PCI Express Interface

New Members in I/O Cards (June. 2010)

2010 Product Catalog Vol.IOC1006

Taiwan Website: http://www.icpdas.com E-mail: sales@icpdas.com TEL : 886-3-597-3366 FAX : 886-3-597-3733

 China

 Website: http://www.icpdas.com.cn

 E-mail: sales_sh@icpdas.com.cn

 TEL: 86-21-6247-1722

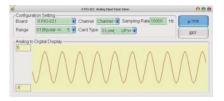
 FAX: 86-21-6247-1725

Local Distributor

Europe

Website: http://www.icpdas-europe.com E-mail: info@icpdas-europe.com TEL : +49 (0) 7121-14324-0 FAX : +49 (0) 7121-14324-90

USA Website: http://www.icpdas-usa.com E-mail: sales@icpdas-usa.com TEL : 1-310-517-9888 x101 FAX : 1-310-517-0998




Software

ICP DAS provides SDK and drivers for I/O cards to support various OS such as Linux, DOS, Windows 98/NT4/2000, and 32-/64-bit Windows XP/2003/2008/Vista/7. The Windows SDK for I/O cards contain DLL (Dynamic Link Library) file, ActiveX (OCX) control components and several sample programs with source code written in Microsoft Visual C++, Visual Basic, Borland C++ Builder, Delphi, VB.NET and C#.NET. By using the SDK and sample programs, no more complex hardware-register-based operations are required at all, and users can develop their application programs easily and quickly.

The UniDAQ is the new generation of Windows SDK that supports most I/O cards of ICP DAS, and users can then use the universal software interface to access these cards. The UniDAQ SDK supports 32-bit and 64-bit Windows, and also provides sample programs with source code for several programming languages.

Marcale, Brook	hele .			00
a 18 me part 28 min the lot down prove on				
CARLES IN A REAL OF THE REAL PROPERTY OF THE REAL P	3342			
-1 - 34F 22 Interests				
proving the state of a second state of the s				TI AZ HA
And Advanced in Nation Sectors				
New York of the Arts				and a
The second state of the se				
ten altern i kast i ten d i menski				1
ter stare and ter stare				Contractor in
Millichard Stations				Steers
And Annalysis an				_
affectively the development of the later				04.2 4
and Realized				0.7211
barris bistowe				1000
2010 Barranet Harrist				
a second de la constance de la constan		-		
				•
Advert (1 Hanks' () Hensel				
The set of the Control of the Second	Contraction of the	100		
			1000	
Busided under Minister				
	Internet and a little state of the	-	-	

The NI LabVIEW is a graphical programming environment used to develop sophisticated measurement, test, and control systems using intuitive graphical icons and wires that resemble a flowchart. It is scalable across multiple operating systems and offers hundreds of built-in libraries. The ICP DAS UniDAQ SDK also supports a toolkit for LabVIEW platform. Users can develop their I/O card applications quickly and easily in LabVIEW with the UniDAQ LabVIEW toolkit and sample programs. The advantage of supporting most of the ICP DAS PCI I/O cards comes from the UniDAQ SDK also can help users to transfer their applications to different PCI I/O cards smoothly and quickly.

Introduction _

The PEX-D48 is the new generation product that ICP DAS provides to meet RoHS compliance requirement, and is designed as easy replacement for the PIO-D48/PIO-D48U. Users can replace the PIO-D48/PIO-D48U by the PEX-D48 directly without any software/driver modification.

The PEX-D48 supports PCI Express bus and provides 48 TTL digital I/O lines. These lines are grouped into six 8-bit bi-direction ports. Every three 8-bit ports are named as port A (PA), port B (PB) and port C (PC) in a connector, and the port C can be split into 2 nibble-wide (4-bit) parts. All ports are configured as inputs upon power-up or reset.

The PEX-D48 adds a Card ID switch for users to recognize the board by the ID via software when using two or more PEX-D48 cards in one computer. The pull-high/low jumpers allow user to predefine the DI status instead of floating when the DI channels are unconnected or broken.

Hardware Specifications _

Digital I/O			
I/O Channels	48-ch, 5 V TTL compatible	Output Source Current	32 mA max.
Input Logic Low	0.8 V max.	Output Sink Current	64 mA max.
Input Logic High	2.4 V min.	Programmable Interrupts	4
General			
Bus	DCI European ut	Connectors	Female DB-37 x 1
bus	PCI Express x1	Connectors	50-pin Male box header x 1
Power Consumption	900 mA @ +5 V	Output Sink Current	0 ~ +60 °C
Storage Temperature	-20 ~ +70 °C	Humidity	5 ~ 85% RH, non-condensing

Software _

- DOS Lib and TC/BC/MSC sample program (with source codes)
- Supports 32-bit and 64-bit Windows XP/2003/Vista/7
 VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes
- Supports LabVIEW and Linux

Pin Assignments _____

Pin Assignment	Terminal	0	No.	Pin Assignment
PA 0	37		19	GND
PA 1	36	. •	18	Vcc
PA 2	35	•	17	GND
PA_2 PA_3	34	•	16	N.C.
PA_5 PA_4	33	••	15	GND
PA_4 PA 5	32	••	14	N.C.
PA_5 PA_6	32	••	13	GND
		• •	12	N.C.
PA_7	30	• •	11	GND
PC_0	29	• •	10	PB 0
PC_1	28	•	09	PB 1
PC_2	27	•	08	PB 2
PC_3	26	•	07	PB 3
PC_4	25	•	06	PB 4
PC_5	24	•	05	PB 5
PC_6	23	•	03	PB_5 PB_6
PC_7	22	• •		_
GND	21	• •	03	PB_7
Vcc	20	• •	02	N.C.
	- ($\overline{\mathbf{U}}$	01	N.C.
	CN1			

