1); //scan ordinal number 2, the scanned data be stored in //wBuf7

P180X_SaveScan(2,wBuf7);

//set sampling rate of Magicscan as 8M/24=330K, each //channel scan 100 points

//the priority of MagicScan thread is THREAD-PRIORITY-//NORMAL

Note:

High speed ,low channel count scan

- Max. Speed = 330K /3 = 110 K
- Sampling rate of channel 1, 3, 7 is 110K
- Channel 7 > 4V (high alarm)
- Channel 3 <-1.5V (low alarm)
- Channel 1 > 0.5V (out of range alarm)
- Channel 1 <-0.5V (out of range alarm)

Program example 2

// Reset MagicScan controller

P180X_ClearScan();

//scan CH:1, Gain code:1, Average factor:1, NO

//Alarm

P180X_AddToScan(1,1,1,0,0,0);

//scan ordinal number 0, the scanned data be
//stored in wBuf1

P180X SaveScan(0.wBuf1):

//scan CH:3, Gain code:2, Average factor:10, No //Alarm

P180X_AddToScan(3,2,10,0,0,0);

//SCAN ORDINAL NUMBER 1, THE SCANNED DATA BO

//STORED IN wBuf3

P180X_SaveScan(1,wBuf3);

//scan CH:7, gain code:3, Average factor:100,No //Alarm

P180X_AddToScan(7,3,100,0,0,0);

//scan ordinal number 2, the scanned data be //stored in wBuf7

P180X_SaveScan(2,wBuf7);

//set sampling rate of MagicScan as 8M/24=330K,

//each channel scan 100 points.

//the priority of MagicScan thread is THREAD-

//PRIORITY-NORMAL

P180X_StartScan(24,100,0);

NOTE:

High channel count scan at vastly different rates

Diverse Trigger Mode

PCI-1800 series provide diverse internal and external trigger modes. The internal trigger includes software trigger and pacer timer trigger. The external trigger includes the following trigger modes:

- Post- trigger mode : Acquisition begins after an external trigger and continues until the specified number of samples are collected
- Pre-trigger mode : Acquisition occurs before an external trigger occurs
- Middle trigger mode : Acquisition occurs before and after an external trigger occurs. The samples number can be pre-defined.

Software

- PCI-180X Development Toolkit for DOS
- PCI-180X Development Toolkit for Win95
- PCI-180X Development Toolkit for WinNT
- PCI-1202 Development Toolkit for DOS
- PCI-1202 Development Toolkit for Win95
- PCI-1202 Development Toolkit for WinNT

Order Description

PCI-1800H :	330KS/s High Gain 12-bit Analog and							
	Digital I/O Board (1K word FIFO)							
PCI-1800H/NDA : PCI-1800H Without D/A								
PCI-1800L :	330KS/s Low Gain 12-bit Analog and							
	Digital I/O Board (1K word FIFO)							
PCI-1800L/NDA	A: PCI-1800L Without D/A							
PCI-1802H :	High Channel ,330KS/s High Gain							
	12-bit Analog and Digital I/O							
	Board (2K word FIFO)							
PCI-1802L :	High Channel , 330KS/s Low Gain							
	12-bit Analog and Digital I/O							
Board (2K word FIFO)								
PCI-1802L /8K	: High Channel , 330KS/s Low Gain							
12-bit Analog and Digital I/O								
Board (8K word FIEO)								
■ PCI-1202L	High Channel 110KS/s Low Gain							
	12 bit Applog and Digital I/O Poord							
PCI-1202H:	High Channel, 110KS/s High Gain							
	12-bit Analog and Digital I/O							
	Board (1K word FIFO)							

Options

- DB-1825 : Screw terminal board with bread area for filter circuitry added for the PCI-1802H, -1802L, -1202H, -1202L
- DB-8225 : Screw terminal board , filter circuitry can be added for PCI-1800H,1800L
- DB-16P: 16 Channel isolated digital input Board
- DB-16R: 16 Channel SPDT relay board
- ADP-20/PCI: 20-pin Extender
- PCI-1800 LabVIEW Development Toolkit for Win95
- PCI-1800 LabVIEW Development Toolkit for WinNT
- PCI-1202 LabVIEW Development Toolkit for Win95
- PCI-1202 LabVIEW Development Toolkit for WinNT

Pin Assignment of PCI-1800H,PCI-1800L is the same as A-822PGH.

Pin Assignments of PCI-1802H,PCI-1802L

		_	~			
0 1A	1	[•	. 7	\sim	~~	A 14 0
AL 1	2		<u>ا</u>		20	AI16
A1 2	3	•	. '	•	21	AI17
A1 3	4		<u>،</u> ۱	•	22	AI18
A1 4	5			•	23	AI19
	ě	12		•	24	AI20
ALS	2	1.2		•	25	AI21
AI 6	2			•	26	AI22
AL7	8		۰.	•	27	AI23
AI 8	9	•	•	_	28	A124
AI 9	10	•		.	29	4125
AI10	11	•		.	30	A126
AI11	12	•		. I	34	A120
AI12	13	•	•		20	ALZ/
A113	14		• '	•	32	AI28
A114	15		, I	•	33	AI29
A115	16			•	34	AI30
ALLO	17			•	35	AI31
A.GND	18			•	36	DA2 out
DATOUT	10			•	37	D.GND
Ext Trg	19	('	·			