Pin Assignment	Т	erminal N	lo.	Pin Assignment
GND	50	00	49	Vcc
GND	48	00	47	PA_0
GND	46	00	45	PA_1
GND	44	00	43	PA_2
GND	42	00	41	PA_3
GND	40	00	39	PA_4
GND	38	00	37	PA_5
GND	36	00	35	PA_6
GND	34	00	33	PA_7
GND	32	00	31	PB_0
GND	30	00	29	PB_1
GND	28		27	PB_2
GND	26	0 0	25	PB_3
GND	24	0 04	23	PB_4
GND	22	00	21	PB_5
GND	20	00	19	PB_6
GND	18	00	17	PB_7
GND	16	00	15	PC_0
GND	14	00	13	PC_1
GND	12	00	11	PC_2
GND	10	00	09	PC_3
GND	08	00	07	PC_4
GND	06	00	05	PC_5
GND	04	00	03	PC_6
GND	02	00	01	PC_7
CN2,	CN3, CI	14, CN5,	CN6 and	I CN7

Ordering Information ____

PEX-D48 CR PCI Express, 48-ch TTL DIO board (RoHS)

Introduction .

The PEX-P16R16i is a PCI Express card with programmable digital I/O interface. It provides 16 photo couple digital inputs with 3750 V isolation protection, allows the input signals to be completely floated to prevent the ground loops. It is also equipped with 16 relay outputs for controlling ON/OFF of external devices, driving external relays or small power switches, and activating alarms... etc.

The PEX-P16R16i is designed as easy replacement for the PISO-P16R16/PISO-P16R16U, and users can replace the PISO-P16R16/PISO-P16R16U with the PEX-P16R16i directly without any software/driver modification.

Hardware Specifications _____

Digital Input					
Isolation Voltage	3750 V (Photo-couple)	Taput Valtage	Logic 1: AC/DC 5 ~ 24 V	Deepense Creed	Without Filter: 50 kHz (Typical)
Channels	16	Input Voltage	(AC 50 ~ 1 kHz) Logic 0: AC/DC 0 ~ 1 V	Response Speed	With Filter: 0.455 kHz (Typical)
Relay Output					
Channels	16	Operating Time	1 ms (typical)	Life	Mechanical: 5,000,000 ops.
Relay Type	8 SPDT, 8 SPST	Release Time	7 ms (typical)	Life	Electrical: 100,000 ops.
Contact Rating	AC:120 V@0.5 A; DC: 24 V@1 A	Insulation Resistance	1,000 Ω		
General					
Bus	PCI Express x1	Card ID	Yes (4-bit)	Connectors	Female DB-37 x 1,
bus	PCI Express XI	Calu ID	Tes (4-bit)	Connectors	40-pin box header x 1
Power Consumption	800 mA @ +5 V	Storage Temperature	0 ~ +60 °C		

Pin Assignments _

Pin Assignment	Termina	Q	No.	Pin Assignment
NO_0	01		20	NO 3
COM_0	02		21	COM 3
NC_0	03	•	22	NC 3
NO_1	04		22	NO 4
COM_1	05		23	COM 4
NC_1	06	• •	24	NO 5
NO_2	07	• •	25	COM 5
COM_2	08	• •		
NC 2	09	• •	27	NO_6
NO 7	10	• •	28	COM_6
COM 7	11	••	29	GND
DIA 0	12	•	30	DIB_0
DIA 1	13		31	DIB_1
DIA 2	14	•	32	DIB_2
DIA_2 DIA_3	15	•	33	DIB_3
DIA_5	16	. •	34	DIB_4
DIA_4 DIA_5	17	. •	35	DIB_5
	17		36	DIB_6
DIA_6		••	37	DIB_7
DIA_7	19			
	CON1	D		

Pin Assignment	Т	erminal N	lo.	Pin Assignment
NO_8	01	00	02	NO_11
COM_8	03	00	04	COM_11
NC_8	05	00	06	NC_11
NO_9	07	00	08	NO_12
COM_9	09	00	10	COM_12
NC_9	11	00	12	NO_13
NO_10	13	00	14	COM_13
COM_10	15	00	16	NO_14
NC_10	17	ho o	18	COM_14
NO_15	19	0 0	20	GND
COM_15	21	40 0	22	DIB_8
DIA_8	23	00	24	DIB_9
DIA_9	25	00	26	DIB_10
DIA_10	27	00	28	DIB_11
DIA_11	29	00	30	DIB_12
DIA_12	31	00	32	DIB_13
DIA_13	33	00	34	DIB_14
DIA_14	35	00	36	DIB_15
DIA_15	37	00	38	-
-	39	00	40	-
		CON2		

Software ____

- DOS Lib and TC/BC/MSC sample program (with source codes)
- Supports 32-bit and 64-bit Windows XP/2003/Vista/7
- VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes
- Supports LabVIEW and Linux

Ordering Information ____

PEX-P16R16i CR PEX-P1

Introduction _____

The PEX-DA4 / DA8 / DA16 series analog output board supports PCI Express interface. It is equipped with 14-bit 4/8/16 analog output channels, and each of the D/A channels features double-buffered latch.

For the PEX-DA series, its voltage output range is from -10 V to +10 V, and the current output range is from 0 to 20 mA. In addition, PEX-DA series also features the following advantages:

Accurate and easy-to-use calibration: ICP DAS provides the software calibration, so that no jumpers and trim-pots are required anymore. The calibration data is saved in EEPROM for long-term use.

Individual channel configuration: Each channel can be individually configured as voltage output or current output.

Card ID: The PEX-DA series adds a Card ID switch for users to recognize the board by the ID via software when using two or more PEX-DA cards in one computer.

The PEX-DA series is designed as easy replacement for the PIO-DA series, and users can replace the PIO-DA series by PEX-DA series directly without any software/driver modification.

Hardware Specifications _____

Analog Outputs							
Channels	4/8/16-ch	Resolution	14-bit	Accuracy	0.01% of FSR ± 2 LSB (@ 25 °C, ± 10 V	
Output Range	+/- 10 V, 0 ~ 20 mA	Output Driving	+/- 5 mA	Slew Rate	0.71 V/µs		
Digital Inputs							
Channels	16-ch, 5 V/TTL	Input Voltage	Logic 0: 0.8 V max., Logic 1: 2.0 V min.		Response Speed	1.0 MHz (Typical)	
Digital Outputs							
Channels	16-ch, 5 V/TTL	Output Voltage	Logic 0: 0.4 V max., Logic 1: 2.4 V min.		Output Capability	Sink: 2.4 mA @ 0.8 V, Source: 0.8 mA @ 2.0 V	
Response Speed	1.0 MHz (Typical)						
General	General						
Bus	PCI Express x1	Card ID	Yes (4-bit)	Connectors	Female DB-37 x 1, 20-p	in box header x 2	

Pin Assignments ____

Pin Assignment	Terminal	ρ	No.	Pin Assignment
IO 15	37		19	VO_15
IO_13	36	. •	18	VO_14
IO_11 IO_13	35	. •	17	VO_13
IO_13 IO_12	34	. •	16	VO_12
IO_12 IO_11	33	. •	15	A.GND
IO_11 IO 10	32	•	14	VO_11
IO_10 IO_9	31	••	13	VO_10
IO_9 IO 8	30	••	12	VO_9
A.GND	29	••	11	VO_8
A.GND IO 7	29	••	10	A.GND
	-	••	09	VO_7
IO_6	27	• •	08	VO 6
IO_5	26	• •	07	VO 5
IO_4	25	•	06	VO 4
A.GND	24	• •	05	A.GND
IO_3	23	•	04	VO 3
IO_2	22	•	03	VO 2
IO_1	21	•	02	VO 1
IO_0	20		01	VO 0
			51	
	CON3	O		

Pin Assignment	Te	erminal N	0.	Pin Assignment
DO 0	01	00	02	DO 1
DO 2	03	00	04	DO 3
DO 4	05	00	06	DO 5
DO 6	07		08	DO 7
DO 8	09	0 0	10	DO 9
DO 10	11	0 0	12	DO 11
DO 12	13	[0 0]	14	DO 13
DO 14	15	00	16	DO 15
GND	17	00	18	GND
+5V	19	00	20	+12V
		CON1		

Pin Assignment	Te	erminal N	Pin Assignment	
DI 0	01	00	02	DI 1
DI 2	03	00	04	DI 3
DI 4	05	00	06	DI 5
DI 6	07	Loo	08	DI 7
DI 8	09	0 0	10	DI 9
DI 10	10	0 0	12	DI 11
DI 12	12	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	14	DI 13
DI 14	14	00	16	DI 15
GND	16	00	18	GND
+5V	18	00	20	+12V
		CON2	,	

Software ____

- DOS Lib and TC/BC/MSC sample program (with source codes)
- Supports 32-bit and 64-bit Windows XP/2003/Vista/7
- VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes
- Supports LabVIEW and Linux

Ordering Information	_
----------------------	---

	-
PFX-DA4 CR	PCI Express, 4-ch Analog Output board (RoHS).
PEX-DA4 CR	Includes one CA-4002 D-Sub connector.
	PCI Express, 8-ch Analog Output board (RoHS).
PEX-DA8 CR	Includes one CA-4002 D-Sub connector.
	PCI Express, 16-ch Analog Output board (RoHS).
PEX-DA16 CR	Includes one CA-4002 D-Sub connector.

PCI-822LU / PCI-826LU Universal PCI, 250 kS/s, 32/16-ch 12-bit or 16-bit A/D, 2-ch 16-bit D/A and 32-ch Programmable DIO Board

Features Universal PCI (3.3 V/5 V) interface 32-ch S.E./16-ch Diff. analog input 12-bit 250 kS/s high-speed A/D for PCI-822LU 16-bit 250 kS/s high-speed A/D for PCI-826LU 8K-sample hardware FIFO Supports software-trigger and pacer-trigger Programmable low gain: 1, 2, 4, 8 Built-in MagicScan controller 2-ch 16-bit analog output 32-ch programmable DIO D/I with pull-high and pull-low jumpers DO with status read back function Card ID function CE FC X RoHS

Introduction

The PCI-822LU/826LU is a multi-function card that providing high-speed analog and digital I/O functions. It features a continuous, 250 kS/s 12-bit or 16-bit resolution A/D converter, 8K-sample hardware FIFO, 2-ch 16-bit D/A converter, and 32-ch programmable digital I/O with DO read back. The PCI-822LU/826LU provides either 32-CH single-ended or 16-CH differential analog inputs which are jumper selectable, and is equipped with a high speed PGA featuring programmable gain (1, 2, 4 or 8).

The PCI-822LU/826LU has a Card ID switch for users to recognize the board by the ID via software when using two or more PCI-822LU/826LU cards in one computer. The pull-high/low jumpers of the card allow user to predefine the DI status instead of floating when the DI channels are unconnected or broken.

The A/D channel scan function of the PCI-822LU/826LU is so amazing, we call it MagicScan. The MagicScan controller takes out most works of getting A/D value such as selecting channel, setting gain, settling time, triggering ADC and getting data. With the built-in MagicScan and interrupt features, it is effectively off-loading your system CPU from the job. Even in channel scan mode, it can have different gain code for each channel, and the sampling rate can still reach 250 kS/s totally. The PCI-822LU/826LU is suitable for high end applications.

Hardware Specifications _____

Analog Input							
32 single-ended/16 differential			Resolution	12-bit (PCI-822LU) / 16-bit (PCI-826LU)			
250 kS/s. max. FIFO Size 8192 samples		Accuracy	0.1 % of FSR ±1 LSB @ 25 °C, ± 10 V				
Analog Output							
2	Resolution	16-bit	Accuracy	± 6 LSB	Output Driving	± 5 mA	
±5 V, ±10 V, 0 \sim 10 V, 0	~ 5 V		Slew Rate	8.33 V/µs			
0							
32	Compatibility	5 V/TTL	Output Capability	Sink: 2.4 mA @ 0.8 V; S	ource: 0.8 mA @ 2.0 V		
General							
3.3 V/5 V Universal PCI, 32-bit Card ID Yes (4-bit) Connectors Female DB-37 x 1, 20-pin box header x					in box header x 2		
	250 kS/s. max. 2 ±5 V, ±10 V, 0 ~ 10 V, 0 32	250 kS/s. max. FIFO Size 2 Resolution ±5 V, ±10 V, 0 ~ 10 V, 0 ~ 5 V 0 32 Compatibility	250 kS/s. max. FIFO Size 8192 samples 2 Resolution 16-bit ±5 V, ±10 V, 0 ~ 10 V, 0 ~ 5 V 5 32 Compatibility 5 V/TTL	250 kS/s. max. FIFO Size 8192 samples Accuracy 2 Resolution 16-bit Accuracy ±5 V, ±10 V, 0 ~ 10 V, 0 ~ 5 V Slew Rate 32 Compatibility 5 V/TTL Output Capability	250 kS/s. max. FIFO Size 8192 samples Accuracy 0.1 % of FSR ±1 LSB @ 2 Resolution 16-bit Accuracy ± 6 LSB ±5 V, ±10 V, 0 ~ 10 V, 0 ~ 5 V Slew Rate 8.33 V/us 32 Compatibility 5 V/TTL Output Capability Sink: 2.4 mA @ 0.8 V; S	250 kS/s. max. FIFO Size 8192 samples Accuracy 0.1 % of FSR ±1 LSB @ 25 °C, ± 10 V 2 Resolution 16-bit Accuracy ± 6 LSB Output Driving ±5 V, ±10 V, 0 ~ 10 V, 0 ~ 5 V Slew Rate 8.33 V/µs 32 Compatibility 5 V/TTL Output Capability Sink: 2.4 mA @ 0.8 V; Source: 0.8 mA @ 2.0 V	

Pin Assignments ____

Pin Assignment	Terminal	Q	No.	Pin Assignment
D.GND	37		19	Ext Trg
Da2 out	36	. •	18	Da1 out
AI 31	35	. •	17	A.GND
AI 30	34	. •	16	AI_15
AI_30	33	. •	15	AI_14
AI_29	32	. •	14	AI_13
AI_20	31	. •	13	AI_12
AI_27	30	••	12	AI_11
AI_20 AI_25	29	••	11	AI_10
AI_25 AI_24	29	••	10	AI_9
AI_24 AI_23	20	••	09	AI_8
	27	••	08	AI_7
AI_22	20	•	07	AI_6
AI_21		•	06	AI 5
AI_20	24	•	05	AI 4
AI_19	23	•	04	AI 3
AI_18	22	۰.	03	AI 2
AI_17	21	•	02	AI 1
AI_16	20	•	01	AI 0
	CON3	J		

Pin Assignment	Т	ermi	Pin Assignment				
PB 0	01	0	0	02	PB 1		
PB 2	03	0	0	04	PB 3		
PB 4	05	0	0	06	PB 5		
PB 6	07	Lo	0	08	PB 7		
PB 8	09	0	0	10	PB 9		
PB 10	11	0	0	12	PB 11		
PB 12	13	٢o	0	14	PB 13		
PB 14	15	0	0	16	PB 15		
GND	17	0	0	18	GND		
+5V	19	0	0	20	+12V		
CON1							

Pin Assignment	Т	erminal N	Pin Assignment					
PA 0	01	00	02	PA 1				
PA 2	03	00	04	PA 3				
PA 4	05	00	06	PA 5				
PA 6	07	Loo	08	PA 7				
PA 8	09	0 0	10	PA 9				
PA 10	10	0 0	12	PA 11				
PA 12	12	[o o	14	PA 13				
PA 14	14	00	16	PA 15				
GND	16	00	18	GND				
+5V	18	00	+12V					
	CON2							

Software ____

VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source codes

loring	Inform	antion
еппо	Inforn	
	1110111	lacion

	Universal PCI, 250 kS/s, 32/16-ch 12-bit				
PCI-822LU CR	Analog Input, 2-ch 16-bit Analog Output and				
PCI-822LU CR	32-ch Programmable DIO.(RoHS).				
	Includes one CA-4002 D-Sub connector.				
	Universal PCI, 250 kS/s, 32/16-ch 16-bit				
PCI-826LU CR	Analog Input, 2-ch 16-bit Analog Output and				
PCI-626LU CR	32-ch Programmable DIO.(RoHS).				
	Includes one CA-4002 D-Sub connector.				

DOS Lib and TC/BC/MSC sample program (with source codes)

Supports 32-bit and 64-bit Windows XP/2003/Vista/7

Introduction _

The PCI-D64HU is a high-speed digital I/O card consisting of 32 digital input channels and 32 digital output channels. High-performance designs make this card perfect for high-speed data transfer and pattern generation applications.

The PCI-D64HU performs high-speed data transfer by bus-mastering DMA via 32-bit PCI bus. The maximum data transfer rate can be up to 40 MB per second.

Several digital I/O transfer modes are supported, such as direct programmed I/O control, timer pacer control, external clock mode and handshaking mode. The PCI-D64HU also features programmable digital filter for all input signals including handshaking and trigger signals.

The PCI-D64HU is a reliable and cost-effective connection interface that works on your computer system to control high-speed peripherals.

Hardware Specifications _____

Digital Input	Digital Input							
Channels	32	Compatibility	5 V/TTL		Input Voltage	Logic 0:	0.8 V max.; Logic 1: 2.	0 V min.
Handshaking Signals	I_REQ input , I_ACK out	put , I_TRG input						
Digital Output								
Channels	32	Compatibility	5 V/TTL		Output Voltage Logic 0: 0.55 V max.; Logic 1: 2.0 V min.			2.0 V min.
Output Capability	Sink: 64 mA @ 0.55 V; Source: -32 mA @ 2.0 V				Handshaking Signals	O_REQ output, O_ACK input, O_TRG output		
Transfer Speed	40 MB/sec for DI and DO) simultaneously (max.)						
On Board FIFO								
Size	1 k DWORD (32-bit) for	DI; 2 k DWORD (32-bit)	for DO		Size in Ring Buffer Mode 2 ~ 2 k DWORD (32-bit), DO only			nly
General								
Bus Type	Universal PCI, 32-bit, 33	MHz Connect	ors	Female DB-	37 x1, 40-pin Box header	erx 1	Power Consumption	200 mA @ +5 V typical (output no load)

Pin Assignments ____

Pin Assignment	Terminal	ρ	No.	Pin Assignment
I TRG	37		19	I_REQ
GND	36	. •	18	I_ACK
DO_15	35	. •	17	+5V
DO_13	34	. •	16	DI_15
DO_14 DO_13	34	. •	15	DI_14
DO_13 DO_12	32	•	14	DI_13
DO_12 DO_11	32	••	13	DI_12
DO_10	30	••	12	DI_11
DO_10	29	••	11	DI_10
DO_9 DO_8	29	••	10	DI_9
DO_3	20	••	09	DI_8
DO_7	21	••	08	DI_7
DO_8 DO_5	20	••	07	DI_6
DO_5 DO_4	23	••	06	DI_5
_	24	••	05	DI_4
DO_3	23	••	04	DI_3
DO_2	22	••	03	DI_2
DO_1	21	•	02	DI_1
DO_0	20	••	01	DI_0
	CON1	O		

Pin Assignment	Т	erminal I	Pin Assignment			
N.C.	40	00	39	N.C.		
N.C.	38	00	37	O_REQ		
O_TRG	36	00	35	O_ACK		
GND	34	00	33	+5V		
DO_31	32	00	31	DI_31		
DO_30	30	00	29	DI_30		
DO_29	28	00	27	DI_29		
DO_28	26	00	25	DI_28		
DO_27	24	0 0	23	DI_27		
DO_26	22	0 0	21	DI_26		
DO_25	20	0 0	19	DI_25		
DO_24	18	00	17	DI_24		
DO_23	16	00	15	DI_23		
DO_22	14	00	13	DI_22		
DO_21	12	00	11	DI_21		
DO_20	10	00	09	DI_20		
DO_19	08	00	07	DI_19		
DO_18	06	00	05	DI_18		
DO_17	04	00	03	DI_17		
DO_16	02	00	01	DI_16		
CON2						

🖪 Software ____

Supports Windows 2000/XP/2003/Vista/7

VB/VC/BCB sample programs with source code

Orde	Ordering		orr	nati	or	<u>ا</u>
	Universal P	CI, 40	MB/s	High-spe	eed 32	2-ch DI

PCI-D64HU CR and 32-ch DO (RoHS). Includes one CA-4037W cable and two CA-4002 D-Sub connectors.

VXC-112AU / VXC-112iAU / VXC-142AU /

VXC-142iAU Universal PCI, 2-Port RS-232 or RS-422/485 Communication Board

Introduction

The VXC-112AU/VXC-112iAU/VXC-142AU/VXC-142iAU communication card provides 2 RS-232 or RS-422/485 serial ports. Each port supports for speed up to 115200 bps and can work for full-duplex communication.

Users may specify a COM port number manually by setting COM-Selector (DIP switch), or let the driver choose an available number automatically. The driver provides a maximum of 128 KB software buffer for each COM port under Windows. It's practical for large file transmission.

In harsh industrial environments, the on board ESD protection component diverts the potentially damaging charge away from sensitive circuit and protects the computer and equipment from being damaged by high potential voltage.

The VXC-112iAU/VXC-142iAU offers photo isolation to protect your computer and equipment against damages in harsh environment. The built-in photo coupler can help cutting down on ground loops, common mode voltages and block voltage spikes, provide electrical isolation, and offer significant protection from serious over-voltage conditions in one circuit affecting the other.

The serial communication card are designed for use with intelligent devices like bar code reader, serial printers, intelligent sensors, instrumentation equipment, computers and almost any device with an RS-232 or RS-422/485 port.

Hardware Specifications ______

Serial Port							
COM1/2	9-Wire RS-232 for VXC-112AU/VXC-112iAU Selectable 8-Wire RS-422 or 2-Wire RS-485 for VXC-142AU/VXC-142IAU						
UART	I6C950 compatible Baud Rate 50 ~ 115200 bps Data Bit 5, 6, 7, 8						
Stop Bit	1, 1.5, 2	Parity	None, Even, Odd, Mark, Space	FIFO	Internal 128 bytes		
ESD Protection	+/- 4 kV for VXC-112iAU/VXC-142iAU Isolation 2500 V _{0C} for VXC-112iAU/VXC-142iAU						
General							
Bus	3.3 V/5 V, 33 MHz, 32-bit	COM-Selector	Yes (8-bit DIP switch)	Connector	Male DB-9 x 2		
Power Consumption VXC-112AU: 100 mA @ 5 V ;VXC-112iAU: 480 mA @ 5 V ; VXC-142U: 100 mA @ 5 V ;VXC-142U: 480 mA @ 5 V							

Pin Assignments _____

Pin Assignment	Termina	Q	No.	Pin Assignment	Pin Assignment	Terminal	Q	No.
GND	05		09	RI	GND/VEE	05		09
DTR	04	•			RxD-(A)	04	• •	
TxD	03	••	08	CTS	RxD+(B)	03	••	08
RxD	02	•	07	RTS	TxD+(B)/Data+(B)	02		07
DCD	01	•	06	DSR	TxD-(A)/Data-(A)	01	•	06
505	01		/		THE (T) Edd (T)			,
F	RS-232 M) Connect	or	RS-	422/485 1		-9 Con
	(3-232 10)	ne bb-s	Connect	01	11.5	422/403 /	naic DD	- / 0011

🗖 Software 🗌

Drivers for 32-bit Windows 2000/XP/2003/Vista/7

Drivers for 64-bit Windows XP/2003/Vista/7

Ordering Information ____

	Universal PCI, 2-Port RS-232 Communication		
VXC-112AU CR	Board (RoHS)		
VXC-112iAU CR	Universal PCI, 2-Port Isolated RS-232		
VAC-TIZIAU CR	Communication Board (RoHS)		
VXC-142AU CR	Universal PCI, 2-Port RS-422/485		
VAC-142AU CR	Communication Board (RoHS)		
VXC-142iAU CR	Universal PCI, 2-Port Isolated RS-422/485		
VAC-142IAU CR	Communication Board (RoHS)		

Features Supports 3.3 V/5 V PCI bus, Plug and Play

Built-in COM-Selector

- Provides 2 RS-232 ports for VXC-112AU/VXC-112iAU
- Provides 2 RS-422/485 ports for VXC-142AU/VXC-142iAU
- 128-byte Hardware EIFO for Each Port
- +/-4 kV ESD Protection for VXC-112iAU/VXC-142iAU

X

2500 Vpc Isolation for VXC-112iAU/VXC-142iAU

nector

Pin Assignment

CTS-(A) CTS+(B)

RTS+(B) RTS-(A)

VEX-114 / VEX-114i / VXC-114U / VXC-114iAU

PCI Express / Universal PCI, 4-Port RS-232 Communication Board

Features

- VXC versions supports 3.3 V/5 V PCI bus
- VEX versions supports PCI Express bus
- Built-in COM-Selector
- Provides 4 RS-232 ports
 128-byte Hardware EIEO for Each Port
- +/-4 kV ESD Protection for VEX-114i/VXC-114iAU

X

- 2500 Vpc Isolation for VEX-114i/VXC-114iAU
- Short Card Design

Introduction ____

The VEX-114/VEX-114i/VXC-114iAU communication card provides 4 RS-232 serial ports. Each port supports for speed up to 115200 bps and can work for full-duplex communication.

Users may specify a COM port number manually by setting COM-Selector (DIP switch), or let the driver choose an available number automatically. The driver provides a maximum of 128 KB software buffer for each COM port under Windows. It's practical for large file transmission.

In harsh industrial environments, the on board ESD protection component diverts the potentially damaging charge away from sensitive circuit and protects the computer and equipment from being damaged by high potential voltage.

The VEX-114/VXC-114iAU offers photo isolation to protect your computer and equipment against damages in harsh environment. The built-in photo coupler can help cutting down on ground loops, common mode voltages and block voltage spikes, provide electrical isolation, and offer significant protection from serious over-voltage conditions in one circuit affecting the other.

The serial communication card are designed for use with intelligent devices like bar code reader, serial printers, intelligent sensors, instrumentation equipment, computers and almost any device with an RS-232 port.

Hardware Specifications ______

Serial Port						
COM1~4	9-Wire RS-232 UART		16C950 compatible	Baud Rate	50 ~ 115200 bps	
Data Bit	5, 6, 7, 8	5, 6, 7, 8 Stop Bit		Parity	None, Even, Odd, Mark, Space	
FIFO	Internal 128 bytes ESD Protection		+/- 4 kV (VEX-114i/VXC-114iAU)	Isolation	2500 VDC (VEX-114i/VXC-114iAU)	
General						
Bus	VEX versions: PCI Express x1; VXC versions: 3.3 V/5 V, 33 MHz, 32-bit COM-Selector Yes (8-bit DIP switch)					
Connector	Female DB-37 x 1 Power Consumption VEX-114: 120 mA @ 5 V; VEX-114i: 880 mA @ 5 V; VXC-114U: 120 mA @ 5 V; VXC-114iAU: 880 mA				mA @ 5 V; VXC-114iAU: 880 mA @ 5 V	

Pin Assignments _____

Pin Assignment	Terminal	No.	Pin Assignment		
N.C.	01	20	RI3		
DCD3	02	21	DTR3		
GND	03	22	DSR3		
CTS3	04	23	RTS3		
RxD3	05	24	TxD3		
RI4	06	25	DCD4		
DTR4	07	26	GND		
DSR4	08	20	CTS4		
RTS4	09	28	RxD4		
TxD4	10	20	RI2		
DCD2	11	30	DTR2		
GND	12	30	DSR2		
CTS2	13	32	RTS2		
RxD2	14	33	TxD2		
RI1	15	34	DCD1		
DTR1	16	34	GND		
DSR1	17	36	CTS1		
RTS1	18	36	RxD1		
TxD1	19	3/	KXDT		
RS-232 Female DB-37 Connector					

Software ____

Drivers for 32-bit Windows 2000/XP/2003/Vista/7
 Drivers for 64-bit Windows XP/2003/Vista/7

Ordering Information ____

VXC-114 CR	PCI Express, 4-Port RS-232 Communication
VAC-114 CR	Board (RoHS)
VXC-114i CR	PCI Express, 4-Port Isolated RS-232
VAC-1141 CR	Communication Board (RoHS)
VXC-114U CR	Universal PCI, 4-Port RS-232 Communication
VAC-1140 CR	Board (RoHS)
VXC-114iAU CR	Universal PCI, 4-Port Isolated RS-232
VAC-TT4IAU CR	Communication Board (RoHS)

Available Soon

VEX-144 / VEX-144i / VXC-144U / VXC-144iU

PCI Express / Universal PCI, 4-Port RS-422/485 Communication Board

Features

- VXC versions supports 3.3 V/5 V PCI bus
- VEX versions supports PCI Express bus
- Built-in COM-Selector
- Provides 4 RS-422/485 ports
- 128-byte Hardware FIFO for Each Port
- +/-4 kV ESD Protection for VEX-144i/VXC-144iU

X

- 2500 VDC Isolation for VEX-144i/VXC-144iU
- Short Card Design

Introduction ____

The VEX-144/VEX-144i/VXC-144U/VXC-144iU communication card provides 4 RS-422/485 serial ports. Each port supports for speed up to 115200 bps and can work for full-duplex communication.

Users may specify a COM port number manually by setting COM-Selector (DIP switch), or let the driver choose an available number automatically. The driver provides a maximum of 128 KB software buffer for each COM port under Windows. It's practical for large file transmission.

In harsh industrial environments, the on board ESD protection component diverts the potentially damaging charge away from sensitive circuit and protects the computer and equipment from being damaged by high potential voltage.

The VEX-144/VXC-144iU offers photo isolation to protect your computer and equipment against damages in harsh environment. The built-in photo coupler can help cutting down on ground loops, common mode voltages and block voltage spikes, provide electrical isolation, and offer significant protection from serious over-voltage conditions in one circuit affecting the other.

The serial communication card are designed for use with intelligent devices like bar code reader, serial printers, intelligent sensors, instrumentation equipment, computers and almost any device with an RS-422/485 port.

Hardware Specifications _____

Serial Port						
COM1~4	Selectable 8-Wire RS-422 or 2-Wire R	RS-485	UART	16C950 compatible		
Baud Rate	50 ~ 115200 bps Data Bit		5, 6, 7, 8	Parity	None, Even, Odd, Mark, Space	
FIFO	Internal 128 bytes ESD Protection		+/- 4 kV (VEX-144i/VXC-144iU)	Isolation	2500 VDC (VEX-144i/VXC-144iU)	
General						
Bus	VEX versions: PCI Express x1; VXC v	ersions: 3.3 V/5 V, 33 MH	COM-Selector	Yes (8-bit DIP switch)		
Connector	Female DB-37 x 1	Power Consumption	VEX-144: 120 mA @ 5 V; VEX-144i: 880 m/	A @ 5 V; VXC-144U: 120 r	nA @ 5 V; VXC-144iU: 880 mA @ 5 V	

Pin Assignments _____

Pin Assignment	Termina	Q	No.	Pin Assignment
N.C.	01		20	CTS3-(A)
TxD3-(A)/Data3-(A)	02		21	RxD3-(A)
GND/VEE3	03	•	22	RTS3-(A)
CTS3+(B)	04		23	RTS3+(B)
TxD3+(B)/Data3+(B)	05		24	RxD3+(B)
CTS4-(A)	06		25	TxD4-(A)/Data4-(A)
RxD4-(A)	07		26	GND/VFF4
RTS4-(A)	08		27	CTS4+(B)
RTS4+(B)	09		28	TxD4+(B)/Data+(B)
RxD4+(B)	10	•	20	CTS2-(A)
TxD2-(A)/Data2-(A)	11	•	30	RxD2-(A)
GND/VEE2	12	• •	30	RTS2-(A)
CTS2+(B)	13	• •	32	RTS2+(B)
TxD2+(B)/Data2+(B)	14	• •		
CTS1-(A)	15	• •	33	RxD2+(B)
RxD1-(A)	16	• •	34	TxD1-(A)/Data1-(A)
RTS1-(A)	17	• •	35	GND/VEE1
RTS1+(B)	18	• •	36	CTS1+(B)
RxD1+(B)	19	••	37	TxD1+(B)/Data1+(B)
RS-422/485 Female DB-37 Connector				

🖪 Software 🗕

Ordering Information ____

VFX-144 CR	PCI Express, 4-Port RS-422/485		
VEA-144 CK	Communication Board (RoHS)		
VFX-144i CR	PCI Express, 4-Port Isolated RS-422/485		
VEX-1441 CR	Communication Board (RoHS)		
VXC-144U CR	Universal PCI, 4-Port RS-422/485		
VXC-1440 CR	Communication Board (RoHS)		
VXC-144iU CR	Universal PCI, 4-Port Isolated RS-422/485		
VAG-14410 CR	Communication Board (RoHS)		

Drivers for 32-bit Windows 2000/XP/2003/Vista/7
 Drivers for 64-bit Windows XP/2003/Vista/7

Drivers for 64-bit Windows XP/2003/Vista//

Universal PCI I/O Cards

PISO-DA16U / DA8U / DA4U

Universal PCI, 14-bit 16/8/4-ch Bus-type Isolated Analog Output Board

- Universal PCI (3.3 V/5 V) interface
- 2500 Vbc bus-type isolation protection
- 3000 V_{DC} power isolation protection
- 16-/8-/4-ch, 14-bit analog output
- Voltage output: ±10 V
- Current output: 0 ~ 20 mA (sink)
- Double-buffered D/A latch
- 16-ch 5 V TTL D/I and 16-ch 5 V TTL D/O
- D/I with pull-high and pull-low jumpers
- Two pacer timer interrupt sources
- Card ID function
- Drop-in replacement for the PIO-DA16/DA8/DA4

ISO-P32S32W / PISO-P32S32WU

ISA or Universal PCI, 32-ch Optical-Isolated D/I and 32-ch Optical-Isolated Open Collector Output Board

- Universal PCI (3.3 V/5 V) for PISO-P32S32WU
- ISA bus for ISO-P32S32W
- 32-ch optical-isolated digital input
- Input voltage up to 30 VDC
- 32-ch optical-isolated open collector output
- 500 mA (8-ch) high-driving
 100 mA (24-ch) driving
- Current Sinking (NPN)
- Isolation Voltage: 3750 V

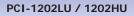
PCI-M512U

Universal PCI, 512 KB Memory Board with DI / DO

- Universal PCI (3.3 V/5 V) interface
- On-board 512 KB SRAM
- Two Li-batteries for battery-backup the data of SRAM
- LED indicators for low- and bad-battery status
- 16-ch 5 V TTL D/O
- 12-ch 5 V TTL D/I

VB.NET and C#

PCI-M512


 Supports 32-bit Windows XP/ 2003/Vista/7
 Supports VB/VC/Delphi/BCB/

Drop-in replacement for the

PCI-1602U / 1602FU

Universal PCI, 32-ch, 16-bit, 100 or 200 kS/s Multi-function Board

- Universal PCI (3.3 V/5 V) interface
- 16-bit, 100 or 200 kS/s A/D converter
- 32 S.E./16 Diff. analog inputs
- Built-in MagicScan controller
- 8K-sample hardware FIFO
- External: Post-trigger, Pre-trigger and Middle-trigger
- Internal: Software-trigger and Pacer-trigger
- 16-ch 5 V TTL D/I and 16-ch 5 V TTL D/O
- Data transfer rate is up to 2.1 M words/s (max.)
- D/I with pull-high and pull-low jumpers
- Two 12-bit independent programmable DAC, 2 MHz throughput per channel (max.)
- Drop-in replacement for the PCI-1602/1602F

Universal PCI, 32-ch, 12-bit, 110 or 40 kS/s Multi-function Board

- Universal PCI (3.3 V/5 V) interface
- 12-bit, 110 or 40 kS/s A/D converter
- 32 S.E./16 Diff. analog inputs
- Built-in MagicScan controller
- 1K-sample hardware FIFO
- External: Post-trigger, Pre-trigger
- and Middle-trigger

 Internal: Software-trigger and Pacer-trigger
- 16-ch 5 V TTL D/L and 16-ch 5 V TTL D/O
- Data transfer rate is up to 2.1 M words/s (max.)
- D/I with pull-high and pull-low function
- Two 12-bit independent programmable DAC, 2 MHz throughput per channel (max.)
- Drop-in replacement for the PCI-1202L/1202H

PCI-1002LU / 1002HU

Universal PCI, 32-ch, 12-bit, 110 or 44 kS/s Multi-function Board

- Universal PCI (3.3 V/5 V) interface
- 12-bit, 32 S.E./16 Diff. analog inputs
- 110 or 44 kS/s A/D sampling rate
- Internal and external trigger
- 16-ch 5 V TTL D/I
- 16-ch 5 V TTL D/O
- 10 011 0 1 112 0/
- D/I with pull-high and pull-low function
 Drop-in replacement for the PCI-1002L/
- 1002H
- Supports 32-bit and 64-bit Windows XP/2003/Vista/7
- Supports VB/VC/Delphi/BCB/VB.NET/C#.NET sample programs with source code

PIO-DA16U / DA8U / DA4U

Universal PCI, 14-bit 16/8/4-ch Analog Output Board

- Universal PCI (3.3 V/5 V) interface
- 16-/8-/4-ch, 14-bit analog output
 Voltage output: ±10 V
- voltage output: ±10 v
- Current output: 0 ~ 20 mA (sink)
 Two pacer timer interrupt sources
- Double-buffered D/A latch
- Double-bullered
 16-ch D/I
- 16-Ch D/1
- 16-ch D/O
- D/I with pull-high and pull-low function
- Card ID function
- Drop-in replacement for the PIO-DA16/DA8/DA4

PIO-D144U / D96U / D64U / D56U / D48U / D24U

Universal PCI, 144-/96-/64-/56-/48-24-ch 5 V TTL DIO Board

- Universal PCI (3.3 V/5 V) interface
- 144-/96-/64-/56-/48-/24-ch 5 V TTL DIO
 Emulate Industrial standard 8255 PPI port (mode 0) (PIO-D144U/D96U/D56U/D48U/D24U)
- High output driving capability (PIO-D144U/D96U/D56U/D48U/D24U)
- Interrupt handing capability
- Card ID function
- DIO response time is about 0.77 µs (1.3 MHz max.)
- Drop-in replacement for the PIO-D144/D96/D64/D56/D48/D24

PISO-DA2U

Universal PCI, 2-ch Isolated Analog Output Board

- Universal PCI (3.3 V/5 V) interface
- Two independent 12-bit analog outputs
- 3000 V_{DC} isolation protection (Bus-Type and CH-CH)
- Unipolar or bipolar analog output
- Two pacer timer interrupt sources
- Double buffered D/A batch
- Software calibration
- The calibration data is fully stored in
- EEPROM Drop-in replacement for the PISO-DA2

PISO-P32C32U

Universal PCI, 32-ch Optically Isolated D/I and 32-ch Optically Isolated Open Collector output Board

- Universal PCI (3.3 V/5 V) interface
- 32-ch optically isolated digital input32-ch optically isolated open collector
- output (Current Sinking, NPN type) 3000 Voc isolation voltage
- Card ID function
- Supports 32-bit and 64-bit Windows XP/2003/Vista/7
- Supports VB/VC/Delphi/BCB/VB.NET and C#
- Drop-in replacement for the PISO-P32C32

